Aircraft Design Class

Sam B. Wilson III Chief Visionary Officer AVID LLC

www.avidaerospace.com

9 September 2008

Integration Challenge:

To design a supersonic fighter/attack aircraft that offers the operational flexibility of Short Takeoff and Vertical Landing (STOVL)

Need to make the same design compromises as a conventional fighter, plus one: use the available thrust in a manner that allows a controlled vertical landing

This single added constraint requires a more systematic approach to the design of an aircraft.

V/STOL Aircraft Design Process Step 1

Define wing & horizontal stabilizer geometry Located engine "vertical thrust" center with respect to aerodynamic center

V/STOL Aircraft Design Process Step 2

→ Add minimum length inlet/diffuser → Add cockpit and forebody

Step 5 → Add lead weight ballast! ✓ CG too far forward ✓ Vertical thrust center too far aft

LLC V/STOL Aircraft Design Process

- → Description of four candidate propulsion
 systems which can be based on a single gas
 generator
- → First order effects of the four propulsion
 systems on the sizing of a STOVL fighter

STOVL Lift Systems Study

Unscaled Propulsion System Weights

5000 -

Thrust to Weight Definitions (review)

Engine T/W = <u>Uninstalled Max A/B Thrust</u> CTOL Engine Weight

System T/W = <u>Installed Max A/B Thrust</u> Total Propulsion System Weight

Lift System T/W = <u>Balanced Vertical Thrust</u> Total Propulsion System Weight

+ Group Weights

STOVL Lift System Breakout

Hover Balance

Thrust Required for Vertical Landing

Off Design Performance Fallout Performance RULS L+L/C RALS MFVT 410 1123 861 583 Ps @ M=1.50, 30k' Nz @ M=0.60, 20k' 4.05 4.04 4.03 4.05Nz @ M=1.20, 40k' 3.14 3.77 3.34 3.59

Conclusion for Lift Engines

 If high maneuver performance and/or dry supercruise is required, lift engines have limited value (mission dependent)

 Lift System thrust to weight is not a strong function of engine T/W for many engine configurations

✤ Factors other than mission performance will be necessary to choose a propulsion system

CNA Air Panel Study

- Tactical Air Assets for Carrier Task Force + Fighter & Attack Aircraft vs. Multi-Mission Aircraft + STOVL vs. Conventional Carrier Based Aircraft + No Utility Aircraft Assessments - Used STOVL Strike Fighter TOR Missions + Latest Statement of Future Naval Mission Requirement + Multi-Mission (F/A & SSF) Do All Missions + Subsonic Attack Aircraft Point Designed for Air to Ground + "Blue Water" Fighter Optimized for Fleed Air Defense - Emphasis on Time Based Technology Trends + Baseline was US/UK ASTOVL "1995 TAD" Assumptions + "1990 TAD" Timeframe Allows for "What is Available" **NASA-Ames Study Plan** 9 Sept.'08 / pg # 23

Technology Availability Date Common: Engine Cycle, Weapons, Avionics, etc.

	<u>1990-TAD</u>	<u>1995-TAD</u>
+ Radar Absorbing Material	+ 0%	+ 5%
+ Internal Weapons Carriag	e No	Yes
+ 1.5M Supersonic Cruise	A/B	"Dry"
+ Design Load Factor	7.5	9.0
+ Technology Factor	90%	85%
Propulsion System T/W	~12	~15

	Fighter	Multi-Mission	<u>Attack</u>
+Structural Tech. Facto	or -10%	-10 %	-10%
+Design Load Factor	6.5 g	7.5 g	6.5 g
+Survivability Impacts	No	No	No
Dry Super-cruise	No	No	No
→Plan form	Variable	Standard	Standard
→Wing Pivot	+30%	0	0
+Tail Surfaces	Standard	Standard	Standard

LLC

	Fighter	Multi-Missio	n Attack
+Structural Factor	-15%	-15 %	-15%
+Design Load Factor	9.0 g	9.0 g	6.5 g
Survivability Impact	ts No	Yes	Yes
+>Dry Supercruis	Yes	Yes	No
→Planform	Variable	Diamond	Flying Wing
→Wing Pivot	+30%	0	0
+Tail Surfaces	Conventional	Conventiona	al None

Ames CNA Study Description

- + Three Aircraft Classes
 - ✓ Direct-Lift STOVL
 - ✓ Sea-Based ("Cat / Trap")
 - ✓ Land-Based
- Two Technology Timeframes
 - ✓ 1990-TAD
 - ✓ 1995-TAD
- Philosophy
 - ✓ ACSYNT Design Synthesis Code

Baseline Design Mission

400 nmi cruise Best Altitude and Mach 2 min combat 1.5M at 50000 ft

150 nmi dash 1.5M at 50000 ft

High Value Stores Retained for Landing 2 Long-Range, Air-to-Air Missiles 2 Short-Range, Air-to-Air Missiles Gun and Ammo

60 minutes loiter Best Mach at 35000 ft

Loiter 0.3M at Sea Level

250 nmi cruise 0.85M at Sea Level

Aircraft Class Details

	STOVL	Sea-Based	Land-Based
+ Fuselage Structure	0	+ 30 %	0
+Landing Gear Structure	0	+ 30 %	0
+ Carrier Approach	No	Yes	No
+ Propulsion Weight	+ 47%	0	0
+ Landing Hover T/W	1.16	N/A	N/A
+ Reaction Control System	n Yes	No	No
+ Duct Volume Penalty	~10%	0	0
+Loiter in Pattern	10 min	20 min	20 min

LLC

Aircraft Evolution

Baseline Aircraft LC 100000 1990-TAD 1995-TAD 80000 Takeoff Weight (Ib) 60000 40000 20000 0 STOVL STOVL Sea-Based Sea-Based Land-Based Land-Based 9 Sept.'08 / pg # 32

Required Hover Thrust Margin 1995-TAD STOVL

STOVL Baseline Aircraft

		Direct Lift	<u>Remote Fan</u>	L+L/C
T.O. Gross Weight	(LB)	36,331	36,866	39,679
Length	(ft)	<u>48.</u>	54.	54.
Wing Area	(ft ²)	345.	400.	440.
Span	(ft)	29.6	32.8	35.1
Thrust (Vertical lan	ding)	29,289	42,142	47,102
Thrust (SLS	Dry)	29,289	26,021	27,595
Propulsion Weight	(LB)	8,381	8,419	<u>10,014</u>
Engine Weight	(LB)	7,532	6,723	7,097
Fuel Weight	(LB)	11,387	10,698	11,207

STOVL Aircraft (Ratios)

	Direct Lift	Remote Fan	L+L/C
Growth Factor	3.20	<u>2.37</u>	3.52
Aspect Ratio	2.5	2.6	<u>2.8</u>
Wing Loading (LB/ft ²)	<u>105.3</u>	92.2	90.2
Vertical Thrust/W _{PS}	3.49	5.01	4.70
Dry Thrust/TOGW	0.81	0.71	0.70
Max Thrust/TOGW	1.30	1.14	1.12
ESF	1.21	1.08	1.14
Prop. Sys. Fraction	23.1%	22.8%	25.2%
Fuel Fraction	31%	29%	28%

Conclusions

 Improved engine technology allows the elimination of landing thrust-toweight as the main STOVL design constraint.

Engine Weight vs. Empty Weight

Engine Weight vs. Empty Weight

Distributed Propulsion

DARPA PM: Dr. Thomas Beutner (TTO)

Advanced ESTOL transport configuration development incorporating distributed propulsion technology and airframe / propulsion integration.

- Powered high-lift systems
 - Upper surface blowing
 - Augmenter wing
 - Blown tails
- 278-ft field length
- 15,000 lb -- 25,000 lb payload
- Demonstrated distributed propulsion performance
- Identified new benefits for Distributed Propulsion
 9 Sept.'08 /

Tools Used ✓ AVID RAPT ✓ AVID HighLift ✓ AVID ACS ✓ FUN3D ✓ CFL3D ✓ USM3D

AVID-ACS Type Output

→ Engine is sized by maneuver or VL (1.2*GW) + Fuel is generated by Fuel burn: \checkmark Thrust required = weight/ (L/D) \checkmark Fuel = Thrust * SFC + Airframe weight is structure to hold everything: ✓ Fuel tanks = Fuel weight * 3% ✓ Landing Gear = TOGW *6% \checkmark Tails = Control power sizing \checkmark Wing = f (AR, Sweep, Area, Taper, T/C)

ACSYNT Institute: Aircraft Design Tools Parametric design tool September 1994 for aircraft synthesis... Concept Preliminary Putting the ACSYNT Development Design on aircraft design ACSYNT In-depth analysis Lots of Designs •Narrowed to few designs Tradeoff Studies "Requirements" Detailed optimization Optimization"

777

• <u>Practical</u> – Human designer not informed as to why final design was chosen

•<u>Technical</u> – Can't handle step changes (i.e. number of engines, type of control surface). Must use continuous functions in coding.

VIDHE

Artificial Intelligence for Aircraft Design

PROS

- Hailed as "Future of Aircraft Design"
- •Capture the thoughts of the "great designers" and apply to computer aided design programs

CONS

- Designers are constantly evolving, requires evolving code
- Conflicting inputs from conflicting designers

•Impossible to recreate spontaneous thoughts of humans

<u>Goals of Computer Aided Aircraft Design</u> <u>Optimization Programs</u>

- Reduce dependence on wind tunnel testing
- Computer code offers "Real Time Design"
- Much smoother transition from paper to prototype
- Reduces common "headaches" associated with current aircraft design
- No more "Point Design"

Micro Air Vehicles

MicroSTAR

100 g. 5 km range, 30 min. Autonomous Nav. Video imagery

Mentor

50 g. electrostrictive polymer artificial muscle **Flapping flight**

Stanford Research Institute

Black Widow

Kolibri

320 g.

30 min.

50 g. 1 km range **Teleoperated Video imagery**

AeroVironment

Lutronix

Lockheed Sanders

Caltech

9 Sept.'08 / pg # 60

Microbat

10 g.

3 min. Acoustic sensors **MEMS** wings

Hover/translate GPS Autopilot

Kolibri Micro Air Vehicle

→ Flight Speeds

- > Max. demonstrated flight speed in hover mode: 22 kts
- > Max. predicted flight speed transitioned flight mode: 88 kts
- > Min. turn radius (for maneuvering): 0 ft
- > Max. rate of climb demonstrated at 0 kts forward speed: 4800 fpm
- Max. controllable rate of descent demonstrated: 1700 fpm

→ Endurance

- > Max. predicted endurance with no payload: 34 minutes
- > Demonstrated endurance with mission package: 16 minutes

→ Range

- > Max. hover-mode range predicted: 15 nmi (ferry range)
- > Max. transitioned range predicted: 50 nmi (ferry range)

UTRONIX corporation

67" Fan Diameter Hover and low speed flight testing completed

> 25" Fan Diameter Fully autonomous flight Full flight speed regime

31" OAV FCS Vehicle

- Low cost manufacturing
- Common components
- Full autonomy

<u>11.5</u>" Fan Diameter Fully autonomous flight over full flight speed regime, field tested by Military in Hawaii

SMALL

<u>7" Fan Diameter</u> Successful hover, low speed & high speed transition

9 Sept.'08 / pg # 64

LARGE

<u>Scalable Solution = family of vehicles</u>

MEDIUM

MICRO

WIRHS

ARMY FCS

- AVID Supports Honeywell in Contributing Aircraft Design and Analysis and Propeller Design and Analysis
- AVID is part of a larger team for Honeywell including AAI, Locust, Techsburg

AVID Tools and Expertise

- AVID lead for aerodynamic design through PDR
- AVID designing fan for performance and acoustics
- Configuration CFD using TetRUSS and FUN3D
- Performance in AVID OAV

Status

- Concept design is underway
- Wind tunnel testing to happen in first months of 2008

Class I

• First flight in 2009