AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIAA-2004-0689

Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason

Virginia Tech

Work sponsored by NASA Langley Research Center, Grant NAG 1-02024

42nd AIAA Aerospace Sciences Meeting and Exhibit
Reno, NV, January 7, 2004
Introduction

- Aircraft noise: an important performance criterion and constraint in aircraft design
- Noise regulations limit growth of air transportation
- Reduction in noise needed
- To achieve noise reduction
 - Design revolutionary aircraft with innovative configurations
 - Improve conventional aircraft noise performance
 - Optimize flight performance parameters for minimum noise
- All these efforts require addressing noise in the aircraft conceptual design phase
Aircraft Noise Components

- Include aircraft noise as an objective function or constraint in MDO
 - Requires modeling of each noise source
- Airframe noise
 - Now comparable to engine noise at approach
 - Our current focus
Trailing Edge Noise

- Trailing Edge Noise
 - Airframe noise component
 - Main noise mechanism of a clean wing
 - Scattering of acoustic waves generated due to the passage of turbulent boundary layer over the trailing edge

- In our study, we have developed a new Trailing Edge Noise metric appropriate for MDO
Why Do We Model Trailing Edge Noise?

- Trailing Edge Noise: a lower bound value of airframe noise at approach (a measure of merit)

- Trailing Edge Noise can be significant contributor to the airframe noise for a non-conventional configuration
 - traditional high-lift devices not used on approach
 - A Blended-Wing-Body (BWB) Aircraft
 - Large Wing Area and span
 - A conventional aircraft or BWB with distributed propulsion
 - Jet-wing concept for high lift
 - An airplane with a morphing wing

- A Trailing Edge Noise Formulation based on proper physics may be used to model the noise from flap trailing edges or flap-side edges at high lift conditions

- First step towards a general MDO noise model
Outline of the Current Work

◆ Objective: To develop a trailing edge noise metric
 – construct response surfaces for aerodynamic noise minimization

◆ Noise metric
 – Should be a reliable indicator of noise
 – Not necessarily the magnitude of the absolute noise
 – Should be relatively inexpensive to compute
 • Computational Aeroacoustics too expensive to use
 • Still perform 3-D, RANS simulations with the CFD code GASP

◆ Parametric Noise Metric Studies
 – 2-D and 3-D cases
 – The effect of different wing design variables on the noise metric
The Trailing Edge Noise Metric

- Following classical aeroacoustics theories from Goldstein and Lilley, we derive a noise intensity indicator (I_{NM})

$$I_{NM} = \frac{\rho_\infty}{2\pi^3 a_\infty^2} \int_0^b u_0^5(y)l_0(y)\cos^3(\beta(y)) D[\theta(y),\psi(y)] \, dy$$

- Noise Metric: $NM \ (dB) = 10\log\left(\frac{I_{NM}}{I_{ref}}\right)$, with $I_{ref}=10^{-12} \ (W/m^2)$

$$NM \ (dB) = 120 + 10\log(I_{NM})$$

$D[\theta,\psi] = 2\sin^2\left(\frac{\theta}{2}\right)\sin(\psi)$ (directivity term)

u_0 characteristic velocity for turbulence

l_0 characteristic length scale for turbulence

ρ_∞ free-stream density

a_∞ free-stream speed of sound

H distance to the receiver

β trailing edge sweep angle

θ polar directivity angle

ψ azimuthal directivity angle
Modeling of u_0 and l_0

- Characteristic turbulence velocity scale at the trailing edge

$$u_0(y) = \text{Max} \left\{ \sqrt{\text{TKE}(z)} \right\}$$

- New characteristic turbulence length scale at the trailing edge

$$l_0(y) = \frac{\text{Max} \left\{ \sqrt{\text{TKE}(z)} \right\}}{\omega}$$

- ω is the turbulence frequency observed at the maximum TKE location for each spanwise location.

- TKE and ω obtained from the solutions of $TKE-\omega$ ($k-\omega$) turbulence model equations used in RANS calculations

- Previous semi-empirical trailing edge noise prediction methods use δ or δ^* for the length scale
 - Related to mean flow
 - Do not capture the turbulence structure
Unique Features of the Noise Metric

- Expected to be an accurate relative noise measure suitable for MDO studies
- Applicable to any wing configuration
- Spanwise variation of the characteristic turbulence velocity and length scale taken into account
- Sensitive to changes in design variables (lift coefficient, speed, wing geometry *etc.*).
- The choice of turbulence length scale \(l_0\) more soundly based than previous ones used in semi-empirical noise predictions
Noise Metric Validation

- Experimental NACA 0012 cases from NASA RP 1218 (Brooks et al.)
- All cases subsonic
- Predicted Noise Metric (NM) compared with the experimental OASPL
- The agreement between the predictions and the experiment is very good

<table>
<thead>
<tr>
<th>α (deg)</th>
<th>0.0</th>
<th>0.0</th>
<th>2.0</th>
<th>1.5</th>
<th>0.0</th>
<th>2.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Re_c \times 10^6$</td>
<td>1.497</td>
<td>0.665</td>
<td>0.499</td>
<td>0.831</td>
<td>1.164</td>
<td>1.122</td>
<td>1.497</td>
</tr>
</tbody>
</table>

NM_{si} and $OASPL_{si}$ results are scaled with the values obtained for case 1.
Parametric Noise Metric Studies

Two-Dimensional Cases
- **Subsonic Airfoils**
 - NACA 0012 and NACA 0009
- **Supercritical Airfoils**
 - SC(2)-0710 (t/c=10%)
 - SC(2)-0714 (t/c=14%)
- **C-grid topology (388×64 cells)**

Three-Dimensional Cases
- **Energy Efficient Transport (EET) Wing**
 - S_{ref}=511 m², MAC=9.54 m
 - AR=8.16, Λ=30° at c/4
 - t/c=14% at the root
 - t/c=12% at the break
 - t/c=10% at the tip
 - **C-O topology, 4 blocks (884,736 cells)**

Steady RANS simulations with GASP
- Menter’s SST k-ω turbulence model
Parametric Noise Metric Studies with NACA 0012 and NACA 0009

- $V_\infty=71.3$ m/s, $Mach=0.2$, $Re_c=1.497 \times 10^6$ & 1.837×10^6
- Investigated noise reduction by decreasing C_l and t/c
 - Increased chord length to keep lift and speed constant
 - Total noise reduction=3.617 dB

- Simplified representation of increasing the wing area and reducing the overall lift coefficient at constant lift and speed
 - Additional benefit: eliminating or minimizing the use of high lift devices
Parametric Noise Metric Studies with SC(2)-0710 and SC(2)-0714

- Realistic approach conditions
 - \(Re_c = 44 \times 10^6\)
 - \(V_\infty = 68 \text{ m/s, } Mach=0.2\)
- Corresponds to typical transport aircraft
 - With \(MAC=9.54 \text{ m}\)
 - Flying at \(H=120 \text{ m}\)
 - Approximately the point for the noise certification at the approach before landing
- Directivity terms
 - Directivity term=1.0
 \((\theta=90^\circ \text{ and } \psi=90^\circ)\)
- Investigate the effect of the thickness ratio and the lift coefficient
Noise Metric Values for the Supercritical Airfoils at different C_l values

- At relatively lower lift coefficients ($C_l < 1.3$)
 - Noise metric almost constant
 - The thicker airfoil has a larger noise metric

- At higher lift coefficients ($C_l > 1.3$)
 - Sharp increase in the noise metric
 - The thinner airfoil has a larger noise metric
3-D Parametric Noise Metric Studies with the EET Wing

- Realistic approach conditions
 - $Re_c=44 \times 10^6$, $V_\infty=68$ m/s, $M=0.2$
 - Flying at $H=120$ m
- Stall observed at the highest C_L
 - $CL_{max}=1.106$
 - $W/S_{max}=315.7$ kg/m2 (64.8 lb/ft2)
 - Less than realistic C_L and W/S (~430 kg/m2) values
- Investigate the effect of the lift coefficient on the noise metric with a realistic geometry
- Investigate spanwise variation of u_0 and l_0
Section C_l and Spanload distributions for the EET Wing

- Loss of lift on the outboard sections at the highest lift coefficient
- Large region of separated flow
- Shows the value to increase the wing area of a clean wing
 - To obtain the required lift on approach with lower C_L
 - Lower noise
Skin Friction Contours at the Upper Surface of the EET Wing for different C_L values

$C_L=0.375$, $\alpha=2^\circ$

$C_L=0.689$, $\alpha=6^\circ$

$C_L=0.970$, $\alpha=10^\circ$

$C_L=1.106$, $\alpha=14^\circ$
TKE (u_0^2) and l_0 Distributions at the Trailing Edge of the EET Wing for different C_L values

- Maximum **TKE** and l_0 get larger starting from CL=0.836, especially at the outboard section
- Dramatic increase for the separated flow case
- Maximum **TKE** and l_0 not constant along the span at high C_L
Noise Metric Values for the EET Wing at different C_L values

- At lower lift coefficients
 - Noise metric almost constant
 - Contribution to the total noise from the lower surface significant

- At higher lift coefficients
 - Noise metric gets larger
 - Dramatic increase for the separated flow case
 - Upper surface is the dominant contributor to the total noise
Conclusions

◆ A new trailing edge noise metric has been developed
 – For noise response surfaces in MDO
 – For any wing geometry
 – Introduced a length scale directly related to the turbulence structure
 – Spanwise variation of characteristic velocity and length scales considered

◆ Noise metric an accurate relative noise measure as shown by validation studies

◆ Parametric noise metric studies performed
 – Studied the effect of the lift coefficient and the thickness ratio
 – Noise reduction possible with decreasing the lift coefficient
 • Leads to increase in chord length (wing area) for constant lift and speed
 • Leads to decrease in thickness ratio (further reduction in noise)
 – Noise constant at lower lift coefficients and gets larger at higher lift coefficients. Sharp increase when there is large separation
 – Characteristic velocity and length scales not constant along the span at high lift coefficients due to 3-D effects
Future Work

- Trailing Edge Noise
 - Investigate the effect of other design parameters
 - Twist distribution
 - Wider parameter space
 - Extend approach to flaps and slats

- Consider other noise components