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� Resonance Transition of Comets: Outline

I Outline of Lecture 4B:

•Resonance transition seen in comets such as Oterma.
•Mixed phase space of 3-body problem:
•Mean motion resonance “islands” imbedded in chaotic “sea.”
• Exterior and interior resonances connected by Lyapunov orbit

stable & unstable manifold tubes, the dynamical channels.
• Future work: transition between planets, belts, etc.
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� Jupiter Comets: Oterma

I Some Jupiter comets perform a rapid transition from the
outside to the inside of Jupiter’s orbit.

ICaptured temporarily by Jupiter during transition.

I Exterior (2:3 resonance). Interior (3:2 resonance).
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� Jupiter Comets: Previous Works

I Belbruno/B. Marsden [1997]

I Lo/Ross [1997] :

• Jupiter comets Oterma, Gehrels 3, etc. in Sun-Jupiter rotat-
ing frame follow stable and unstable invariant mani-
folds of the equilibrium points L1 and L2.
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� Jupiter Comets: Planar CR3BP Model

I Use planar circular restricted 3-body problem as initial model:

• Simplest 3-body model, easiest to analyze.
• Comets of interest are mostly heliocentric, but

their perturbation is dominated by Jupiter’s gravitation.
• Their motion is nearly in Jupiter’s orbital plane (i < 5◦), and

Jupiter’s small eccentricity (0.0483) plays little role during
resonance transition.
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� Jupiter Comets: Heteroclinic Connection

IMore recently, Koon/Lo/Marsden/Ross [2000]:

• Found heteroclinic connection between pair of periodic orbits.

• Found a large class of orbits near this (homo/heteroclinic) chain.

• Comets can follow these dynamical channels in rapid transi-
tion between interior and exterior Hill’s regions.
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� Jupiter Comets: Following Dynamical Channels

• For instance, consider the comet Oterma from 1910 to 1980.

• The average Jacobi constant for Oterma during its transition is
C = 3.030± 0.005 (computed at Jupiter encounter).

•We can compute a homoclinic-heteroclinic chain for
C = 3.030 (shown in black on the left).

• Overlaying the chain, we plot Oterma’s orbit in red (at right).
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� Jupiter Comets: Rapid Transition Mechanism

•Rapid transition between the interior and exterior regions is
possible via the L1 & L2 periodic orbit stable & unstable man-
ifold tubes (containing transit orbits) and their intersections.

• This was a surprising result. Some believed that a third degree
of freedom was necessary for such a transition, or that “Arnold
diffusion” was invloved.

• But as we have seen, only the planar CR3BP, the simplest
model of 3-body gravitational dynamics, is necessary.
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� Rapid Transition Mechanism: Resonance Transition

• The tubes are a generic transport mechanism connecting the
interior and exterior Hill’s regions.

•We wish to understand their role in transport between interior and
exterior mean motion resonances.

• e.g., we shall try to explain in more precise terms the sense in
which Oterma transitions between the 3:2 and 2:3 mean motion
resonances with Jupiter.
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� Rapid Transition Mechanism: Resonance Transition

• For the Sun-Jupiter system (µ = 0.0009537), we can construct a
homoclinic-heteroclinic chain with Jacobi constant similar to that
of Oterma during its recent Jupiter encounters (C = 3.030).

• The chain is a union of orbits: interior region orbit homoclinic
to L1 periodic orbit, exterior region orbit homoclinic to L2 peri-
odic orbit, and heteroclinic connection between the L1 & L2
periodic orbits.
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� Rapid Transition Mechanism: Resonance Transition

•We choose this chain because its homoclinic orbits are (1,1)-type.

• Limiting to (1,1)-type means, for this particular energy regime,
that two different resonance connections are possible; 3:2 to 2:3,
and 3:2 to 1:2. This will be explained later. We choose 3:2 to 2:3,
since this matches Oterma’s orbit.
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� Rapid Transition Mechanism: Resonance Transition

• Our main theorem tells us that in the vicinity of this chain, there
exists an orbit whose symbolic sequence (. . . , J,X, J, S, J, . . . ) is
periodic and has the central block itinerary (J,X, J, S, J).

• This orbit transitions between the interior and exterior regions
(the neighborhood of the 3:2 and 2:3 resonances, in particular).
We call this kind of itinerary a resonance transition block.
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� Rapid Transition Mechanism: Resonance Transition

• This orbit makes a rapid transition from the exterior to the
interior region and vice versa, passing through the Jupiter region.
It will repeat this pattern eternally.

•While an orbit with this exact itinerary is very fragile, the structure
of nearby orbits whose symbolic sequences have the same central
block itinerary, namely (J,X, J, S, J), is quite robust.
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� Rapid Transition Mechanism: Resonance Transition

• An example orbit with central block (J,X, J, S, J) is shown below.

•We will study how the dynamical channels near the chain connect
the 3:2 resonance of the interior region with the 2:3 resonance
of the exterior region.
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� PCR3BP: Perturbation of the Two-Body Problem

• Recall that the PCR3BP is a perturbation of the two-body prob-
lem. Hence, outside of a small neighborhood of L1, the trajectory
of a comet in the interior region follows essentially a two-body
orbit around the Sun.

• In the heliocentric inertial frame, the orbit is nearly elliptical.
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� Heliocentric Orbits: Mean Motion Resonance

• The mean motion resonance of the comet with respect to
Jupiter is equal to a−3/2 where a is the semi-major axis of the
heliocentric elliptical orbit. Recall that the Sun-Jupiter distance is
normalized to be 1 in the PCR3BP.

• The comet is said to be in p:q resonance with Jupiter if
a−3/2 ≈ p/q, where p and q are small integers. In the heliocentric
inertial frame, the comet makes roughly p revolutions around
the Sun in q Jupiter periods.
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� Canonical Coordinates: Delaunay Variables

• To study the process of resonance transition, we shall use a set of
canonical coordinates, called Delaunay variables, which make
the study of the two-body regime of motion particularly simple.

• Delaunay variables in the rotating coordinates are denoted (l, ḡ, L,G).
G = [a(1 − e2)]1/2 is the angular momentum. L is related to the
semi-major axis a, byL = a1/2, hence encodes the mean motion
resonance (with respect to Jupiter in the Sun-Jupiter system).
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� Canonical Coordinates: Delaunay Variables

• Both l and ḡ are angular variables defined modulo 2π.

• ḡ is the argument of perihelion relative to the rotating axis.

• l is the mean anomaly, the ratio of the area swept out by the
ray from the Sun to the comet starting from its perihelion passage
to the total area.

• Szebehely [1967], Abraham & Marsden [1978], Meyer & Hall [1992].
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� Interior Resonances: U1 Poincaré Section (L,ḡ)
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� Interior Resonances: U1 Poincaré Section

• The striking thing is that the first cuts of the stable and unstable
manifolds intersect exactly at the region of the 3:2 resonance.

• Their intersection ∆S contains all the orbits that have come from
the Jupiter region J into the interior region S, gone around the
Sun once (in the rotating frame), and will return to the Jupiter
region. In the heliocentric inertial frame, these orbits are nearly
elliptical outside a neighborhood of L1.

• They have a semi-major axis which corresponds to 3:2 resonance by
Kepler’s law (i.e., a−3/2 = L−3 ≈ 3/2). Therefore, any Jupiter
comet which has an energy similar to Oterma’s and which
circles around the Sun once in the interior region must be in
3:2 resonance with Jupiter.



� Mixed Phase Space: Stable “Islands” & Chaotic “Sea”

• The black background points on the U1 Poincaré section reveal the
character of the interior region phase space for this energy surface.

•Mixed phase space of stable periodic and quasiperiodic
invariant tori “islands” embedded in bounded chaotic “sea.”

• The families of stable tori, where a “family” denotes those
tori islands which lie along a strip of nearly constant L, correspond
to mean motion resonances. The size of the tori island corre-
sponds to the dynamical significance of the resonance. The number
of tori islands equals the order of the resonance (e.g., 3:2 is order
1, 5:3 is order 2).

• In the center of each island, there is a point corresponding to an
exactly periodic, stable, resonant orbit. In between the stable is-
lands of a particular resonance (i.e., along a strip of nearly constant
L), there is a saddle point corresponding to an exactly periodic,
unstable, resonant orbit. In the figure, the manifold intersection
region ∆S is centered on this saddle point for the 3:2 resonance.



� Connection Between Interior and Exterior Resonances

• A subset of the interior resonance intersection region ∆S is con-
nected to exterior resonances through a heteroclinic intersection in
the Jupiter region. This small blue strip inside ∆S is part of
the dynamical channel connecting interior and exterior resonances,
and is thus the resonance transition mechanism we seek.
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� Exterior Resonances: U4 Poincaré Section (L,ḡ)
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� Exterior Resonances: U4 Poincaré Section (L,ḡ)

•We show the first exterior region Poincaré cuts of the stable and
unstable manifolds of an L2 periodic orbit with the U4 section
on the same energy surface.

• Notice that the first cuts of the stable and unstable manifolds
intersect at two places; one of the intersections is exactly at the
region of the 2:3 resonance, the other is at the 1:2 resonance.

• The intersection ∆X contains all the orbits that have come from
the Jupiter region J into the exterior region X, have gone around
the Sun once (in the rotating frame), and will return to the Jupiter
region. Note that ∆X has two components (the 2:3 and 1:2 reso-
nance regions).



� Exterior Resonances: U4 Poincaré Section (L,ḡ)

• In the heliocentric inertial frame, these orbits are nearly elliptical
outside a neighborhood of L2. They have a semi-major axis which
corresponds to either 2:3 or 1:2 resonance by Kepler’s law. There-
fore, any Jupiter comet which has an energy similar to Oterma’s
and which circles around the Sun once in the exterior region must
be in either 2:3 or 1:2 resonance with Jupiter.

• The background points were generated by a technique similar to
those in the interior resonance Poincaré section. They reveal a
similar mixed phase space, but now the resonances are exterior
resonances (exterior to the orbit of Jupiter). We see that the ex-
terior resonance intersection region ∆X envelops both the 2:3 and
the 1:2 unstable resonance points.



� Connection Between Interior and Exterior Resonances

• A portion of ∆X is connected to interior resonances through a het-
eroclinic intersection in the Jupiter region. In particular, the small
blue strip inside the 2:3 intersection region connects to the
3:2 intersection region of ∆S (and is its pre-image). We have
thus found the resonance transition used by Oterma.
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� Connection Between Interior and Exterior Resonances

•We have referred to a heteroclinic intersection ∆ connecting inte-
rior ∆S and exterior ∆X resonance intersection regions. Below, we
show image of ∆X (2:3 resonance portion) and pre-image of ∆S

in the J region. Their intersection ∆ = P (∆X ) ∩ P−1(∆S) con-
tains all orbits whose itineraries have central block (J,X; J, S, J),
corresponding to at least one transition between the exterior 2:3
resonance and interior 3:2 resonance.
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� Connection Between Interior and Exterior Resonances

• ∆ contains orbits in transition between the 2:3 to 3:2 resonances.

• Comets such as Oterma have passed through analogous regions.
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� Resonance Connection for Three Degrees of Freedom

• It is reasonable to conclude that, within the full three-dimensional
model, Oterma’s orbit lies in an analogous region of phase space.

• It is therefore within the L1 and L2 periodic and quasiperiodic
orbit manifold tubes, whose complex global dynamics lead to
intermittent behavior, including resonance transition.

•More study is needed for a thorough understanding of the reso-
nance transition phenomenon. The tools developed in this course
(dynamical channels, symbolic dynamics, etc.) should
lay a firm theoretical foundation for any such future studies.
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� Future Work: Extension to Three Dimensions

I Natural extension: apply same methodology to 3D CR3BP.

• Seek homoclinic & heteroclinic orbits associated with 3D periodic
“halo” & quasi-periodic “quasi-halo” & Lissajous orbits about L1
& L2. Dimension count suggests heteroclinic intersections exist.

• Union would be 3D homoclinic-heteroclinic chains around which
symbolic dynamics could be used to track a variety of exotic orbits.

•Three-dimensional dynamical channels will provide more
complete understanding of phase space transport mechanisms.
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� Future Work: Coupling of Two 3-Body Systems

I Dynamics governing transport between adjacent planets.

• Coupled 3-body problem: e.g., comet between Jupiter & Saturn.

• Between the two planets, the comet’s motion is mostly heliocen-
tric, but is precariously poised between two competing three-body
dynamics.

• In this region, heteroclinic orbits connecting Lyapunov orbits of the
two different three-body systems may exist, leading to complicated
transfer dynamics between the two adjacent planets.



� Comet Transition Between Jupiter and Saturn

I Example: Comet Smirnova-Chernykh undergoes a
rapid transition from Saturn’s control to Jupiter’s control.
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� Comet Transition Between Jupiter and Saturn

I Coupled PCR3BP shows near intersections between Lyapunov
orbit manifold tubes of Jupiter and Saturn (requiring mild ∆V ).

• Natural continuous thrust of comet outgassing may be enough.

• Longer time integration will likely reveal genuine intersections.
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� Future Work: Long Time Integration

I Results limited thus far to short time (a few periods of Jupiter).

• Long time integration (millions of Jupiter periods) will reveal
statistical information and new phenomena.

• Preliminary results suggest manifold structures associated to
L1 and L2 have helped sculpt the solar system
and transport material between the planets.
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� Long Time Integration: Jupiter’s L1 Manifolds

•We show U1 Poincaré section of Jupiter’s L1 stable & unstable
manifolds for one million iterations (in a vs. ḡ).



� Long Time Integration: Jupiter’s L1 Manifolds

•We can also plot this in semimajor axis a vs. eccentricity e.
Away from L1, manifold hugs curve given byC = 1

a+2
√
a(1− e2).



� Long Time Integration: Jupiter’s L1 Manifolds

• Note how manifold acts as stability boundary, separating stable
asteriods from unstable comets.



� Intermittent Behavior Along Jupiter’s L1 Manifolds

• Time history of semimajor axis a for one million iterations shown.

•Manifold exhibits intermittency, jumping, sticking.



� Comet Distribution Matches Jupiter’s L1 Manifolds

• Taking histogram of Jupiter’s L1 manifolds shows fair agreement
with distribution of Jupiter comets. Same dynamics is at work.
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� Kuiper Belt and Neptune’s L2 Manifolds

• Just as Jupiter’s manifolds determine asteroid & comet distribution
and transport, Neptune’s manifolds may govern the Kuiper belt.
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� Transport Between Asteriod Belt and Kuiper Belt

• Intersections between L1 and L2 manifold structures between ad-
jacent planets may provide a “highway” connecting the asteroid
and Kuiper belts, where material can collect.
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� Conclusion: L1 and L2 Manifolds are Important!

• The invariant manifold structures associated to L1 and L2, as well
as the homoclinic-heteroclinic dynamical channels connecting
them, are fundamental tools that can aid in understanding
mechanisms of transport throughout the solar system.
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