
A Discrete Vortex Method for Calculating the
Minimum Induced Drag and Optimum Load

Distribution for Aircraft Configurations
with Noncoplanar Surfaces

by
Joel Grasmeyer

Graduate Research Assistant
January, 1997

VPI-AOE-242

W.H. Mason, Faculty Advisor

Multidisciplinary Analysis and Design Center for Advanced Vehicles
Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Please address any questions or bugs to grasmeye@aoe.vt.edu

i

Table of Contents

 Introduction 1

 Nomenclature 1

 Discrete Vortex Algorithm 3

Coordinate Systems 3
Theoretical Development 4
Implementation 6

 Input 7

Design Mode 7
Analysis Mode 10
Warning about Overlapping Surfaces 10

 Output 10

Text 10
Matlab Plots 10

 Validation 12

 Accuracy and CPU Time 15

 References 17

 Appendices 18

Appendix A: idrag Code 18
Appendix B: idragin Code 25
Appendix C: Sample Design Input File (dsample.in) 28
Appendix D: Sample Design Output File (dsample.idrag) 29
Appendix E: Sample Analysis Input File (asample1.in) 31
Appendix F: Sample Analysis Output File (asample1.idrag) 32
Appendix G: Sample Analysis Input File (asample2.in) 33
Appendix H: Sample Analysis Output File (asample2.idrag) 34
Appendix I: Matlab Utility readidrag.m 35
Appendix J: Matlab Utility geom.m 36
Appendix K: Matlab Utility loads.m 39

1

Introduction
Noncoplanar aircraft configurations can achieve several structural and aerodynamic
advantages over coplanar, cantilever configurations. One of the key advantages is the
reduction of the induced drag by an increase in the span efficiency. Several noncoplanar
configurations have been studied, including biplanes, box planes, ring wings, truss-braced
wings, joined wings, C-wings, wings with winglets, and wings with pfeather tips.*

Most of these studies used a discrete vortex method with a Trefftz plane analysis
to determine the load distribution corresponding to the minimum induced drag of the
configuration. The four main developers of this method are Blackwell1, Lamar2,
Kuhlman3, and Kroo4. In order to provide this capability at Virginia Tech, a code was
implemented in Fortran 77, and several test cases were run to validate the results.

Nomenclature
 Theory FORTRAN Definition

A a influence coefficient matrix (Blackwell)

A abar augmented influence coefficient matrix (Lamar)

AR ar aspect ratio of reference surface
cnc

cavg

b vector of constraints; overwritten with load vector

N/A bpanel span of panel (projected onto xy plane)

N/A bref reference span (projected onto xy plane)

c c local chord of lifting element

cavg cavg average chord of reference surface(s)

CDi cd_induced induced drag coefficient

N/A cl_actual actual lift coefficient (obtained via integration)

CLdesign cl_design design lift coefficient

N/A cm_actual actual pitching moment coefficient (about the cg)

CMdesign cm_design design pitching moment coefficient (about the cg)

N/A cm_flag flag for Cm constraint (0 = no constraint, 1 = constraint)
cn cn vector of normal force coefficients

CP cp percent chord location of center of pressure for all sections

N/A croot root chord of panel

N/A ctip tip chord of panel

N/A d dummy output from LU decomposition subroutine

N/A dist vortex locations for analysis mode

* The odd spelling honors Werner Pfenninger, one of the first researchers to study the placement of feather
tips on wings.

2

e e span efficiency factor

N/A header header which identifies the input and output files

i i index

N/A indx argument used within LU decomposition subroutines

N/A infile input filename

N/A input_mode input mode (0 = design; find loads, 1 = analysis; loads given)

j j index

N/A k index

N/A loads vector of loads for analysis mode

N/A load_flag load flag (0 = cn input, 1 = load (cn*c/cavg) input)

N/A load_input input loads specified at given spanwise stations

N/A load_station percent span locations of specified loads in the range [0,1]

N/A n number of linear equations to be solved

N/A nconstraints number of constraints (parameter)

N/A nloads number of loads specified per panel for analysis mode input

N/A np physical dimension of a array

N/A npanels number of panels in geometry

N/A npanels_max maximum number of panels in geometry (parameter)

N/A nvortices number of vortices per panel

N/A nvortices_max maximum number of vortices per panel (parameter)

m nvortices_tot total number of vortices

N/A outfile output filename

N/A p parameter used for linear interpolation
R1, R2 r1, r2 vortex influence radii squared

s s vortex semi-width (non-dimensional)

N/A semi_width temporary parameter for calculating vortex semi-width

N/A sp vortex semi-width (dimensional)

N/A spacing_flag spacing flag (0 = equal, 1 = outboard-compressed, 2 = inboard-

compressed, 3 = end-compressed)

N/A sref reference area (projected onto xy plane)

N/A sym_flag symmetry flag (0 = asymmetric, 1 = symmetric)

N/A temp_load temporary load vector for analysis mode

θ theta vortex dihedral angle

N/A title title of aircraft configuration

3

N/A write_flag write flag (0 = no output file, 1 = output file written)

x, y, z x, y, z coordinates of vortices (aircraft reference frame)

N/A xc, yc, zc coordinates of corner points (aircraft reference frame)
xcg xcg x location of the center of gravity

xle, xte xle, xte coordinates of LE and TE corresponding to each vortex

N/A yp, zp coordinates of vortices (vortex reference frame)

Discrete Vortex Algorithm

Coordinate Systems

Figure 1, from Blackwell1, shows the two coordinate systems used in the discrete vortex
method. The first is the traditional aerodynamic reference frame, with the x-axis pointing
to the rear of the aircraft along the centerline, the y-axis pointing starboard, and the z-axis
pointing up. The second is a set of local reference frames for each vortex element.

z

y

z’

2 s’

θ j

θ i

w
V

Vn

v Control
Point

Influence
Vortices

y’

Trace of Lifting
Surface

Figure 1: Discrete vortex method coordinate systems (Ref. 1)

4

Theoretical Development
The discrete vortex method is based on the Kutta-Joukowski theorem, and the Biot-
Savart law. These simple expressions, along with some expressions for the configuration
geometry can be used to capture the fundamental properties of the flow. The calculations
are performed in the Trefftz Plane, which is a vertical plane located far downstream of
the aircraft.

In the geometry definition (described later), each aerodynamic surface is
represented by a set of discrete horseshoe vortices. The induced drag is then calculated in
the Trefftz plane as a function of the velocity induced by the trailing segments of the
horseshoe vortices. The Trefftz plane is a plane located at an infinite distance
downstream of the aircraft which is perpendicular to the wake. By utilizing the Trefftz
plane, the induced drag calculations are independent of the x-coordinate, which
effectively reduces the 3-dimensional problem to a set of 2-dimensional equations.
According to the Biot-Savart law, the velocity induced at a control point P(∞, yi, zi) by a
horseshoe vortex at P(xj, yj, zj) is given by1:

ui

V∞
 = 0 (1)

vi

V∞
 = - 1

2π

Γ j

V∞

z′
R1

 -
z′
R2

(2)

w i

V∞
 = 1

2π

Γ j

V∞

y′ - s′
R1

 -
y′ + s′

R2
(3)

where:

R1 = z′ 2 + y′ - s′ 2 (4)

R2 = z′ 2 + y′ + s′ 2 (5)

y′ = yi - yj cos θj + zi - zj sin θj (6)

z′ = - yi - yj sin θj + zi - zj cos θj (7)

According to the Kutta-Joukowski theorem, the circulation is given by1:

Γ j

V∞
 =

cnc j

2
(8)

The induced drag coefficient is given by1:

CDi =
Vni

V∞

cnc i
cavg

∑
i = 1

m

 si (9)

where:

5

Vni

V∞
 =

cnc j

cavg

cavg

4π
y′ - s′

R1
 -

y′ + s′
R2

cos θi - θj +
cavg

4π
z′
R1

 -
z′
R2

sin θi - θj∑
j = 1

m

(10)

The quantity within the outermost brackets is denoted by Aij, such that1:

Vni

V∞
 =

cnc j

cavg
 Aij∑

j = 1

m

(11)

The matrix Aij is known as the "influence coefficient matrix," and it is solely a function
of the aircraft geometry. The simplified expression for the induced drag is then obtained
by substituting equation (11) into equation (9):

CDi = ∑
j = 1

m cnc j

cavg

cnc i
cavg

∑
i = 1

m

 si Aij (12)

The lift coefficient is given by1:

CL =
cnc j

cavg
 ∑

j = 1

m

 sj cos θj (13)

Similarly, the moment coefficient is given by:

CM =
cnc j

cavg
 ∑

j = 1

m

 sj cos θj
xcg - xle j + CPcj

cavg
(14)

Finally, the span efficiency factor can be calculated by1:

e = CL
2

π AR CDi

(15)

The method of Lagrange Multipliers can be used to directly solve for the load
distribution corresponding to the minimum induced drag coefficient under the constraints
of a user-specified CL and CM. The constraints are implemented by augmenting the
matrix of influence coefficients, which yields the following system of equations:

A
sicos θi sicos θixi

sjcos θj
sjcos θjxj 0

cnc
cavg

λCL

λCM

 =
0

0.5CLdesign

0.5CMdesign

(16)

where:

6

A = As + As T (17)

x = xcg -
xle + CPc

cavg
(18)

The system of equations shown above is then solved for the optimum load distribution.
When the moment coefficient constraint is not active, the corresponding rows and
columns are deleted.

Implementation
The method above was coded in FORTRAN 77. Figure 2 shows a flowchart of the code,
entitled idrag.f. The code begins by setting up the geometry. This includes calculation of
the dihedral angles, local chords, and semi-widths of the lifting elements, and the
coordinates of the vortex control points.

At this point, two execution options are available: analysis and design. If the
analysis mode is chosen, the code takes the geometry and load distribution as inputs, and
calculates the performance parameters as outputs. If the design mode is chosen, the
geometry and design conditions are taken as inputs, and the code calculates the load
distribution for the minimum induced drag, and returns the performance parameters as
outputs. The matrix of influence coefficients and design constraints is formed in
subroutine matrix, and the resulting matrix is solved via LU decomposition. The
LINPACK routine SGEFS is used, although any linear solver could be used.6

Begin

Set Up Geometry

Input Mode

Form Matrix of Influence Coefficients

Solve Matrix for Optimum
Load Distribution

Calculate Performance Parameters

End

Design

Analysis

Figure 2: Flowchart of drag code

7

The user is prompted for the input and output filenames. Note that the comments
in the sample input files are ignored, since the unformatted read statements only use the
first value on each line of input.

Input
The code has different input formats for the design and analysis modes. The type of input
format is specified by the value of the input mode flag on the third line of the input file. A
zero designates the design mode, and a one designates the analysis mode.

Design Mode
At this point, the reader should refer to Appendix C, which contains a sample design
input file for a wing with a winglet and a conventional horizontal tail. The first line of the
input file simply identifies which code the input file belongs to. The second line allows
the user to assign a title to the configuration. Note that the title does not have to be the
same as the name of the input file. As mentioned above, the input mode flag tells the
code whether to expect the input in the design format or the analysis format.

The write flag controls the creation of the output file. A value of 0 specifies that
no output file is written, and a value of 1 will cause an output file to be written. If the
subroutine is called from within an optimization algorithm, the user should choose not to
write an output file in order to alleviate lost time in writing data to the disk for each
objective function evaluation.

The symmetry flag is set to zero for asymmetric configurations, and one for
symmetric configurations. The code will reflect all of the surfaces about the xz plane for
symmetric configurations. However, the size of the matrix of influence coefficients is not
actually doubled within the code in order to maximize efficiency.

The design lift coefficient is the lift coefficient for the entire configuration. The
moment coefficient flag controls the use of the moment coefficient in determining the
optimum load distribution. To evaluate the untrimmed load distribution, the moment
coefficient flag is set to zero, and it is set to one to evaluate the trimmed load distribution.
The design moment coefficient is the moment coefficient about the cg for the entire
configuration. The location of the center of gravity along the x axis is defined by the next
input parameter. Since all of the loads are parallel to the z axis, the z coordinate of the cg
position is not required.

The cp parameter specifies the chordwise location of the center of pressure for all
of the airfoil sections. This is used in the moment constraint calculations to determine the
moment arms for the distributed loads.

The reference area and reference chord values are input next. This gives the user
complete control over the values used to normalize the lift and moment into lift and
moment coefficients.

Before defining the aircraft flying surfaces, the number of panels must be
specified. The code will then read the inputs for the specified number of panels.

The flying surfaces are then defined by specifying the three-dimensional
coordinates of the four corners of a panel. Figure 3 shows a sample input geometry in the
xy plane. The coordinates of the corners proceed clockwise, starting from the leading
edge corner closest to the aircraft centerline. Note that a positive load will always point
in a direction given by the right hand rule with a counter-clockwise rotation around the
panel. This becomes important in the definition of vertical surfaces such as winglets.

8

x

y

1

2

3

41

2

3

4Panel #1 Panel #2
z

Figure 3: Input geometry

In both input formats, the user has the option of choosing four different types of
vortex spacing. This is denoted by assigning one of the following values to the spacing
flag parameter:

0 even spacing
1 outboard-packed cosine spacing
2 inboard-packed cosine spacing
3 end-packed cosine spacing

The various spacing options are shown graphically in Figure 4. The use of cosine
spacing allows the user to place a higher density of vortices in the area of the flow where
the load distribution is changing most rapidly. This allows the code to achieve more
accurate results with a smaller number of vortices. This is shown in Figure 5, where the
number of vortices on a monoplane wing was varied between 20 and 200 for even
spacing, and outboard-packed cosine spacing. In this case the cosine spacing achieved a
greater accuracy with just 20 vortices than the even spacing achieved with 200.

The user should exercise some caution when using any of the cosine spacing
options. In some cases, cosine spacing can artificially change the local circulation.
However, even spacing seems to provide consistent results. Therefore, a sensible
approach would be to start with even spacing to establish the basic behavior of the flow,
and then if more speed or accuracy is desired, the user can carefully experiment with
cosine spacing.

9

0 0.2 0.4

-0.1

0

0.1

0.2

y

x

Even

0 0.2 0.4

-0.1

0

0.1

0.2

y

x

Outboard-packed

0 0.2 0.4

-0.1

0

0.1

0.2

y

x

Inboard-packed

0 0.2 0.4

-0.1

0

0.1

0.2

y

x

End-packed

Figure 4: Vortex spacing options

Even Spacing
Outboard-compressed Cosine Spacing

20 30 40 50 60 70 80 90 100
1

1.005

1.01

1.015

1.02

1.025

1.03

Number of Vortices

S
pa

n
E

ff
ic

ie
nc

y

Figure 5: Comparison of spacing options

10

Analysis Mode
For the analysis mode, the aircraft geometry is input in the same format, but instead of
specifying the desired design conditions, the user must specify either the load distribution
or the normal force coefficient distribution. The distribution can be specified by two or
more points along the length of the panel. The code will linearly interpolate between the
points to determine the distribution at a specified number of vortices along the panel.

Appendices E-H show the input and output files for two cases run with the
analysis mode. The first case (asample1) is for a linear load distribution, with a load of 1
at the root and 0 at the tip. Note that the calculated span efficiency (0.730) agrees with
the theoretical span efficiency of 0.73. This is good agreement, especially when
considering that only 10 vortices were used. The second case (asample2) is for an elliptic
load distribution given by 11 points along the span. The calculated span efficiency for
this case (1.01) shows good agreement with the theoretical value of 1.00.

Warning about Coplanar Surfaces
The user should exercise some caution when two surfaces are close to being coplanar (i.e.
the projections of the surfaces in the yz plane are overlapping). In this situation, the
matrix of influence coefficients becomes ill-conditioned, and the resulting load
distribution becomes noisy and inaccurate. This can be accounted for by adding some
space between the two elements in the yz plane.

Output

Text
Appendix C shows a sample output file. The first section of the output file is simply a
repetition of the input for confirmation. This is followed by a listing of the three-
dimensional coordinates of the vortex control points (defined in Figure 1), and the
respective load and normal force coefficient distributions at those points. The final
section lists the actual lift and moment coefficients, the induced drag coefficient, and the
span efficiency factor.

Matlab Plots

Three utility codes have been created which can be used within Matlab: readidrag.m,
geom.m, and loads.m. readidrag.m reads the parameters from the text output file into the
Matlab workspace. It is called by geom.m and loads.m.

geom.m creates plots of the aircraft configuration. The user can display the
perspective view only, or the perspective view along with the top, rear, and side views.
The user also has the option of displaying the vortex control points. A set of
configuration plots for the wing-with-winglet example is shown in Figure 6.

loads.m creates plots of the load distribution or the normal force coefficient
distribution vs. the distance along the panel (note that this is not necessarily y or z, but
rather sqrt(y2 + z2)) for each panel in the aircraft configuration. The code is currently
limited to 4 panels, but it can easily be modified to handle more. The load distribution
for the wing-with-winglet example is shown in Figure 7.

Help is available within Matlab for all of the codes. To get help on geom.m, for
example, just type 'help geom' at the Matlab prompt. Note that the codes must either be
located in the local directory, or in a directory called ‘matlab’ in the user’s root directory.
Matlab automatically places this directory in its path when it starts up.

11

-0.5 0 0.5

0

0.2

0.4

0.6

Top View (e = 1.222)

y

x

-0.5
0

0.5
0

0.2
0.4

0

0.2

0.4

Perspective View

yx

z

-0.5 0 0.5

0

0.2

0.4

0.6

Rear View

y

z

00.20.40.6
0

0.1

0.2

0.3

0.4

0.5

Right Side View

x

z

Figure 6: Wing-with-winglet geometry

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.2

0.4

0.6

0.8

1

Panel 1 (e = 1.222)

Lo
ad

 D
is

tr
ib

ut
io

n
(C

n*
c/

ca
vg

)

Distance Along Panel

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.2

0.4

0.6

0.8

1

Panel 2

Distance Along Panel

Lo
ad

 D
is

tr
ib

ut
io

n
(C

n*
c/

ca
vg

)

Figure 7: Load distribution for wing-with-winglet

12

Validation
The induced drag code has been validated with a total of fifteen test cases. The first two
test cases correspond to Figures 10 and 11 in Blackwell's paper (a monoplane, and a wing
with winglets). The next three cases correspond to Figures 2-4 in Kuhlman's paper. Ten
additional test cases were taken from the McMasters and Kroo paper. The configurations
for all of the test cases are shown in Figure 8.

Blackwell 1 Blackwell 2 Kuhlman 1

Kuhlman 2 Kuhlman 3 McMasters/Kroo 1

McMasters/Kroo 2 McMasters/Kroo 3 McMasters/Kroo 4

McMasters/Kroo 5 McMasters/Kroo 6 McMasters/Kroo 7

McMasters/Kroo 8 McMasters/Kroo 9 McMasters/Kroo 10

Figure 8: Test case configurations

13

Figure 9 shows the results obtained for Blackwell's test cases. Although
Blackwell's data is not available in numerical form, a comparison of the respective plots
shows very good agreement.

Elliptical Load, e = 1.000
Vortex-Lattice Method, e = 1.005

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Comparison of Numerical and Exact Optimum Span Loadings for a Monoplane

L
o

a
d

y/(b/2)

e = 1.222

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
Optimum Loading for Wing/Winglet Combination

L
o

a
d

y/(b/2)

Figure 9: Blackwell test case results

The results for the Kuhlman test cases are shown in Figure 10. A comparison
with the original plots shows good agreement.

14

0 0.1 0.2 0.3 0.4 0.5
1.04

1.06

1.08

1.1

1.12

1.14
Span Efficiency vs. Nondimensional Fence Height (Figure 2)

Nondimensional Fence Height (l/(b/2))

S
pa

n
E

ff
ic

ie
nc

y

0 10 20 30 40 50 60
1

1.1

1.2

1.3

1.4
Span Efficiency vs. Dihedral Angle (Figure 3)

Dihedral Angle (deg)

S
pa

n
E

ff
ic

ie
nc

y

0 10 20 30 40 50 60
1

1.2

1.4

1.6

1.8
Span Efficiency vs. Dihedral Angle (Figure 4)

Dihedral Angle (deg)

S
pa

n
E

ff
ic

ie
nc

y

Figure 10: Kuhlman test case results

15

The McMasters and Kroo paper does not provide exact dimensions for each
geometry, but the best guess at the dimensions was made by measuring the drawings with
a ruler. The only dimension given is the height-to-span ratio of 0.2. Table 1 presents a
comparison of the span efficiency factors as calculated by McMasters/Kroo and the idrag
code.

Table 1: Comparison of span efficiency factors

 Test Case # McMasters/Kroo Grasmeyer % Difference

1 1.36 1.358 0.150

2 1.33 1.331 0.075

3 1.32 1.313 0.530

4 1.38 1.432 3.600

5 1.46 1.484 1.600

6 1.05 1.057 0.660

7 1.45 1.501 5.100

8 1.20 1.224 2.000

9 1.41 1.453 3.000

10 1.03 1.032 0.190

The differences between the results shown in Table 1 are probably due to two
factors. First, since the exact planform geometry was not given in the McMasters and
Kroo paper, it is not guaranteed that the planforms used in both methods are identical.
Second, the number of vortices used for each panel was not given in the McMasters and
Kroo paper. For the cases that were run with idrag, 200 vortices were used for each
panel. A brief study showed that this was sufficient to allow the second decimal place
(1/100) to remain unchanged with a small change in the number of vortices. It could be
that a small number of vortices were used in the McMasters/Kroo study, resulting in
some numerical error.

Accuracy and CPU Time
The results shown above provide confidence that the code is working properly.
However, the accuracy of the code is still dependent on the number of vortices used per
panel. When exercising the code, the user must strike a compromise between accuracy
and run time. In order to accommodate this decision, a brief study was made of the
dependence of accuracy and run time on the number of vortices used per panel. The
results from this study are shown in Figure 11.

16

20 40 60 80 100 120 140 160 180 200
1

1.01

1.02

1.03
Span Efficiency vs. Number of Vortices (Monoplane)

Number of Vortices

S
pa

n
E

ff
ic

ie
nc

y

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8
CPU Time vs. Number of Vortices (Monoplane)

Number of Vortices

C
P

U
 T

im
e

(s
)

Figure 11: Accuracy and CPU time vs. number of vortices

17

References
1Blackwell, J., "Numerical Method to Calculate the Induced Drag or Optimal

Span Loading for Arbitrary Non-Planar Aircraft," NASA SP-405, May 1976.

2Lamar, J., "A Vortex Lattice Method for the Mean Camber Shapes of Trimmed
Non-Coplanar Planforms with Minimum Vortex Drag," NASA TN-D-8090, June 1976.

3Kuhlman, J., and Ku, T., "Numerical Optimization Techniques for Bound
Circulation Distribution for Minimum Induced Drag of Nonplanar Wings: Computer
Program Documentation," NASA CR-3458, 1982.

4Kroo, I., "A General Approach to Multiple Lifting Surface Design and
Analysis," AIAA Paper 84-2507, Oct. 1984.

5McMasters, J., and Kroo, I., "Advanced Configurations for Very Large Subsonic
Transport Airplanes (Some Opportunities for Interdisciplinary Synergism)," NASA
Workshop on Potential Impacts of Advanced Aerodynamic Technology on Air
Transportation System Productivity, Hampton, VA, June 29-July 31, 1993.

6Math77: Mathematical Subprograms for FORTRAN 77, Language Systems
Corporation, 100 Carpenter Drive, Sterling, VA 20164.

18

Appendices

Appendix A: idrag Code

c///
c
c subroutine idrag
c
c This subroutine calculates the distribution of the normal force
c coefficient, induced drag, and span efficiency factor for nonplanar
c wings composed of multiple panels. It is based on the paper
c entitled "Numerical Method to Calculate the Induced Drag or Optimum
c Loading for Arbitrary Non-planar Aircraft" by James Blackwell, Jr.,
c from NASA SP-405, Vortex-Lattice Utilization
c
c Inputs
c
c outfile output filename
c title title of aircraft configuration
c input_mode input mode (0 = design unknown loads, 1 = analyze given loads)
c write_flag write flag (0 = no output file, 1 = output file written)
c sym_flag symmetry flag (0 = asymmetric, 1 = symmetric)
c cl_design design lift coefficient
c cm_flag flag for Cm constraint (0 = no constraint, 1 = constraint)
c cm_design design pitching moment coefficient (about the cg)
c xcg x location of the center of gravity
c cp percent chord location of center of pressure for all sections
c sref reference area (projected onto xy plane)
c cavg average chord of reference surface(s)
c npanels number of panels in geometry
c xc, yc, zc coordinates of corner points (aircraft reference frame)
c nvortices number of vortices per panel
c spacing_flag vortex spacing flag (0 = equal, 1 = outboard-compressed,
c 2 = inboard-compressed, 3 = end-compressed)
c load_flag load flag (0 = cn input, 1 = load (cn*c/cavg) input)
c loads vector of loads for analysis mode
c
c Outputs
c
c cd_induced induced drag coefficient
c
c Internal Variables
c
c abar augmented influence coefficient matrix (Lamar)
c ar aspect ratio of reference surface
c b vector of constraints; overwritten with loads vector
c bpanel span of panel (projected onto xy plane)
c bref reference span (projected onto xy plane)
c c local chord of lifting element
c cl_actual actual lift coefficient (obtained via integration)
c cm_actual actual pitching moment coefficient (about the cg)
c cn vector of normal force coefficients
c d dummy output from LU decomposition subroutine
c e span efficiency factor
c i index
c info SGEFS information flag
c ipvt SGEFS output vector of row interchanges
c j index

19

c lda leading dimension of abar matrix
c ldb leading dimension of b matrix
c n actual size of abar matrix
c nb number of columns in b matrix
c nconstraints number of constraints (parameter)
c npanels_max maximum number of panels in geometry
c nvortices_max maximum number of vortices per panel
c nvortices_tot total number of vortices
c s vortex semi-width (non-dimensional)
c semi_width temporary parameter for calculating vortex semi-width
c sp vortex semi-width (dimensional)
c spacing vortex spacing
c theta vortex dihedral angle
c x, y, z coordinates of vortices (aircraft reference frame)
c xle, xte coordinates of LE and TE corresponding to each vortex
c
c Created by: Joel Grasmeyer
c Last Modified: 02/04/97
c Version: 1.0
c
c///

 subroutine idrag(outfile,title,input_mode,write_flag,sym_flag,
 & cl_design,cm_flag,cm_design,xcg,cp,sref,cavg,npanels,xc,yc,zc,
 & nvortices,spacing_flag,load_flag,loads,cd_induced)

 implicit none
 integer npanels_max, nvortices_max, nconstraints
 parameter(npanels_max=5, nvortices_max=200, nconstraints=2)

 character*72 outfile, title
 integer nvortices_tot, n, i, j, cm_flag, input_mode,
 & write_flag, sym_flag, npanels, nvortices(npanels_max),
 & spacing_flag(npanels_max), load_flag, lda, ldb, nb, info,
 & ipvt(npanels_max*nvortices_max+nconstraints)
 real cl_design, sref, bref, cavg, x(npanels_max*nvortices_max),
 & y(npanels_max*nvortices_max), z(npanels_max*nvortices_max),
 & c(npanels_max*nvortices_max), s(npanels_max*nvortices_max),
 & sp(npanels_max*nvortices_max), theta(npanels_max*nvortices_max),
 & a(npanels_max*nvortices_max,npanels_max*nvortices_max), d, pi,
 & indx(npanels_max*nvortices_max+nconstraints), cm_design, xcg,
 & b(npanels_max*nvortices_max+nconstraints), cp, cm_actual,
 & abar(npanels_max*nvortices_max+nconstraints,
 & npanels_max*nvortices_max+nconstraints), cl_actual, e,
 & xle(npanels_max*nvortices_max), cd_induced, ar,
 & cn(npanels_max*nvortices_max), xc(npanels_max,4),
 & loads(npanels_max*nvortices_max), yc(npanels_max,4), bpanel,
 & spacing, zc(npanels_max,4), semi_width,
 & xte(npanels_max*nvortices_max)

 pi = acos(-1.)

c Write input data to output file for confirmation
 if (write_flag .eq. 1) then
 open(11,file=outfile)
 write(11,"('idrag output file')")
 write(11,"(a72)") title
 write(11,101) input_mode, '= input mode'
 write(11,101) write_flag, '= write flag'
 write(11,101) sym_flag, '= symmetry flag'
 write(11,102) cl_design, '= design lift coefficient'

20

 write(11,101) cm_flag, '= moment coefficient flag'
 write(11,102) cm_design, '= design moment coefficient'
 write(11,102) xcg, '= x cg position'
 write(11,102) cp, '= center of pressure for airfoil sections'
 write(11,102) sref, '= reference area'
 write(11,102) cavg, '= reference chord'
 write(11,101) npanels, '= number of panels'
 do i=1,npanels
 write(11,*)
 write(11,103) ' x y z for panel ', i
 do j=1,4
 write(11,104) xc(i,j), yc(i,j), zc(i,j)
 end do
 write(11,101) nvortices(i), '= number of vortices'
 write(11,101) spacing_flag(i), '= vortex spacing flag'
 end do
 101 format(2x, i3, 4x, a)
 102 format(f8.2, 1x, a)
 103 format(a, i1)
 104 format(3(f8.2, 1x))
 end if

c Calculate reference span
 bref = sref/cavg

c Begin vortex loop
 nvortices_tot = 0
 do i=1,npanels
 do j=1,nvortices(i)
 nvortices_tot = nvortices_tot + 1

c Calculate dihedral angles of lifting elements
 if (yc(i,2) .eq. yc(i,1)) then
 theta(nvortices_tot) = pi/2.
 else
 theta(nvortices_tot) = atan((zc(i,2) - zc(i,1))/
 & (yc(i,2) - yc(i,1)))
 end if

c Calculate spacing (0 = equal, 1 = outboard-compressed, 2 = inboard-
c compressed, 3 = end-compressed) and panel semi-widths
 if (spacing_flag(i) .eq. 0) then
 spacing = (j - 0.5)/nvortices(i)
 semi_width = 0.5/nvortices(i)
 elseif (spacing_flag(i) .eq. 1) then
 spacing = sin(pi/2.*(j - 0.5)/nvortices(i))
 semi_width = 0.5*(sin(pi/2.*j/nvortices(i)) -
 & sin(pi/2.*(j - 1.)/nvortices(i)))
 elseif (spacing_flag(i) .eq. 2) then
 spacing = 1 - cos(pi/2.*(j - 0.5)/nvortices(i))
 semi_width = 0.5*(-cos(pi/2.*j/nvortices(i)) +
 & cos(pi/2.*(j - 1.)/nvortices(i)))
 elseif (spacing_flag(i) .eq. 3) then
 spacing = (1 - cos(pi*(j - 0.5)/nvortices(i)))/2.
 semi_width = 0.25*(-cos(pi*j/nvortices(i)) +
 & cos(pi*(j - 1.)/nvortices(i)))
 end if

 sp(nvortices_tot) = semi_width*sqrt((yc(i,2) -
 & yc(i,1))**2 + (zc(i,2) - zc(i,1))**2)
 s(nvortices_tot) = 2.*sp(nvortices_tot)/bref

21

c Calculate coordinates of vortices and local chords
 y(nvortices_tot) = yc(i,1) + spacing*(yc(i,2) - yc(i,1))
 z(nvortices_tot) = zc(i,1) + spacing*(zc(i,2) - zc(i,1))
 xle(nvortices_tot) = xc(i,1) + spacing*(xc(i,2) - xc(i,1))
 xte(nvortices_tot) = xc(i,4) + spacing*(xc(i,3) - xc(i,4))
 c(nvortices_tot) = (xte(nvortices_tot) -
 & xle(nvortices_tot))
 x(nvortices_tot) = xle(nvortices_tot) + 0.25*c(nvortices_tot)
 end do
 end do

c Form matrix of influence coefficients with constraints
 call matrix(sym_flag,cl_design,cm_flag,cm_design,xcg,cp,
 & nvortices_tot,y,z,theta,s,sp,c,cavg,xle,a,abar,b)

c Design mode: calculate loading for minimum induced drag
 if (input_mode .eq. 0) then
 if (cm_flag .eq. 0) then
 n = nvortices_tot+1
 else
 n = nvortices_tot+2
 end if
 lda = npanels_max*nvortices_max+nconstraints
 ldb = lda
 nb = 1

c Calculate the loads (note that the b vector is an input and output)
 call sgefs(abar,lda,n,b,ldb,nb,ipvt,info)

c Analysis mode: calculate performance for given loading
 else

c If Cn values were input, convert to loads (Cn*c/cavg)
 if (load_flag .eq. 0) then
 do i=1,nvortices_tot
 loads(i) = loads(i)*c(i)/cavg
 end do
 end if

c Set b vector to given loads
 do i=1,nvortices_tot
 b(i) = loads(i)
 end do
 end if

c Calculate actual lift coefficient, induced drag, and span efficiency
 cl_actual = 0.
 cm_actual = 0.
 cd_induced = 0.
 do i=1,nvortices_tot
 if (sym_flag .eq. 1) then
 cl_actual = cl_actual + 2.*b(i)*s(i)*cos(theta(i))
 cm_actual = cm_actual + 2.*b(i)*s(i)*cos(theta(i))*
 & (xcg - (xle(i) + cp*c(i)))/cavg
 else
 cl_actual = cl_actual + b(i)*s(i)*cos(theta(i))
 cm_actual = cm_actual + b(i)*s(i)*cos(theta(i))*
 & (xcg - (xle(i) + cp*c(i)))/cavg
 end if
 cn(i) = b(i)*cavg/c(i)

22

 do j=1,nvortices_tot
 if (sym_flag .eq. 1) then
 cd_induced = cd_induced + b(i)*b(j)*s(i)*a(i,j)
 else
 cd_induced = cd_induced + 0.5*b(i)*b(j)*s(i)*a(i,j)
 end if
 end do
 end do
 ar = bref**2/sref
 e = cl_actual**2/(pi*ar*cd_induced)

c Write vortex positions, load distribution and performance to output file
 if (write_flag .eq. 1) then
 write(11,*)
 write(11,110) ' i x y z load cn'
 do i=1,nvortices_tot
 write(11,111) i, x(i), y(i), z(i), b(i), cn(i)
 end do
 write(11,*)
 write(11,112) cl_actual, '= actual lift coefficient'
 write(11,112) cm_actual, '= actual moment coefficient'
 write(11,112) cd_induced, '= induced drag coefficient'
 write(11,112) e, '= span efficiency factor'
 110 format(a)
 111 format(x, i4, 5(1x, f8.4))
 112 format(4x, f7.5, 1x, a)
 close(11)
 end if

 return
 end

c///
c
c subroutine matrix
c
c This subroutine forms the matrix of influence coefficients from
c the geometry information provided by the idrag subroutine. The
c matrix equation (Ax = B) is then solved via the subroutines ludcmp
c and lubksb.
c
c Inputs
c
c sym_flag symmetry flag (0 = asymmetric, 1 = symmetric)
c cl_design design lift coefficient
c cm_flag flag for Cm constraint (0 = no constraint, 1 = constraint)
c cm_design design pitching moment coefficent (about the cg)
c xcg x location of the center of gravity
c cp percent chord location of center of pressure for all sections
c nvortices_tot total number of vortices
c y, z coordinates of vortices (aircraft reference frame)
c theta vortex dihedral angle
c s vortex semi-width (non-dimensional)
c sp vortex semi-width (dimensional)
c c local chord of lifting element
c cavg average chord of reference surface(s)
c xle coordinates of LE corresponding to each vortex
c
c Outputs
c

23

c a influence coefficient matrix (Blackwell)
c abar augmented influence coefficient matrix (Lamar)
c b vector of constraints
c
c Internal Variables
c
c a1 matrix of influence coefficients for same-side vortices
c a2 matrix of influence coefficients for image vortices
c i index
c j index
c nconstraints number of constraints (parameter)
c npanels_max maximum number of panels in geometry
c nvortices_max maximum number of vortices per panel
c r1, r2 vortex influence radii squared
c yp, zp coordinates of vortices (vortex reference frame)
c
c Created by: Joel Grasmeyer
c Last Modified: 12/11/96
c
c///

 subroutine matrix(sym_flag,cl_design,cm_flag,cm_design,xcg,cp,
 & nvortices_tot,y,z,theta,s,sp,c,cavg,xle,a,abar,b)

 implicit none
 integer npanels_max, nvortices_max, nconstraints
 parameter(npanels_max=5,nvortices_max=200,nconstraints=2)

 integer i, j, nvortices_tot, cm_flag, sym_flag
 real pi, yp, zp, y(npanels_max*nvortices_max), r1, r2, a1,
 & z(npanels_max*nvortices_max), theta(npanels_max*nvortices_max),
 & s(npanels_max*nvortices_max), sp(npanels_max*nvortices_max),
 & a2, a(npanels_max*nvortices_max,npanels_max*nvortices_max),
 & abar(npanels_max*nvortices_max+nconstraints,
 & npanels_max*nvortices_max+nconstraints), cp, cm_design, xcg,
 & b(npanels_max*nvortices_max+nconstraints), cavg, cl_design,
 & c(npanels_max*nvortices_max), xle(npanels_max*nvortices_max)

 pi = acos(-1.)

c Form the matrix of influence coefficients
 do i=1,nvortices_tot
 do j=1,nvortices_tot

c First, calculate the effects of the same-side vortices
 yp = (y(i) - y(j))*cos(theta(j)) +
 & (z(i) - z(j))*sin(theta(j))
 zp = -(y(i) - y(j))*sin(theta(j)) +
 & (z(i) - z(j))*cos(theta(j))
 r1 = zp**2 + (yp - sp(j))**2
 r2 = zp**2 + (yp + sp(j))**2

 a1 = ((yp - sp(j))/r1 - (yp + sp(j))/r2)*cos(theta(i)
 & - theta(j)) + (zp/r1 - zp/r2)*sin(theta(i) - theta(j))

c If the configuration is symmetric, change the sign of y(j) and
c theta(j) to account for image vortices
 if (sym_flag .eq. 1) then
 yp = (y(i) + y(j))*cos(-theta(j)) +
 & (z(i) - z(j))*sin(-theta(j))
 zp = -(y(i) + y(j))*sin(-theta(j)) +

24

 & (z(i) - z(j))*cos(-theta(j))
 r1 = zp**2 + (yp - sp(j))**2
 r2 = zp**2 + (yp + sp(j))**2
 a2 = ((yp - sp(j))/r1 - (yp + sp(j))/r2)*cos(theta(i)
 & + theta(j)) + (zp/r1 - zp/r2)*sin(theta(i) + theta(j))
 else
 a2 = 0.
 end if

c Add the two influences to form the total influence coefficients
 a(i,j) = -cavg/(4.*pi)*(a1 + a2)

 end do
 end do

c Implement method of Lagrange multipliers
 do i=1,nvortices_tot
 do j=1,nvortices_tot
 abar(i,j) = a(i,j)*s(i) + a(j,i)*s(j)
 end do
 b(i) = 0.
 end do

c Augment influence coefficient matrix with Cl constraint
 do i=1,nvortices_tot
 abar(i,nvortices_tot+1) = s(i)*cos(theta(i))
 end do
 do j=1,nvortices_tot
 abar(nvortices_tot+1,j) = s(j)*cos(theta(j))
 end do
 abar(nvortices_tot+1,nvortices_tot+1) = 0.
 if (sym_flag .eq. 1) then
 b(nvortices_tot+1) = cl_design/2.
 else
 b(nvortices_tot+1) = cl_design
 end if

c Augment matrix with Cm constraint if cm_flag = 1
 if (cm_flag .eq. 1) then
 do i=1,nvortices_tot
 abar(i,nvortices_tot+2) = s(i)*cos(theta(i))*
 & (xcg - (xle(i) + cp*c(i)))/cavg
 end do
 do j=1,nvortices_tot
 abar(nvortices_tot+2,j) = s(j)*cos(theta(j))*
 & (xcg - (xle(j) + cp*c(j)))/cavg
 end do
 abar(nvortices_tot+1,nvortices_tot+2) = 0.
 abar(nvortices_tot+2,nvortices_tot+1) = 0.
 abar(nvortices_tot+2,nvortices_tot+2) = 0.
 if (sym_flag .eq. 1) then
 b(nvortices_tot+2) = cm_design/2.
 else
 b(nvortices_tot+2) = cm_design
 end if
 end if

 return
 end

25

Appendix B: idragin Code

c///
c
c program idragin
c
c This program reads the design or analysis input file, and calls
c the idrag subroutine to calculate the performance of the configuration.
c
c Program Execution
c
c The user is prompted for the input and output filenames. Note that
c the comments in the sample input files are ignored, since the
c unformatted read statements only use the first value on each line of
c input.
c
c Variable Definitions
c
c cd_induced induced drag coefficient
c cl_design design lift coefficient
c cm_flag flag for Cm constraint (0 = no constraint, 1 = constraint)
c cm_design design pitching moment coefficent (about the cg)
c cp percent chord location of center of pressure for all sections
c cavg average chord (cavg = sref/bref)
c d distance along span for load distribution
c header header which identifies the input and output files
c i index
c infile input filename
c input_mode input mode (0 = design unknown loads, 1 = analyze given loads)
c j index
c k index
c loads vector of loads for analysis mode
c load_flag load flag (0 = cn input, 1 = load (cn*c/cavg) input)
c load_input input loads specified at given spanwise stations
c load_station percent span locations of specified loads in the range [0,1]
c nloads number of loads specified per panel for analysis mode input
c npanels number of panels in geometry
c npanels_max maximum number of panels in geometry
c nvortices number of vortices per panel
c nvortices_max maximum number of vortices per panel
c outfile output filename
c p linear interpolation parameter
c spacing_flag vortex spacing flag (0 = equal, 1 = outboard-compressed,
c 2 = inboard-compressed, 3 = end-compressed)
c sref reference area
c sym_flag symmetry flag (0 = asymmetric, 1 = symmetric)
c temp_load temporary load vector for analysis mode
c title title of aircraft configuration
c write_flag write flag (0 = no output file, 1 = output file written)
c xc, yc, zc coordinates of corner points (aircraft reference frame)
c xcg x location of the center of gravity
c
c Created by: Joel Grasmeyer
c Last Modified: 02/04/97
c
c///

 program idragin

26

 implicit none
 integer npanels_max, nvortices_max
 parameter(npanels_max=5,nvortices_max=200)

 character*72 infile, outfile, header, title
 integer npanels, nvortices(npanels_max),
 & i, j, input_mode, cm_flag, write_flag, sym_flag,
 & nloads(npanels_max), load_flag, k, spacing_flag(npanels_max)
 real cl_design, sref, cm_design, xcg, cp, cavg, cd_induced,
 & xc(npanels_max,4), yc(npanels_max,4), zc(npanels_max,4),
 & load_station(npanels_max,nvortices_max), d(nvortices_max),
 & load_input(npanels_max,nvortices_max), p(nvortices_max),
 & temp_load(npanels_max,nvortices_max),
 & loads(npanels_max*nvortices_max)

c Get input and output filenames
 write(6,*) 'Enter input filename within single quotes: '
 read(5,*) infile
 write(6,*) 'Enter output filename within single quotes: '
 read(5,*) outfile

c Read input that is common to both modes
 open(10,file=infile)
 read(10,"(a72)") header
 read(10,"(a72)") title
 read(10,*) input_mode
 read(10,*) write_flag
 read(10,*) sym_flag

c Read input file for design mode
 if (input_mode .eq. 0) then
 read(10,*) cl_design
 read(10,*) cm_flag
 read(10,*) cm_design
 read(10,*) xcg
 read(10,*) cp
 read(10,*) sref
 read(10,*) cavg
 read(10,*) npanels
 do i=1,npanels
 do j=1,4
 read(10,*) xc(i,j), yc(i,j), zc(i,j)
 end do
 read(10,*) nvortices(i)
 read(10,*) spacing_flag(i)
 end do

c Initialize variables that are not used in the design mode
 load_flag = 0
 do i=1,npanels_max*nvortices_max
 loads(i) = 0.
 end do

c Read input file for analysis mode
 else
 read(10,*) load_flag
 read(10,*) xcg
 read(10,*) cp
 read(10,*) sref
 read(10,*) cavg
 read(10,*) npanels

27

 do i=1,npanels
 do j=1,4
 read(10,*) xc(i,j), yc(i,j), zc(i,j)
 end do
 read(10,*) nvortices(i)
 read(10,*) spacing_flag(i)
 read(10,*) nloads(i)
 do k=1,nloads(i)
 read(10,*) load_station(i,k), load_input(i,k)
 end do
 end do

c Initialize variables that are not used in the analysis mode
 cl_design = 0.
 cm_flag = 0
 cm_design = 0.

c Perform linear interpolation on load input
 do i=1,npanels
 do j=1,nvortices(i)
 d(j) = (j - 0.5)/nvortices(i)
 end do
 j = 1
 k = 2
 do while (j .le. nvortices(i))
 do while (d(j) .le. load_station(i,k) .and.
 & j .le. nvortices(i))
 p(j) = (d(j) - load_station(i,k-1))/
 & (load_station(i,k) - load_station(i,k-1))
 temp_load(i,j) = load_input(i,k-1) + p(j)*
 & (load_input(i,k) - load_input(i,k-1))
 j = j + 1
 end do
 k = k + 1
 end do
 end do

c Vectorize loads
 k = 0
 do i=1,npanels
 do j=1,nvortices(i)
 k = k + 1
 loads(k) = temp_load(i,j)
 end do
 end do

 end if

c Close input file
 close(10)

c Call drag subroutine to calculate performance
 call idrag(outfile,title,input_mode,write_flag,sym_flag,
 & cl_design,cm_flag,cm_design,xcg,cp,sref,cavg,npanels,xc,yc,zc,
 & nvortices,spacing_flag,load_flag,loads,cd_induced)

 end

28

Appendix C: Sample Design Input File (dsample.in)

idrag input file
winglet
0 input mode
1 write flag
1 symmetry flag
1.0 cl_design
1 cm_flag
0 cm_design
0.03 x cg position
0.25 center of pressure for airfoil sections
0.2 reference area
0.2 reference chord
3 number of panels
0 0 0 x,y,z for 4 corners of panel 1
0 0.5 0
0.2 0.5 0
0.2 0 0
10 number of vortices for panel 1
0 vortex spacing for panel 1
0 0.5 0 x,y,z for 4 corners of panel 2
0 0.5 0.1
0.2 0.5 0.1
0.2 0.5 0
5 number of vortices for panel 2
0 vortex spacing for panel 2
1 0 0.1 x,y,z for 4 corners of panel 3
1 0.2 0.1
1.1 0.2 0.1
1.1 0 0.1
6 number of vortices for panel 3
0 vortex spacing for panel 3

29

Appendix D: Sample Design Output File (dsample.idrag)

idrag output file
winglet
 0 = input mode
 1 = write flag
 1 = symmetry flag
 1.00 = design lift coefficient
 1 = moment coefficient flag
 0.00 = design moment coefficient
 0.03 = x cg position
 0.25 = center of pressure for airfoil sections
 0.20 = reference area
 0.20 = reference chord
 3 = number of panels

 x y z for panel 1
 0.00 0.00 0.00
 0.00 0.50 0.00
 0.20 0.50 0.00
 0.20 0.00 0.00
 10 = number of vortices
 0 = vortex spacing flag

 x y z for panel 2
 0.00 0.50 0.00
 0.00 0.50 0.10
 0.20 0.50 0.10
 0.20 0.50 0.00
 5 = number of vortices
 0 = vortex spacing flag

 x y z for panel 3
 1.00 0.00 0.10
 1.00 0.20 0.10
 1.10 0.20 0.10
 1.10 0.00 0.10
 6 = number of vortices
 0 = vortex spacing flag

 i x y z load cn
 1 0.0500 0.0250 0.0000 1.1867 1.1867
 2 0.0500 0.0750 0.0000 1.1756 1.1756
 3 0.0500 0.1250 0.0000 1.1534 1.1534
 4 0.0500 0.1750 0.0000 1.1205 1.1205
 5 0.0500 0.2250 0.0000 1.0784 1.0784
 6 0.0500 0.2750 0.0000 1.0287 1.0287
 7 0.0500 0.3250 0.0000 0.9709 0.9709
 8 0.0500 0.3750 0.0000 0.9041 0.9041
 9 0.0500 0.4250 0.0000 0.8292 0.8292
 10 0.0500 0.4750 0.0000 0.7574 0.7574
 11 0.0500 0.5000 0.0100 0.4581 0.4581
 12 0.0500 0.5000 0.0300 0.4496 0.4496
 13 0.0500 0.5000 0.0500 0.3795 0.3795
 14 0.0500 0.5000 0.0700 0.2967 0.2967
 15 0.0500 0.5000 0.0900 0.1938 0.1938
 16 1.0250 0.0167 0.1000 -0.0642 -0.1284
 17 1.0250 0.0500 0.1000 -0.0622 -0.1244
 18 1.0250 0.0833 0.1000 -0.0581 -0.1162

30

 19 1.0250 0.1167 0.1000 -0.0517 -0.1034
 20 1.0250 0.1500 0.1000 -0.0425 -0.0851
 21 1.0250 0.1833 0.1000 -0.0290 -0.0579

 1.00000 = actual lift coefficient
 0.00000 = actual moment coefficient
 0.05008 = induced drag coefficient
 1.27132 = span efficiency factor

31

Appendix E: Sample Analysis Input File (asample1.in)

idrag input file
asample1
1 input mode
1 write flag
1 symmetry flag
1 load flag
0. x cg position
0.25 center of pressure for airfoil sections
0.15 reference area
0.15 reference chord
1 number of panels
0 0 0 x,y,z for 4 corners of panel 1
0 0.5 0
0.2 0.5 0
0.2 0 0
10 number of vortices for panel 1
0 vortex spacing for panel 1
2 number of loads for panel 1
0 1 load station 1, load 1, for panel 1
1 0 load station 2, load 2, for panel 1

The load station is a percent span location of a specified load. It can take values
in the range [0,1]. Any number of load station/load pairs can be specified, as long
as two are located at 0 and 1.

32

Appendix F: Sample Analysis Output File (asample1.idrag)

idrag output file
asample1
 1 = input mode
 1 = write flag
 1 = symmetry flag
 0.00 = design lift coefficient
 0 = moment coefficient flag
 0.00 = design moment coefficient
 0.00 = x cg position
 0.25 = center of pressure for airfoil sections
 0.15 = reference area
 0.15 = reference chord
 1 = number of panels

 x y z for panel 1
 0.00 0.00 0.00
 0.00 0.50 0.00
 0.20 0.50 0.00
 0.20 0.00 0.00
 10 = number of vortices
 0 = vortex spacing flag

 i x y z load cn
 1 0.0500 0.0250 0.0000 0.9500 0.7125
 2 0.0500 0.0750 0.0000 0.8500 0.6375
 3 0.0500 0.1250 0.0000 0.7500 0.5625
 4 0.0500 0.1750 0.0000 0.6500 0.4875
 5 0.0500 0.2250 0.0000 0.5500 0.4125
 6 0.0500 0.2750 0.0000 0.4500 0.3375
 7 0.0500 0.3250 0.0000 0.3500 0.2625
 8 0.0500 0.3750 0.0000 0.2500 0.1875
 9 0.0500 0.4250 0.0000 0.1500 0.1125
 10 0.0500 0.4750 0.0000 0.0500 0.0375

 0.50000 = actual lift coefficient
 -.16667 = actual moment coefficient
 0.01636 = induced drag coefficient
 0.72964 = span efficiency factor

33

Appendix G: Sample Analysis Input File (asample2.in)

idrag input file
asample2
1 input mode
1 write flag
1 symmetry flag
1 load flag
0. x cg position
0.25 center of pressure for airfoil sections
0.15 reference area
0.15 reference chord
1 number of panels
0 0 0 x,y,z for 4 corners of panel 1
0 0.5 0
0.2 0.5 0
0.2 0 0
10 number of vortices for panel 1
0 vortex spacing for panel 1
11 number of loads for panel 1
0.0000 1.0000 load station 1, load 1, for panel 1
0.1000 0.9950 load station 2, load 2, for panel 1
0.2000 0.9798 load station 3, load 3, for panel 1
0.3000 0.9539 load station 4, load 4, for panel 1
0.4000 0.9165 load station 5, load 5, for panel 1
0.5000 0.8660 load station 6, load 6, for panel 1
0.6000 0.8000 load station 7, load 7, for panel 1
0.7000 0.7141 load station 8, load 8, for panel 1
0.8000 0.6000 load station 9, load 9, for panel 1
0.9000 0.4359 load station 10, load 10, for panel 1
1.0000 0.0000 load station 11, load 11, for panel 1

34

Appendix H: Sample Analysis Output File (asample2.idrag)

idrag output file
asample2
 1 = input mode
 1 = write flag
 1 = symmetry flag
 0.00 = design lift coefficient
 0 = moment coefficient flag
 0.00 = design moment coefficient
 0.00 = x cg position
 0.25 = center of pressure for airfoil sections
 0.15 = reference area
 0.15 = reference chord
 1 = number of panels

 x y z for panel 1
 0.00 0.00 0.00
 0.00 0.50 0.00
 0.20 0.50 0.00
 0.20 0.00 0.00
 10 = number of vortices
 0 = vortex spacing flag

 i x y z load cn
 1 0.0500 0.0250 0.0000 0.9975 0.7481
 2 0.0500 0.0750 0.0000 0.9874 0.7405
 3 0.0500 0.1250 0.0000 0.9668 0.7251
 4 0.0500 0.1750 0.0000 0.9352 0.7014
 5 0.0500 0.2250 0.0000 0.8913 0.6684
 6 0.0500 0.2750 0.0000 0.8330 0.6248
 7 0.0500 0.3250 0.0000 0.7571 0.5678
 8 0.0500 0.3750 0.0000 0.6571 0.4928
 9 0.0500 0.4250 0.0000 0.5179 0.3885
 10 0.0500 0.4750 0.0000 0.2180 0.1635

 0.77612 = actual lift coefficient
 -.25871 = actual moment coefficient
 0.02847 = induced drag coefficient
 1.01005 = span efficiency factor

35

Appendix I: Matlab Utility readidrag.m

function [header,case_title,input_mode,write_flag,sym_flag,cl_design, ...
 cm_flag,cm_design,xcg,cp,sref,cavg,npanels,xc,yc,zc,nvortices,spacing, ...
 x,y,z,load,cn,cl_actual,cm_actual,cd_induced,e] = readidrag(filename)
%READIDRAG Reads the output file created by the code 'idrag'.
% READIDRAG(FILENAME)
% FILENAME - name of idrag output file (entered within single quotes)
%
% Created by Joel Grasmeyer
% Last modified on 02/03/97

fid = fopen(filename,'r');

header = fscanf(fid,'%s %s %s',3);
case_title = fscanf(fid,'%s',1);
input_mode = fscanf(fid,'%f %s %s %s',4); input_mode = input_mode(1);
write_flag = fscanf(fid,'%f %s %s %s',4); write_flag = write_flag(1);
sym_flag = fscanf(fid,'%f %s %s %s',4); sym_flag = sym_flag(1);
cl_design = fscanf(fid,'%f %s %s %s %s',5); cl_design = cl_design(1);
cm_flag = fscanf(fid,'%f %s %s %s %s %s',5); cm_flag = cm_flag(1);
cm_design = fscanf(fid,'%f %s %s %s %s %s',5); cm_design = cm_design(1);
xcg = fscanf(fid,'%f %s %s %s %s %s',5); xcg = xcg(1);
cp = fscanf(fid,'%f %s %s %s %s %s %s %s %s',8); cp = cp(1);
sref = fscanf(fid,'%f %s %s %s %s',4); sref = sref(1);
cavg = fscanf(fid,'%f %s %s %s %s',4); cavg = cavg(1);
npanels = fscanf(fid,'%f %s %s %s %s %s',5); npanels = npanels(1);
for i=1:npanels,
 junk = fscanf(fid,'%s %s %s %s %s %f',6);
 for j=1:4,
 xc(j,i) = fscanf(fid,'%f',1);
 yc(j,i) = fscanf(fid,'%f',1);
 zc(j,i) = fscanf(fid,'%f',1);
 end
 nvor = fscanf(fid,'%f %s %s %s %s',5); nvortices(i) = nvor(1);
 spac = fscanf(fid,'%f %s %s %s %s',5); spacing(i) = spac(1);
end
junk = fscanf(fid,'%s %s %s %s %s %s',6);
k = 1;
for i=1:npanels,
 for j=1:nvortices(i),
 num = fscanf(fid,'%f',1);
 x(j,i) = fscanf(fid,'%f',1);
 y(j,i) = fscanf(fid,'%f',1);
 z(j,i) = fscanf(fid,'%f',1);
 load(k) = fscanf(fid,'%f',1);
 cn(k) = fscanf(fid,'%f',1);
 k = k + 1;
 end
end
cl_actual = fscanf(fid,'%f %s %s %s %s',5); cl_actual = cl_actual(1);
cm_actual = fscanf(fid,'%f %s %s %s %s',5); cm_actual = cm_actual(1);
cd_induced = fscanf(fid,'%f %s %s %s %s',5); cd_induced = cd_induced(1);
e = fscanf(fid,'%f %s %s %s %s',5); e = e(1);

fclose(fid);

36

Appendix J: Matlab Utility geom.m

function geom(filename,view_flag,vortex_flag)
%GEOM Creates plots of the configuration geometry.
% GEOM(FILENAME,VIEW_FLAG,VORTEX_FLAG)
% FILENAME - name of idrag output file (entered within single quotes)
% VIEW_FLAG - flag to denote the content of the plots:
% 0 = 1 perspective plot, 1 = 1 perspective and 3-views
% VORTEX_FLAG - flag to determine whether vortex locations are shown:
% 0 = don't plot vortex locations, 1 = show vortex locations
%
% If GEOM is called with just the FILENAME argument, VIEW_FLAG and
% VORTEX_FLAG are set to their default values of 1 and 0, respectively.
%
% Created by Joel Grasmeyer
% Last modified on 12/2/96

% Set default plot parameters for 1 input argument
if nargin == 1
 view_flag = 1;
 vortex_flag = 0;
end

% Read idrag output file
[header,case_title,input_mode,write_flag,sym_flag,cl_design, ...
 cm_flag,cm_design,xcg,cp,sref,cavg,npanels,xc,yc,zc,nvortices,spacing, ...
 x,y,z,loading,cn,cl_actual,cm_actual,cd_induced,e] = readidrag(filename);

% Calculate ranges for plots
minx = min(min(xc));
miny = min(min(yc));
minz = min(min(zc));
maxx = max(max(xc));
maxy = max(max(yc));
maxz = max(max(zc));
[minmin,imin] = min([minx miny minz]);
[maxmax,imax] = max([maxx maxy maxz]);
del = maxmax - minmin;
margin = 0.05;
amin = minmin - margin*del;
amax = maxmax + margin*del;

% Close panels
xc(5,:) = xc(1,:);
yc(5,:) = yc(1,:);
zc(5,:) = zc(1,:);

% Create plots, depending on view_flag
if view_flag == 0
 for i=1:npanels
 if sym_flag == 1
 plot3(yc(:,i),xc(:,i),zc(:,i),'y-',-yc(:,i),xc(:,i),zc(:,i),'y-')
 axis([-amax amax amin amax amin amax])
 else
 plot3(yc(:,i),xc(:,i),zc(:,i),'y-')
 axis([amin amax amin amax amin amax])
 end
 title(['Perspective View (e = ',num2str(e),')'])
 xlabel('y')

37

 ylabel('x')
 zlabel('z')
 set(gca,'YDir','rev')
 hold on
 if vortex_flag == 1
 plot3(y(1:nvortices(i),i),x(1:nvortices(i),i),z(1:nvortices(i),i),'b+')
 end
 end
 hold off
else
 for i=1:npanels
 if sym_flag == 1
 subplot(2,2,1), plot(yc(:,i),xc(:,i),'y-',-yc(:,i),xc(:,i),'y-')
 axis([-amax amax amin amax])
 axis('equal')
 else
 subplot(2,2,1), plot(yc(:,i),xc(:,i),'y-')
 axis([amin amax amin amax])
 end
 title(['Top View (e = ',num2str(e),')'])
 xlabel('y')
 ylabel('x')
 axis('equal')
 set(gca,'YDir','rev')
 hold on
 if vortex_flag == 1
 subplot(2,2,1), plot(y(1:nvortices(i),i),x(1:nvortices(i),i),'b+')
 end

 if sym_flag == 1
 subplot(2,2,2), plot3(yc(:,i),xc(:,i),zc(:,i),'y-', ...
 -yc(:,i),xc(:,i),zc(:,i),'y-')
 axis([-amax amax amin amax amin amax])
 else
 subplot(2,2,2), plot3(yc(:,i),xc(:,i),zc(:,i),'y-')
 axis([amin amax amin amax amin amax])
 end
 title('Perspective View')
 xlabel('y')
 ylabel('x')
 zlabel('z')
 set(gca,'YDir','rev')
 hold on
 if vortex_flag == 1
 subplot(2,2,2), plot3(y(1:nvortices(i),i),x(1:nvortices(i),i), ...
 z(1:nvortices(i),i),'b+')
 end

 if sym_flag == 1
 subplot(2,2,3), plot(yc(:,i),zc(:,i),'y-',-yc(:,i),zc(:,i),'y-')
 axis([-amax amax amin amax])
 else
 subplot(2,2,3), plot(yc(:,i),zc(:,i),'y-')
 axis([amin amax amin amax])
 end
 title('Rear View')
 xlabel('y')
 ylabel('z')
 axis('equal')
 hold on
 if vortex_flag == 1

38

 subplot(2,2,3), plot(y(1:nvortices(i),i),z(1:nvortices(i),i),'b+')
 end

 subplot(2,2,4), plot(xc(:,i),zc(:,i),'y-')
 title('Right Side View')
 xlabel('x')
 ylabel('z')
 axis([amin amax amin amax])
 axis('equal')
 set(gca,'XDir','rev')
 hold on
 if vortex_flag == 1
 subplot(2,2,4), plot(x(1:nvortices(i),i),z(1:nvortices(i),i),'b+')
 end
 end
 subplot(2,2,1),hold off
 subplot(2,2,2),hold off
 subplot(2,2,3),hold off
 subplot(2,2,4),hold off
end

39

Appendix K: Matlab Utility loads.m

function loads(filename,dist_flag)
%LOADS Creats plots of load or normal force coefficient distribution.
% LOADS(FILENAME,DIST_FLAG)
% FILENAME - name of idrag output file (entered within single quotes)
% DIST_FLAG - flag to denote the content of the plots:
% (0 = loading (cn*c/cavg), 1 = normal force coefficient (cn))
%
% If LOADS is called with just the FILENAME argument, DIST_FLAG is
% set to its default value of 0.
%
% Created by Joel Grasmeyer
% Last modified on 12/2/96

% Set default plot parameters for 1 input argument
if nargin == 1
 dist_flag = 0;
end

% Read idrag output file
[header,case_title,input_mode,write_flag,sym_flag,cl_design, ...
 cm_flag,cm_design,xcg,cp,sref,cavg,npanels,xc,yc,zc,nvortices,spacing, ...
 x,y,z,loading,cn,cl_actual,cm_actual,cd_induced,e] = readidrag(filename);

% Set distribution to cn or load, depending on dist_flag
if dist_flag == 0
 dist = loading;
 label = 'Load Distribution (Cn*c/cavg)';
else
 dist = cn;
 label = 'Normal Force Coefficient Distribution (Cn)';
end
xmin = 0;
xmax = max(sqrt((yc(2,:)-yc(1,:)).^2 + (zc(2,:)-zc(1,:)).^2));
ymin = min(dist);
ymax = max(dist);

% Determine number of subplots to create (maximum of 4)
if npanels == 1
 rows = 1;
 cols = 1;
elseif npanels == 2
 rows = 2;
 cols = 1;
elseif npanels == 3 | npanels == 4
 rows = 2;
 cols = 2;
end

% Plot cn or load distribution for each panel
if npanels >= 1
 station = sqrt((y(1:nvortices(1),1) - yc(1,1)).^2 + ...
 (z(1:nvortices(1),1) - zc(1,1)).^2);
 subplot(rows,cols,1), plot(station,dist(1:nvortices(1)),'-')
 title(['Panel 1 (e = ',num2str(e),')'])
 ylabel(label)
 xlabel('Distance Along Panel')
 axis([xmin xmax ymin ymax])

40

 grid on
end
if npanels >= 2
 station = sqrt((y(1:nvortices(2),2) - yc(1,2)).^2 + ...
 (z(1:nvortices(2),2) - zc(1,2)).^2);
 subplot(rows,cols,2), plot(station,dist(nvortices(1)+1:sum(nvortices(1:2))),'-')
 title('Panel 2')
 xlabel('Distance Along Panel')
 ylabel(label)
 axis([xmin xmax ymin ymax])
 grid on
end
if npanels >= 3
 station = sqrt((y(1:nvortices(3),3) - yc(1,3)).^2 + ...
 (z(1:nvortices(3),3) - zc(1,3)).^2);
 subplot(rows,cols,3), plot(station, ...
 dist(sum(nvortices(1:2))+1:sum(nvortices(1:3))),'-')
 title('Panel 3')
 xlabel('Distance Along Panel')
 ylabel(label)
 axis([xmin xmax ymin ymax])
 grid on
end
if npanels >= 4
 station = sqrt((y(1:nvortices(4),4) - yc(1,4)).^2 + ...
 (z(1:nvortices(4),4) - zc(1,4)).^2);
 subplot(rows,cols,4), plot(station, ...
 dist(sum(nvortices(1:3))+1:sum(nvortices(1:4))),'-')
 title('Panel 4')
 xlabel('Distance Along Panel')
 ylabel(label)
 axis([xmin xmax ymin ymax])
 grid on
end

