Subsonic Wings

an introduction and review

W.H. Mason Configuration Aerodynamics Class

Topics

- Subsonic Wing Calculation Method Review
- Aero of High Aspect Ratio Wings
- Slender Wings

First, review a great tool to understand wing aero

VLM Methods – a way to get insight

- Linear, inviscid aerodynamics strictly subsonic
- Ignores thickness -bc' s applied on the mean plane
 - VLM is essentially a 3D thin airfoil theory
- Finds ΔCp , not the upper/lower surface pressures
- Very handy and accurate as seen below
- Really good for understanding interacting surface ideas

Choices: VLMpc, Tornado, AVL, JKayVLM, XFLR5, VSPaero

The classic method

Trailing vortices extend to infinity

Need to include the contributions from both sides of the wing!

Usually employs a flat wake to downstream infinity – a linear problem

- •Each panel is modeled using a horseshoe vortex of as yet unknown strength (has bound and trailing vortex "legs")
- •The Biot-Savart Law is used to compute the induced velocity at a control point due to the contributions from each horseshoe vortex
- Summing up the contributions from each horseshoe vortex and satisfying the boundary conditions leads to a linear system of algebraic equations for the unknown vortex strengths

To complete the method

- The classical VLM method puts the bound vortex on the ¹/₄ chord of the panel, and the control point is placed at the ³/₄ chord point
- The boundary condition satisfies the angle of attack, the camber slope, and the wing twist. They are simply added up so that you can pick how to divide up the contributions. This is basically a bookkeeping problem.
- Solving the linear system for the horseshoe vortex strengths is an *analysis* problem.
- Using the same system, but specifying the vortex strengths you can find the required camber and twist, a *design* problem
- Many variations have been used, lots of Refs in the text.

VLM Models and Tips

Panel Models

F-15 3-Surface VLM Model

Three-Surface F-15 Longitudinal Derivatives

	Three Sulla	ce F-15 Longitudinal	Denvauves	
Data Source		Neutral Point (% mac)	$C_{m\alpha}$ (per deg.)	$\begin{array}{c} C_{L\alpha} \\ \text{(per deg.)} \end{array}$
M = 0.2	Wind Tunnel	15.70	0.00623	0.0670
	Vortex Lattice	15.42	0.00638	0.0666
	Woodward	14.18	0.00722	0.0667
	Pan Air	15.50	0.00627	0.0660
M = 0.8	Wind Tunnel	17.70	0.00584	0.0800
	Vortex Lattice	16.76	0.00618	0.0750
	Pan Air	15.30	0.00684	0.0705
M = 1.6	Wind Tunnel	40.80	-0.01040	0.0660
	Woodward	48.39	-0.01636	0.0700

Canard Height Effect

F-15 horizontal tail effectiveness

F-15 aileron effectiveness

Warren-12 Planform

Source: Stinton, Design of the Airplane

fuselage

For More On Calculation Methods

http://www.cambridge.org/us/academic/subjects/engineering/ aerospace-engineering/applied-computational-aerodynamics-modern-engineering-approach

Aerodynamics of High Aspect Ratio Wings

- Planforms
- Spanloads
- Pitching moment and pitchup
- Aerodynamic Center
- Isobars/Twist
- Camber
- 2D-3D connection
- Canard and Ground Effects

Typical Planform Characteristics of Transport Aircraft

Table 6-2 Typical Planform Characteristics of Major Transport Aircraft							
1 st Flight	Aircraft	W/S	AR	$\Lambda_{c/4}$	λ		
1957	B707-120	105.6	7.04	35.0	0.293		
1958	DC-8-10	111.9	7.32	30.0	0.230		
1963	B707-320C	110.0	7.06	35.0	0.250		
1970	B747-200B	149.1	6.96	37.5	0.254		
1970	L-1011	124.4	8.16	35.0	0.200		
1972	DC-10-30	153.7	7.57	35.0	0.230		
1972	A300 B2	107.9	7.78	28.0	0.230		
1982	A310-100	132.8	8.80	28.0	0.260		
1986	B767-300	115.1	7.99	31.5	0.182		
1988	B747-400	149.9	7.61	37.5	0.240		
1990	MD-11	166.9	7.57	35.0	0.230		
1992	A330	119.0	9.30	29.7	0.192		
1994	B777-200	118.3	8.68	31.6	0.172		

data courtesy Nathan Kirschbaum

Clearly the A380 pays a price to satisfy the 80 meter gate box limit

Example: VLM Pitching Moment agrees well with data until wing pitchup

A confusion factor with modern wings The LE and TE are scheduled with Mach and Alpha

Note – the curves don't go to 0.25 at 0 deg sweep!

Low Aspect Ratio Wing Neutral Point (*ac***)** For a rectangular wing it moves forward!

From Schlichting and Truckenbrodt, *Aerodynamics of the Airplane*

Discovered while making pre-test estimates

Inboard Wing built/tested at VT

Isobars on untwisted/uncambered swept wing - needs aero design!

Without twist and camber: don't get full effect of sweep

Note: this is actually a transonic case, M = 0.93, $\alpha = 2^{\circ}$ from AFFDL-TR-77-122, February 1978.

Now: Design Typical Twist Distributions - to improve isobars/spanloads -

from LAMDES on the software website

Design Typical Camber Variation

Cambers from the LAMDES code on the software website

The airfoil problem is converted to 2D (normal), solved (designed), and put in the wing 3D

Now Canards Canard-Wing Interaction

Look at example from WT testing

Wing tested at NASA Langley, NASA TN D-7910 by Blair Gloss

Several combinations tested, we illustrate the outlined wing and canard

Note: all the test results are tabulated in the NASA TN

Canard Effects on Lift and Moment

NASA TN D-7910 by Blair Gloss

Example for Minimum Induced Drag Calculations

Sample case in John Lamar's NASA TN with LAMDES

Canard Wing Induced Drag

Typical Required Twist Distribution

Some Variations: Tip treatment

Ground Effects from VLM

But ground effect can be complicated

A G650 crashed in New Mexico, April 2, 2011 – both pilots died Why? C_{Lmax} IGE can be less than C_{Lmax} OGE with flaps down

Data showed adverse flap effects for C_{Lmax} , NACA TN 705, 1939

IGE: In Ground Effect

OGE: Out of Ground Effect

A completely new category Slender Wings

See NASA CP 2416

High aspect ratio wings approach the 2π slope The slender wing slope is $(\pi/2)AR$

Laser Light Sheet Leading Edge Vortex Flow

Light Sheet is a great way to see the LE vortex

Northrop IR & D example of flow over a delta wing configuration.

Exhibited at the 36th Paris air show.

Aviation Week & Space Technology, July 29, 1985

Thanks to James Stewart you can see a video of the flowfield:

https://www.youtube.com/watch?v=5_jt4x_TpOI

The Polhamus LE Suction Analogy

Section A-A

Edward C. Polhamus, NASA TN D-3767

Another View of the Suction Analogy

R.M. Kulfan, Wing Geometry Effects on Leading Edge Vortices, AIAA 79-1872

Results of the Polhamus Suction Analogy

Reduce Drag with a Vortex Flap?

Flight International, 16 March 1985

This concept was briefly popular, but it proved too hard to achieve.

Strakes are also low aspect ratio slender wings. Because they don't stall, even low tail designs can have a nose-down moment problem

This is a Hybrid Wing Concept

Note: Eventually the horizontal tail size was increased 25%

The Concorde Exploited Both Ground Effects and Vortex Lift to be Even Somewhat Practical

From Poisson-Quinton, Sustained Supersonic Cruise Aircraft Experience

And VLM works for Hypersonic Class Concepts

Jimmy Pittman and James Dillon, "Vortex Lattice Prediction of Subsonic Aerodynamics of Hypersonic Vehicle Concepts," *Journal of Aircraft*, October 1977, pp. 1017-1018.

To Conclude

This just gives you the very basics - no end to planform concepts, invent one yourself!