Dynamical Systems and Space Mission Design

Jerrold Marsden, Wang Sang Koon and Martin Lo

Shane Ross
Control and Dynamical Systems, Caltech

shane@cds.caltech.edu

- Outline of Lecture 4B:
- Resonance transition seen in comets such as Oterma.
- Mixed phase space of 3-body problem:
- Mean motion resonance "islands" imbedded in chaotic "sea."
- Exterior and interior resonances connected by Lyapunov orbit stable \& unstable manifold tubes, the dynamical channels.
- Future work: transition between planets, belts, etc.

- Some Jupiter comets perform a rapid transition from the outside to the inside of Jupiter's orbit.
- Captured temporarily by Jupiter during transition.
- Exterior (2:3 resonance). Interior (3:2 resonance).

- Belbruno/B. Marsden [1997]
- Lo/Ross [1997] :
- Jupiter comets Oterma, Gehrels 3, etc. in Sun-Jupiter rotating frame follow stable and unstable invariant manifolds of the equilibrium points L_{1} and L_{2}.

- Use planar circular restricted 3-body problem as initial model:
- Simplest 3-body model, easiest to analyze.
- Comets of interest are mostly heliocentric, but their perturbation is dominated by Jupiter's gravitation.
- Their motion is nearly in Jupiter's orbital plane ($i<5^{\circ}$), and Jupiter's small eccentricity (0.0483) plays little role during resonance transition.

- Jupiter Comets: Heteroclinic Connection

- More recently, Koon/Lo/Marsden/Ross [2000]:
- Found heteroclinic connection between pair of periodic orbits.
- Found a large class of orbits near this (homo/heteroclinic) chain.
- Comets can follow these dynamical channels in rapid transition between interior and exterior Hill's regions.

- For instance, consider the comet Oterma from 1910 to 1980.
- The average Jacobi constant for Oterma during its transition is $C=3.030 \pm 0.005$ (computed at Jupiter encounter).
- We can compute a homoclinic-heteroclinic chain for $C=3.030$ (shown in black on the left).
- Overlaying the chain, we plot Oterma's orbit in red (at right).

(a)

(b)

- Jupiter Comets: Rapid Transition Mechanism

- Rapid transition between the interior and exterior regions is possible via the $L_{1} \& L_{2}$ periodic orbit stable \& unstable manifold tubes (containing transit orbits) and their intersections.
- This was a surprising result. Some believed that a third degree of freedom was necessary for such a transition, or that "Arnold diffusion" was invloved.
- But as we have seen, only the planar CR3BP, the simplest model of 3-body gravitational dynamics, is necessary.

- The tubes are a generic transport mechanism connecting the interior and exterior Hill's regions.
- We wish to understand their role in transport between interior and exterior mean motion resonances.
- e.g., we shall try to explain in more precise terms the sense in which Oterma transitions between the 3:2 and 2:3 mean motion resonances with Jupiter.

Rapid Transition Mechanism: Resonance Transition

- For the Sun-Jupiter system $(\mu=0.0009537)$, we can construct a homoclinic-heteroclinic chain with Jacobi constant similar to that of Oterma during its recent Jupiter encounters ($C=3.030$).
- The chain is a union of orbits: interior region orbit homoclinic to L_{1} periodic orbit, exterior region orbit homoclinic to L_{2} periodic orbit, and heteroclinic connection between the $L_{1} \& L_{2}$ periodic orbits.

- We choose this chain because its homoclinic orbits are (1,1)-type.
- Limiting to (1,1)-type means, for this particular energy regime, that two different resonance connections are possible; 3:2 to 2:3, and $3: 2$ to 1:2. This will be explained later. We choose $\mathbf{3 : 2}$ to $2: 3$, since this matches Oterma's orbit.

Rapid Transition Mechanism: Resonance Transition

- Our main theorem tells us that in the vicinity of this chain, there exists an orbit whose symbolic sequence (..., $J, X, J, S, J, \ldots)$ is periodic and has the central block itinerary (J, X, J, S, J).
- This orbit transitions between the interior and exterior regions (the neighborhood of the 3:2 and 2:3 resonances, in particular). We call this kind of itinerary a resonance transition block.

Poincare Section in the Jupiter Region

Rapid Transition Mechanism: Resonance Transition

- This orbit makes a rapid transition from the exterior to the interior region and vice versa, passing through the Jupiter region. It will repeat this pattern eternally.
- While an orbit with this exact itinerary is very fragile, the structure of nearby orbits whose symbolic sequences have the same central block itinerary, namely (J, X, J, S, J), is quite robust.

Poincare Section in the Jupiter Region

- An example orbit with central block (J, X, J, S, J) is shown below.
- We will study how the dynamical channels near the chain connect the $\mathbf{3 : 2}$ resonance of the interior region with the $2: 3$ resonance of the exterior region.

- Recall that the PCR3BP is a perturbation of the two-body problem. Hence, outside of a small neighborhood of L_{1}, the trajectory of a comet in the interior region follows essentially a two-body orbit around the Sun.
- In the heliocentric inertial frame, the orbit is nearly elliptical.

Heliocentric Orbits: Mean Motion Resonance

- The mean motion resonance of the comet with respect to Jupiter is equal to $a^{-3 / 2}$ where a is the semi-major axis of the heliocentric elliptical orbit. Recall that the Sun-Jupiter distance is normalized to be 1 in the PCR3BP.
- The comet is said to be in $p: q$ resonance with Jupiter if $a^{-3 / 2} \approx p / q$, where p and q are small integers. In the heliocentric inertial frame, the comet makes roughly p revolutions around the Sun in q Jupiter periods.

- To study the process of resonance transition, we shall use a set of canonical coordinates, called Delaunay variables, which make the study of the two-body regime of motion particularly simple.
- Delaunay variables in the rotating coordinates are denoted (l, \bar{g}, L, G). $G=\left[a\left(1-e^{2}\right)\right]^{1 / 2}$ is the angular momentum. L is related to the semi-major axis a, by $L=a^{1 / 2}$, hence encodes the mean motion resonance (with respect to Jupiter in the Sun-Jupiter system).

- Both l and \bar{g} are angular variables defined modulo 2π.
- \bar{g} is the argument of perihelion relative to the rotating axis.
- l is the mean anomaly, the ratio of the area swept out by the ray from the Sun to the comet starting from its perihelion passage to the total area.
- Szebehely [1967], Abraham \& Marsden [1978], Meyer \& Hall [1992].

■ Interior Resonances: U_{1} Poincaré Section (L, \bar{g})

- The striking thing is that the first cuts of the stable and unstable manifolds intersect exactly at the region of the 3:2 resonance.
- Their intersection $\Delta^{\mathcal{S}}$ contains all the orbits that have come from the Jupiter region J into the interior region S, gone around the Sun once (in the rotating frame), and will return to the Jupiter region. In the heliocentric inertial frame, these orbits are nearly elliptical outside a neighborhood of L_{1}.
- They have a semi-major axis which corresponds to 3:2 resonance by Kepler's law (i.e., $a^{-3 / 2}=L^{-3} \approx 3 / 2$). Therefore, any Jupiter comet which has an energy similar to Oterma's and which circles around the Sun once in the interior region must be in 3:2 resonance with Jupiter.
- The black background points on the U_{1} Poincaré section reveal the character of the interior region phase space for this energy surface.
- Mixed phase space of stable periodic and quasiperiodic invariant tori "islands" embedded in bounded chaotic "sea."
- The families of stable tori, where a "family" denotes those tori islands which lie along a strip of nearly constant L, correspond to mean motion resonances. The size of the tori island corresponds to the dynamical significance of the resonance. The number of tori islands equals the order of the resonance (e.g., 3:2 is order $1,5: 3$ is order 2).
- In the center of each island, there is a point corresponding to an exactly periodic, stable, resonant orbit. In between the stable islands of a particular resonance (i.e., along a strip of nearly constant $L)$, there is a saddle point corresponding to an exactly periodic, unstable, resonant orbit. In the figure, the manifold intersection region $\Delta^{\mathcal{S}}$ is centered on this saddle point for the 3:2 resonance.
- A subset of the interior resonance intersection region $\Delta^{\mathcal{S}}$ is connected to exterior resonances through a heteroclinic intersection in the Jupiter region. This small blue strip inside $\Delta^{\mathcal{S}}$ is part of the dynamical channel connecting interior and exterior resonances, and is thus the resonance transition mechanism we seek.

- We show the first exterior region Poincaré cuts of the stable and unstable manifolds of an L_{2} periodic orbit with the U_{4} section on the same energy surface.
- Notice that the first cuts of the stable and unstable manifolds intersect at two places; one of the intersections is exactly at the region of the 2:3 resonance, the other is at the 1:2 resonance.
- The intersection $\Delta^{\mathcal{X}}$ contains all the orbits that have come from the Jupiter region J into the exterior region X, have gone around the Sun once (in the rotating frame), and will return to the Jupiter region. Note that $\Delta^{\mathcal{X}}$ has two components (the 2:3 and 1:2 resonance regions).
- In the heliocentric inertial frame, these orbits are nearly elliptical outside a neighborhood of L_{2}. They have a semi-major axis which corresponds to either $2: 3$ or 1:2 resonance by Kepler's law. Therefore, any Jupiter comet which has an energy similar to Oterma's and which circles around the Sun once in the exterior region must be in either $2: 3$ or $1: 2$ resonance with Jupiter.
- The background points were generated by a technique similar to those in the interior resonance Poincaré section. They reveal a similar mixed phase space, but now the resonances are exterior resonances (exterior to the orbit of Jupiter). We see that the exterior resonance intersection region $\Delta^{\mathcal{X}}$ envelops both the 2:3 and the $1: 2$ unstable resonance points.
- A portion of $\Delta^{\mathcal{X}}$ is connected to interior resonances through a heteroclinic intersection in the Jupiter region. In particular, the small blue strip inside the 2:3 intersection region connects to the 3:2 intersection region of $\Delta^{\mathcal{S}}$ (and is its pre-image). We have thus found the resonance transition used by Oterma.

2:3 Resonance

- We have referred to a heteroclinic intersection Δ connecting interior $\Delta^{\mathcal{S}}$ and exterior $\Delta^{\mathcal{X}}$ resonance intersection regions. Below, we show image of $\Delta^{\mathcal{X}}$ (2:3 resonance portion) and pre-image of $\Delta^{\mathcal{S}}$ in the J region. Their intersection $\Delta=P\left(\Delta^{\mathcal{X}}\right) \cap P^{-1}\left(\Delta^{\mathcal{S}}\right)$ contains all orbits whose itineraries have central block $(J, X ; J, S, J)$, corresponding to at least one transition between the exterior 2:3 resonance and interior 3:2 resonance.

Poincare Section in the Jupiter Region

- Δ contains orbits in transition between the 2:3 to 3:2 resonances.
- Comets such as Oterma have passed through analogous regions.

2:3 Resonance

Resonance Connection for Three Degrees of Freedom

- It is reasonable to conclude that, within the full three-dimensional model, Oterma's orbit lies in an analogous region of phase space.
- It is therefore within the L_{1} and L_{2} periodic and quasiperiodic orbit manifold tubes, whose complex global dynamics lead to intermittent behavior, including resonance transition.
- More study is needed for a thorough understanding of the resonance transition phenomenon. The tools developed in this course (dynamical channels, symbolic dynamics, etc.) should lay a firm theoretical foundation for any such future studies.

Resonance Connection

2:3 Resonance

- Natural extension: apply same methodology to $\mathbf{3 D} \boldsymbol{C R} \boldsymbol{B} \boldsymbol{B P}$.
- Seek homoclinic \& heteroclinic orbits associated with 3D periodic "halo" \& quasi-periodic "quasi-halo" \& Lissajous orbits about L_{1} $\& L_{2}$. Dimension count suggests heteroclinic intersections exist.
- Union would be 3D homoclinic-heteroclinic chains around which symbolic dynamics could be used to track a variety of exotic orbits.
- Three-dimensional dynamical channels will provide more complete understanding of phase space transport mechanisms.

$\times 10^{-3}$

- Dynamics governing transport between adjacent planets.
- Coupled 3-body problem: e.g., comet between Jupiter \& Saturn.
- Between the two planets, the comet's motion is mostly heliocentric, but is precariously poised between two competing three-body dynamics.
- In this region, heteroclinic orbits connecting Lyapunov orbits of the two different three-body systems may exist, leading to complicated transfer dynamics between the two adjacent planets.
- Example: Comet Smirnova-Chernykh undergoes a rapid transition from Saturn's control to Jupiter's control.

- Coupled PCR3BP shows near intersections between Lyapunov orbit manifold tubes of Jupiter and Saturn (requiring mild ΔV).
- Natural continuous thrust of comet outgassing may be enough.
- Longer time integration will likely reveal genuine intersections.

Poincare section $(y=0, x<0)$ in Sun-Jupiter rotating frame showing close approach of Jupiter and Saturn manifolds

Transfer from Saturn to Jupiter via equil. region manifolds highway

- Results limited thus far to short time (a few periods of Jupiter).
- Long time integration (millions of Jupiter periods) will reveal statistical information and new phenomena.
- Preliminary results suggest manifold structures associated to L_{1} and L_{2} have helped sculpt the solar system and transport material between the planets.

- Long Time Integration: Jupiter's L_{1} Manifolds

- We show U_{1} Poincaré section of Jupiter's L_{1} stable \& unstable manifolds for one million iterations (in a vs. \bar{g}).

Poincare section al conjunction of Sun-JLpiler L" imerior maniok showing mean movion resomance "istands" and chaolic "sea"

- We can also plot this in semimajor axis a vs. eccentricity e. Away from L_{1}, manifold hugs curve given by $C=\frac{1}{a}+2 \sqrt{a\left(1-e^{2}\right)}$.

Poincare section ai conjunclion of Sun-dupiter L^{*} inierior manifold with asteroits pluet, comels (red\}, and mean motion resonances

- Note how manifold acts as stability boundary, separating stable asteriods from unstable comets.

Poincare section ai conjunction of Sun-Jupiter L^{*} initerior manitold with astaroits (plue), comels \{red\}, and mean motion resonanoes

- Time history of semimajor axis a for one million iterations shown.
- Manifold exhibits intermittency, jumping, sticking.

- Taking histogram of Jupiter's L_{1} manifolds shows fair agreement with distribution of Jupiter comets. Same dynamics is at work.

■ Kuiper Belt and Neptune's L_{2} Manifolds

- Just as Jupiter's manifolds determine asteroid \& comet distribution and transport, Neptune's manifolds may govern the Kuiper belt.

Kuiper Belt objects (circles) with Neptune's L_{2} manifold (black line)

- Intersections between L_{1} and L_{2} manifold structures between adjacent planets may provide a "highway" connecting the asteroid and Kuiper belts, where material can collect.

- The invariant manifold structures associated to L_{1} and L_{2}, as well as the homoclinic-heteroclinic dynamical channels connecting them, are fundamental tools that can aid in understanding mechanisms of transport throughout the solar system.

