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(ABSTRACT) 

The objective of the present research is to investigate unsteady aerodynamic models with 

state equation representations that are valid up to the high angle of attack regime with the 

purpose of evaluating them as computationally affordable models that can be used in 

conjunction with the equations of motion to simulate wing rock. The unsteady 

aerodynamic models with state equation representations investigated are functional 

approaches to modeling aerodynamic phenomena, not directly derived from the physical 

principles of the problem. They are thought to have advantages with respect to the 

physical modeling methods mainly because of the lower computational cost involved in 

the calculations. The unsteady aerodynamic multi-axis models with state equation 

representations investigated in this report assume the decomposition of the airplane into 

lifting surfaces or panels that have their particular aerodynamic force coefficients 

modeled as dynamic state-space models. These coefficients are summed up to find the 

total aircraft force coefficients. The products of the panel force coefficients and their 

moment arms with reference to a given axis are summed up to find the global aircraft 

moment coefficients. Two proposed variations of the state space representation of the 

basic unsteady aerodynamic model are identified using experimental aerodynamic data 

available in the open literature for slender delta wings, and tested in order to investigate 

their ability to represent the wing rock phenomenon. The identifications for the second 

proposed formulation are found to match the experimental data well. The simulations 

revealed that even though it was constructed with scarce data, the model presented the 

expected qualitative behavior and that the concept is able to simulate wing rock. 
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1 Introduction 
 

 

The atmospheric flight dynamics study of a vehicle is the study of the interaction of the 

equations of motion and the equations of the airflow around the vehicle. The equations of 

motion are given by Newton’s laws and depend on the forces and moments acting on the 

vehicle. Among these forces are the aerodynamic ones that are functions of the airflow 

around the vehicle, which in turn depend on the previous motion history. The 

aerodynamic forces can be fully described by a set of nonlinear partial differential 

equations known as the Navier-Stokes equations. At the present time computational 

methodology and computer power are not adequate to provide time accurate solutions to 

the Navier-Stokes equations in the flight dynamics simulation environment. Even if the 

methodology existed, the cost of the computations would be very high. Recently, 

computational fluid dynamics methods based on Navier-Stokes equations have been 

increasingly used to predict control and stability derivatives in the early phase of the 

aircraft design, but a lot has yet to be done [1]. For this reason, more practical and 

simpler methods for the determination of the aerodynamic forces that could be used in 

conjunction with the equations of motion have been constantly sought. These methods 

can be divided into physical and functional modeling methods. Physical modeling 

methods for the aerodynamic forces are those directly derived from the very first physical 

principles. One example of a physical method is the unsteady vortex lattice method and 

its reduced order model [2]. The physical methods may have the advantage of not being 

derived from test data, but they usually are too computationally expensive for use either 

in simulation or in global stability analysis. The functional modeling methods are those 

that use mathematical expressions or equations to reproduce input/output response. In this 

work, we evaluate functional modeling methods that in previous research have shown the 

ability to reproduce the dynamic behavior of unsteady aerodynamics in longitudinal 

motion. 
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The conventional quasi-steady functional modeling techniques – the idea of making the 

equations linear by taking Taylor series expansion of the aerodynamic forces in terms of 

the vehicular velocity, angular rates, and their derivatives with respect to time - has been 

used for most flight dynamics studies since 1911 [3]. For the years that followed, the 

aerodynamic functions were approximated by linear expressions leading to a concept of 

stability and control derivatives. As modern fighters reached high angles of attack and 

performed maneuvers at high angular rates, the linearized methods became insufficiently 

accurate for analysis. The addition of nonlinear terms, expressing, for example, changes 

in stability derivatives with the angle of attack, extended the range of flight conditions to 

high-angle-of-attack regions and/or high-amplitude maneuvers. In both approaches, using 

either linear or nonlinear aerodynamics, it is assumed that the parameters appearing in 

polynomial or spline approximations are time invariant. However, high-performance 

fighters have the capability to operate not only at high angles-of-attack but also with high 

angular rates, situations where severely separated flow conditions prevail. Under these 

conditions, the aerodynamic loads may be not only highly nonlinear but also time 

dependent. We shall remember that future combat air vehicles will probably be 

uninhabited. Without the pilot’s physiological limitations, they will be capable of 

performing more agile maneuvers, also will take advantage of dynamic lift, and 

experience higher load factors, thus increasing the importance of capturing nonlinear 

unsteady aerodynamic phenomena and performing nonlinear stability analyses. 

 

Some of the functional models that have been previously proposed to simulate unsteady 

aerodynamic behavior are described in this chapter. Also reviewed is the previous work 

done in the research of the phenomenon called wing rock. 

 

1.1 Previous Work in Aerodynamic Functional Modelling 
 

Bryan [3], who published the first complete analysis of the pitch stability of an aircraft at 

the very beginning of heavier-than-air flight, was probably the first to introduce modeling 

of the aerodynamic forces acting on the aircraft, and his model was linear. Since then, the 

idea of making the equations linear by taking Taylor series expansions of the 
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aerodynamic forces in terms of the vehicular velocity, aerodynamic angles, angular rates, 

and their time-derivatives has been used for most flight conditions. The linear terms 

associated with these expansions are known as aerodynamic stability derivatives [4] and 

an important fraction of the total effort in aerodynamic research in the past has been 

dedicated to find a methodology for their determination, by theoretical, semi-empirical 

and experimental means. The range of usefulness of this method can be extended to 

higher angles of attack by adding higher order nonlinear terms. However, the parameters 

appearing in conventional applications are assumed to be time-invariant. 

 

This time-invariance does not correspond to results of studies in unsteady aerodynamics 

that started in the nineteen-twenties with Wagner [5]. He studied the unsteady lift on an 

airfoil due to abrupt changes in the angle of attack. His work was extended by 

Theodorsen [6] to compute forces and moments on an oscillating airfoil, whereas 

Kussner [7] studied the lift on an airfoil as it penetrates a sharp-edge gust. Cicala [8] and 

Jones [9] started to investigate the unsteady aerodynamics of finite wings. 

 

The concern with modeling the unsteady aerodynamic effects is present in other works of 

Jones [9]-[12], who introduced the concept of the indicial functions approach. In [12], he 

extended the work in unsteady aerodynamics from wings to airplanes, by studying the 

effect of the wing wake on the lift of the horizontal tail. The formulation of linear, 

unsteady aerodynamics in the aircraft longitudinal equations in terms of indicial functions 

was further developed by Tobak in [13]. Later, in [14]-[17], Tobak et al expressed the 

longitudinal aerodynamic forces and moment as functionals of the angle of attack and the 

dimensionless pitch angular rate, free of the dependence on a linearity assumption. The 

indicial functions approach is considered the most systematic and rigorous functional 

way of representing unsteady aerodynamics, and it is currently applied [18]-

[21],[22],[23],[24], but it is more difficult to combine this functional representation with 

the equations of an aircraft motion, which are written in the form of differential 

equations. 
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A nonlinear, lifting line procedure with unsteady wake effects was developed and studied 

for predicting wing-body aerodynamic characteristics up to and beyond stall by Levinsky 

[25] and Hreha [26]. In this nonlinear lifting line formulation, a discrete vortex lattice 

representation is used for the time-dependent wake, whereas the wing load distribution is 

assumed concentrated along the 25% chord line. Each chordwise section is assumed to 

act aerodynamically (including stall) like a 2D airfoil in steady flow at effective angle of 

attack, which may also be time dependent. Three-dimensional unsteady aerodynamic 

effects were included by allowing shed vortices in the wake to vary in strength with 

distance and time. The strengths of the shed vortices are related to those of the 

corresponding bound elements at an earlier time, based on the convective time delay at 

free stream velocity between the bound vortex and the particular wake station. Although 

the theory is unsteady from the point of view of wake-induced effects, it is assumed that 

the two-dimensional airfoil chordwise loadings and sectional characteristics in stall are 

steady state. The method is also limited to incompressible flow, and to wings of moderate 

sweep and from moderate to large aspect ratio. Some further applications of this 

formulation are shown in [27]. 

 

A functional approach to include unsteady aerodynamics in aircraft equations of motion 

was introduced by Goman et al in [28],[29], which consisted of a state-space 

representation of additional internal state variables that are used in the functional 

relationships for the aerodynamic forces and moments. Fan and Lutze [30] took their idea 

and combined it with the idea of extending the range of applicability to higher angles of 

attack by adding higher order nonlinear terms in the Taylor’s series expansion. In 

addition to that, they defined the aerodynamic coefficients and derivatives as quadratic 

polynomials of an internal state variable related to the flow separation point position. The 

state-space representation is convenient for solving problems of flight dynamics because 

the inclusion of unsteady aerodynamics in the above form leads only to an increase in 

problem dimension and retains the possibility of investigating motion stability by means 

of classical methods. Nevertheless, this model, as it was originally proposed, is not 

capable of simulating multi-valued aerodynamic characteristics for quasi-static motion 

(static hysteresis). Later, Abramov, Goman, Khrabrov, and Kolinko [31] presented 
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another state-space representation of aerodynamic characteristics that included nonlinear 

terms and that was capable of describing static hysteresis. An additional state-space 

approach that could do this with fewer model parameters is the one presented by De 

Oliveira and Lutze [32].  

 

Next, some functional unsteady aerodynamic models of more interest, selected among the 

ones mentioned before, are described in more detail. 

 

 

1.1.1 Stability Derivatives Approach 
 

In this method, the problem of airplane dynamics is formulated and the equations for six-

degree-of-freedom motion are derived through Newton’s laws. Because these equations 

are coupled and nonlinear, it is difficult to obtain analytical solutions. In view of this, it is 

assumed that the motion following a disturbance has small amplitudes in all the disturbed 

variables. With this assumption, it is possible to linearize the equations of motion about 

the chosen flight condition. If the airplane configuration allows the definition of a vertical 

plane of symmetry, it is possible to decouple the equations of motion into two sets: one 

for the longitudinal motion and another for lateral-directional motion. Nevertheless, there 

are cases where the decoupling is not possible, like for example, those whose mass 

distribution is not symmetric. Even in such cases, the linear equations of motion can be 

used in the stability analysis [33]. After linearization, it is assumed that the aerodynamic 

forces and moments in the disturbed state depend only on the instantaneous values of 

motion variables. This allows them to be evaluated by using the method of Taylor series 

expansion. With these approximations, the equations of motion become linear in all the 

motion variables. The aerodynamic coefficients appearing in the Taylor series expansion 

are called stability and control derivatives.  

 

For flight conditions where massively separated flow conditions prevail, the linearized 

methods become insufficiently accurate for the analysis and more accurate aerodynamic 

models are required. 
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1.1.2 Indicial Approach 
 

The concept of indicial aerodynamic functions may be defined briefly as “the 

aerodynamic response of the airfoil as a function of time to an instantaneous change in 

one of the conditions determining the aerodynamic properties of the airfoil in a steady 

flow” [13]. Recent developments and applications of the indicial approach to the 

representation of unsteady aerodynamics can be found in references [18], [19], and [22]. 

A short summary based on these references follows.  

 

In this approach, the combined vector of the total aerodynamic coefficients 

 of an aircraft undergoing an arbitrary motion is the 

indicial response obtained in conjunction with the superposition principle 

C
r

[ T
nmlLYD CCCCCC= ]

[15], [16] or 

Duhamel’s integral theorem (Appendix A.1). This indicial response is given by 

( )∫ −=
t

dhtC
0

ττ &rr
A  (1-1) 

Where { }i

j

h
CA=A  is a matrix of indicial response functions for stepwise variations of 

kinematic parameters and control surfaces deflections combined in the vector 

. That means that, in this approach, the variations 

with time of the aircraft kinematic variables such as angle of attack and angular velocity 

are replaced by a large number of small instantaneous step changes. The transient 

aerodynamic reactions to these step changes are named “indicial functions”, and the total 

response is obtained by their superposition. 

h
r

[ T
rearqp δδδβα= ]

 

Even though this approach is considered a good representation of unsteady aerodynamics, 

it is difficult to combine it with the differential equations of motion. The indicial concept 

was originally conceived for linear time-invariant systems, but it has been generalized to 
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a nonlinear indicial response theory [22], leading to a much more complicated 

description. 

 

1.1.3 State-Space Representation – The First Ideas 

 
In the indicial approach, the aerodynamic coefficients are represented by integral-

differential equations, which are neither easy nor suitable to combine with the airplane 

differential equations of motion. To overcome this difficulty, a state-space approach to 

represent unsteady aerodynamics was proposed in 1990 [28],[29], which added internal 

variables describing the state flow in the functional relationships for the aerodynamic 

coefficients for forces and moments. The values of the total aerodynamic force and 

moment depend on the kinematic parameters of the motion and on either the position of 

the flow separation or the position of the vortex breakdown. Thus the separation point 

position and the vortex burst point position were taken as internal dynamical variables in 

the original formulation of this type of representation. In this approach, an internal state 

variable  associated with the state of the flow was used to represent the unsteady 

aerodynamic effect. It can be associated either with the distance between the airfoil 

trailing edge and the position of the point of separation, in predominantly two-

dimensional type of flows ( 

( )tx

Figure 1-1 ), or to the position along the chord of the vortex 

burst point, in predominantly vortical type of flows ( Figure 1-2 ). 
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Figure 1-1 Internal state space variable in predominantly two-dimensional flows. 

 

This internal state-space variable is then made non-dimensional by divison either by 

M.A.C. ( wing mean aerodynamic chord ), in case of wings with moderate to large aspect 

ratio, or by cr ( chord in the plane of symmetry ), in case of wings with low aspect ratio. 

Therefore, the non-dimensional variable ( )tx  associated with ( )tx  is ( ) ( ) .../ CAMtxtx =  

or ( ) ( ) rctxtx /= . Consequently, ( )tx  [ ]1,0∈ . As shown in figures 1-1 and 1-2, the value 

0=x  corresponds either to attached flow or to the absence of vortex breakdown over the 

wing, while 1=x  corresponds to leading-edge separation or vortex burst at the apex. We 

take the wing trailing edge as the origin for ( )tx  because it is consistent with the second-

order polynomial model (equations (1-8)) adopted here for the stability derivatives, after 

the work of Fan & Lutze [30],[34]. This is in contrast to the reference system taken by 

Goman & Khrabrov [29], where the leading edge is adopted as the origin of . ( )tx
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Figure 1-2 Internal state-space variable in predominantly vortical flows. 

 

Taking into account the above features, a mathematical model was proposed [28],[29] 

where the internal dynamical variables (vector xr  ) approximately describes the state of 

separated and vortex flow about an aircraft. These variables are additional information 

required at a given instant of time to calculate the outputs (aerodynamic forces and 

moments, given by the vector C
r

[ ]TnmlLYD CCCCCC= ) from the system 

inputs (motion variables and surfaces deflections, given by the vector 

). The unsteady aerodynamic state-space approach 

is then given by a dynamical system 

h
r

[ T
rearqp δδδβα= ]

(1-2)

( )hxf
dt
xd rr
r

,=  

( )hxgC
rrr

,=  
(1-2) 

To obtain the simplest mathematical model of this kind, Goman and Khrabrov [29] first 

considered the flow about a wing in pitching motion only. Then, the first equation of the 

dynamical system (1-2) was defined as: 
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( ) ( ) ( ) ( )( )ttxtxtx ατατ && 201 −=+  (1-3) 

This definition was taken with two groups of unsteady fluid mechanics processes in 

mind. The first group concerns the different quasi-steady aerodynamic effects that have 

time-delays, such as circulation and boundary-layer convection lags. Since the resulting 

delay is approximately proportional to the variation of the angle of attack α& , the quasi-

steady value of the internal state variable can be expressed through the function ( )α0x  by 

means of argument shift ( )ατα &20 −x , where 2τ  defines the total time delay associated 

with the above-mentioned effects. The second group of fluid mechanics processes defines 

transient aerodynamic effects such as the dynamics of the flow adjustment to any change 

in the angle of attack. This dynamics can be described by the first-order differential 

equation (1-3), where 1τ  is the transient time-constant. 

 

The steady state position ( )α0x  of the separation point is generally a nonlinear function 

of the angle of attack. It can be obtained from static wind tunnel measurements, but, in 

order to be applicable for identification purposes, a mathematical relation would be more 

suitable. 

In references [30],[34], Fan and Lutze started from the state-space model as proposed by 

Goman and Khrabrov [29], and further developed it to facilitate the identification 

process. Their first improvement was to propose the logistic or sigmoid function  (1-4) 

shown below as the representation of ( )α0x . 

( )( )
( )( )( )∗

Δ

−+
=

αασ
α

t
tx

eff
eff exp1

1
0  

 (1-4) 

where ( ) ( ) ( )ttteff αταα &2−= ,  is the angle of attack at which the flow separation is at 

the mid-chord point, and 

∗α

σ  is the slope factor. Parameters  and ∗α σ  are expected to be 

identified from wind tunnel experimental data. Figure 1-3 shows the influence of these 

parameters in the shape of the sigmoids for negative (a) and positive (b) values of σ . 

Because in the current work the sign of σ  plays such an important role for the wing rock 
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representation, we write it explicitly, as it is shown in equation (1-5), and assume that 

σσ = .  

( )( )
( )( )( )∗−+

=
ααξσ

α
t

tx
eff

eff exp1
1

0  (1-5) 

with =ξ -1 or +1 for sigmoid functions that respectively increase or decrease with 

increasing values of α . 

 

By considering the symmetrical motion in the longitudinal plane, the output equations 

were written as functionals of the kinematic variables involved in this kind of motion, 

that is, 

(1-6) ( ) ( ) ( ) ( ) ( )( )txtqttCtC aa ,,,αα &=  

where  is the aerodynamic coefficient, like, for example, a mLDa ,,=  

Since these functions are not known, practical schemes were developed [30],[34] to have 

them easily identified with the help of experimental data. In order to achieve that, Taylor 

series expansions of (1-6) in terms of the motion variables α  and q were used, and the 

terms up to second order were retained. These expansions were taken around 

( 0,0 == q )α , while holding the state x  fixed. 

Taking the lift coefficient output equation as example (a = L), we have: 

 (1-7) ( ) ( ) ( ) LqLLLL CqxCxCCtC 2
ˆ0 ˆ Δ+++= αα  

Where  represents the second-order terms, that is LC2Δ

( ) ( ) ( ) qxCqxCxCC qLqLLL ˆˆ ˆ
2

ˆ
22

22 αα αα ++=Δ  

Here,  is the nondimensional pitch rate, and tqq ˆˆ =
V
ct

2
ˆ =  is the characteristic time of 

the flow, sometimes called convective time. 
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In the above equations (1-6) and  (1-7), the stability derivatives are no longer constant as 

in the conventional approach, but assumed as functions of the internal state variable x . 

To allow for parameter identification, they were defined in references [30],[34] as 

quadratic polynomials of the internal state variable x , that is,  

( ) 2
111 xcxbaxCL ++=α  

( ) 2
222ˆ xcxbaxC qL ++=  

( ) 2
3332 xcxbaxCL ++=α  (1-8) 

( ) 2
444ˆ 2 xcxbaxC qL ++=  

( ) 2++= 555ˆ xcxbaxC qLα  

Where ,  and , j = 1,2,…,5 are constants to be determined from experimental 

data. Similar expressions were derived for drag and pitching moment coefficients  

and . 

ja jb jc

DC

mC

Developments made in references [18] and [22] show that, for the linear domain, the 

indicial function approach is equivalent to the state-space representation. 

 

1.1.4 Nonlinear Internal State Equation Model 
 

The state-space approach described in the preceding section is not capable of representing 

some nonlinear phenomena like, e.g., static hysteresis. In [31], Abramov et al introduced 

a more comprehensive variation of this approach that is capable of making up for these 

shortcomings. They developed a nonlinear model that naturally describes static hysteresis 

and critical state crossings [35], by connecting them to the mathematical phenomenon 

known as the Riemann-Hugoniot catastrophe [36]. Their model is built based on the 

assumption that the contributions from potential or attached (pt) and separated (sp) flows 

have different time scales and must be represented separately, as shown in Eq. (1-9):  
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( ) ( ) ( )tC
V

cCCtC spNptNptNN ++=
 αα

α

&
&  

(1-9)

where ( )αptNC ,  are the static dependency and aerodynamic derivative for attached 

flow. The term  defines the separated flow contribution that accounts for all the 

nonlinear unsteady effects. To describe the transition from an attached to a fully stalled 

flow, they introduced an internal state variable, 

α&
ptNC

( )tC spN

10 ≤≤ x , associated with the size of the 

separated region of the wing, such that 

( ) ( )( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ Δ+Δ=

V
cCCtxgtC

fsfssp NNN
αα

α

&
&  

(1-10) 

where  is the weight function, equal to zero for fully attached flow and to 1 for 

fully separated conditions. The terms 

( )( txg )
( ) ( ) ( )ααα

ptfs NNfsN CCC −=Δ , 

 are the aerodynamic contributions due to fully separated or stalled 

(fs) conditions. 

ααα &&& ptfsfs NNN CCC −=Δ

To allow the model to describe static hysteresis and critical states, the following 

nonlinear dynamic equation for the internal state variable x was introduced: 

( )xF
dt
dx ,*α=

 
(1-11) 

where ( ) ( ) ( ) ( ) 3
*3

2
*2*1*0 xkxkxkkF αααα +++=  and 

V
ck ααα α
&

&−=* . This third order 

polynomial defined as the right hand side of Eq. (1-11) allows the representation of the 

two stable branches in static hysteresis. Since each set of coefficients 

( ) ( ) ( ) ( )*3*2*1*0 ,,, αααα kkkk  define a different set of equilibrium points 

( ){ 0, s.t. =ee xFx }α  for each angle of attack, the model can represent flows with one or 

two stable branches, being able of naturally identify models with static hysteresis. 

 

When this model is used for parameter identification, we can see that it is necessary to 

identify one set of coefficients ( ) ( ) ( ) ( )*3*2*1*0 ,,, αααα kkkk  for each angle of attack 
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chosen for the calculations, and this can make the number of required parameters too 

large to be identified.  
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(a) 

 

 
(b) 

 

 

Figure 1-3 Influence of the parameters and *α σ  in the sigmoid shape for the 
cases where (a) ξ = -1; (b) ξ = 1. 
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1.1.5 State-Space Representation – One More Idea 
 

Trying to find a simpler formulation that could also represent the static hysteresis 

phenomenon, de Oliveira Neto and Lutze came up with the model described in [32]. It is 

the result of a modification made to the model described in [30] in such a way that the 

internal state equation has a driving (or forcing) term that switches between two 

functions, that is: 

( ) ( )effDeffU xDxUx
dt
xd αατ 001    +=+  (1-12)

where [ ]1,0∈x  is a non-dimensional coordinate that is related to the separation properties 

of the flow, 1τ  is a time-constant to be identified, and αταα &2−=eff , with 2τ  being also 

a constant to be identified. The state variable x  represents the non-dimensional distance 

from the trailing edge to either the position of the separation point or the position of the 

vortex breakdown, measured from the trailing edge and divided by the chord. Like the 

model described in (1.1.3), the constant 1τ  represents the relaxation time-constant that 

defines the transient aerodynamic effects like the dynamic properties of the separated 

flow adjustment when a flow condition is changed, and 2τ  defines the total time delay of 

the flow separation and reattachment due to the quasi-steady aerodynamic effects such as 

the circulation and boundary layer convection lags. 

 

Since in cases where static hysteresis is present the flow exhibits different characteristics 

when the wing is going up or down in a quasi-static motion, in Eq. (1-12) an internal 

dynamic right-hand side term that can switch between two driving functions was defined. 

This switching function is ( ) ( )effDeffUs xDxUx αα 00    += , where the terms ( )effUx α0  and 

( )effDx α0  are the steady state dependency of the separation property on the angle of 

attack for the body going up and down, respectively. They are continuous, sigmoid-type 

functions defined as 
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( ) ( )[ ]∗−−+
=

UeffU
effUx

αασ
α

exp1
1

0  (1-13)

( ) ( )[ ]∗−−+
=

DeffD
effDx

αασ
α

exp10
1

 (1-14) 

where  is the angle of attack at which the flow separation or the vortex burst position 

is at the mid-chord point, and 

( )
∗
•α

( )•σ  is the slope factor. An example of the flow separation 

functions for up and down motions with the parameters ( deg, 15.7=∗
Uα   ,deg 20.1=∗

Dα

,31.7=Uσ  )14.5=Dσ  is shown in Figure 1-4. We can observe in this figure the 

influence of ( )•Sα  and ( )•σ  on the shape of the sigmoids. The parameters U and D on the 

right-hand side of Eq. (1-12) are respectively defined as  

( )
2

1 αΔ+
=
Δ signU  

(1-15) ( )
2

1 αΔ−Δ sign
=D  

where ii ααα −=Δ +1  for the given sequence of the static angles of attack iα , i = 1,2,…,l 

correspond to the wind tunnel measurements of the aerodynamic coefficients 

( ){ }liC ia ,...,2,1,ˆ =α , and where ( ) ( )ii tt ααα −=Δ +1  for the given time histories of 

angles of attack ( ){ nii ttt ≤≤0, }α  correspond to the wind tunnel measurements of the 

aerodynamic coefficient time histories ( ){ }nitC ia ,...,2,1,ˆ = . The subscript a represents 

the type of coefficient being modeled, for example a = D, L or m. 
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Figure 1-4 Example of the internal state equation driving function. 

 

The output equations for the aerodynamic coefficients are defined to be functions of the 

internal state ( )tx , the angle of attack ( )tα , the pitch rate ( )tq , and are, as in [34], written 

in the following form: 

( ) ( ) aqaaaa CqxCxCCC 2
ˆ0 ˆ Δ+++= αα  (1-16) 

with 

( ) ( ) ( ) qxCqxCxCC qaqaaa ˆˆ ˆ
2

ˆ
22

22 αα αα ++=Δ
Δ

 

being the nonlinear part of the equation, where a represents the aerodynamic coefficient 

modeled. 

tqq ˆˆ =  is the non-dimensional pitch rate and t  is the characteristic time of the flow, 

defined as 

ˆ
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V
ct

2
ˆ = , (1-17) 

c being a characteristic length, and V the airspeed. It is worthwhile noting that the 

convective time V
c  is related to the time it takes for an air molecule to travel along the 

wing mean aerodynamic chord. The factor ½ is included in Eq. (1-17) because it was 

used to determine the non-dimensional pitch rate in most of the references related to 

unsteady aerodynamics and flight dynamics. The reason for that is probably just tradition. 

The mid-chord was historically taken as the coordinate origin for a pitching airfoil in 

unsteady aerodynamics analysis and, as a natural consequence, the semi-chord was 

introduced as the characteristic length [37],[38]. 

 

The stability derivatives in Eq. (1-16) are defined as quadratic polynomials of the non-

dimensional state variable x , that is  

2)( xcxbaxC aaaa χχχχ ++= , 

where a is the type of aerodynamic coefficient, and χ  represents the motion variables 

with respect to which the partial derivatives were taken. In this case, =χ qqq ˆ,ˆ,,ˆ, 22 ααα . 

 

In [32] this formulation was used to represent the static hysteresis of an NACA 0018 

airfoil, reported in [31]. The comparison between wind tunnel data and model responses 

for pitching moment and normal force coefficients can be seen in Figure 1-5 and Figure 

1-6, respectively. They show that this formulation matches very well experimental 

results. 
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Figure 1-5 Experimental and model responses static pitching moment for a 

rectangular wing with NACA 0018 airfoil. Experimental data were taken from [31]. 

 

1.1.6 Aircraft Multi-Axis State-Space Formulation 

 
The method presented in the section 1.1.5 can be used to represent only symmetrical 

longitudinal motion of wings and airplanes. Trying to find some formulation that could 

represent more general types of motion, we composed this method with the formulation 

originally described by Lutze, Fan and Stagg in [39] and [40] to build the models that 

have the ability to represent wing rock investigated in their research. This later 

formulation is briefly reproduced in this section for the convenience of the reader. The 

primary idea behind this method is the decomposition of the aircraft into several elements 

that contribute to the resulting aerodynamic force. These elements are small lifting 

surfaces that are referred to as panels. The approach taken is one of modeling the local 

forces and moments associated with the contributing lifting surfaces of the aircraft such 

as left and right wings, left and right horizontal tails, vertical tail, and surfaces 
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representing forward and aft fuselage. When an airplane rotates in the air, the air velocity 

is different at each surface, making the local angles of attack also different. Since the 

state-space model is based upon characterizing flow separation as a function of angle of 

attack, the work in this model is done using the local angle of attack and its time 

derivative. The local forces and moments can be calculated on each panel and, when 

combined with the forces and moments on the remaining panels, the total forces and 

moments for the whole aircraft are obtained. The goal is not only to characterize the 

rolling moment, but also the forces and moments along and about the other axes. The 

idea is to have one model capable of the prediction of lateral/directional characteristics as 

well as the longitudinal ones, even in the high angle of attack, unsteady aerodynamic 

region. 

 

Next, the description of the basic model for each of the single lifting surfaces in this 

formulation is reproduced with its original notation. 

 

► Normal Force on Left and Right Wings 

 

The aerodynamic normal force acting on the left and right wing is represented in this 

model by the following state-space formulation [30],[34],[39],[40] : 

( )wiwwiwwi
wi

w xx
dt

dx ατατ &201 −=+   
(1-18) 

( ) ( )xCxCCC wiwiiNwwiwiiNwiNwNwi α αα &0 α&++=  

where subscript “w” represents quantities of the wing or the forward group of lifting 

surfaces, and i = l or r, respectively, standing for the left or right panel. In the state 

equation of (1-18) 1wτ  is the wing panel relaxation time constant defining the transient 

aerodynamic effects and 2wτ  quantifies the time delay due to the quasi-steady 

aerodynamic effects about the wing panel. The variable  is the wing panel state 

variable associated with the nonlinear flow effects, and 

wix

( )wiwx α0  is the static dependency 
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of the state variable on the local angle of attack, given by the sigmoid-type function 

defined by 

 

( ) ( )( )wwiw
wiwx ∗−−+

=
αασ

α
exp1

1
0   (1-19) 

 

 

 

 
 

Figure 1-6 Experimental and predicted CN responses for large amplitude pitch 

oscillations of a rectangular wing with NACA 0018 airfoil. Experimental data were 

taken from [31]  
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In equation (1-19)  describes the location of this function, ∗
wα wσ  is the slope factor, and 

wiα  is the local angle of attack of the wing panel at a location along the wing span at a 

distance  from the axis of the fuselage. In this work the primary concern is with pure 

rolling oscillatory motions. For this kind of motion the local velocity components at that 

location can be expressed in the body-axis system as (see Appendix A.2),  

wl

0cosθTw Vu =   

(1-20) θ φsinsinVv =

&

Tw 0   

φφθ m wTw lsinVw cos0=  

where the negative sign corresponds to the left wing panel while the plus sign to the right 

wing panel. The angle of attack and the sideslip angle are defined as,  

u
w1tan −=α

 (1-21) 

222

1

wvu
sin

++
= −β v

 

Subtituting (1-20) into (1-21), the local angle of attack values for the left and right wing 

panels can be calculated through 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

0
0

1

cos
costantan

θ
φφθα

T

w
wl V

l &

 

(1-22) 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= −

0
0

1

cos
costantan

θ
φφθα

T

w
wr V

l &

 

The output of the system (1-18) is , the normal force coefficient on the left or right 

wing panel. The derivatives 

iNwC

( )wiiNw xC α  and ( )wiiNw xC α&  are modeled as, 
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( ) 2
1111 wiwiwwwiiNw xcxbaxC ++=α  

(1-23) ( ) 2
222 wiwwiwwwiiNw xcxbaxC ++=α&  

where , , and  are constants to be identified from experimental results. wja wjb wjc

 

► Normal Force on Left and Right Horizontal Tails 

 

The horizontal tail is modeled in a similar way to the wing, by  

( )tittitti
ti

t xx
dt

dx ατατ &201 −=+   

( ) (( ))*20 exp1 ttit
titititx

αασ
ατα

−−+
=− &

1

( )

  (1-24) 

( ) ( )2
titiNtititiNtititiNtiNtiNti xCxCxCCC ααα ααα &

&+++= 0 2  

Subscript “t” stands for horizontal tail, and the left and right horizontal tails are 

represented respectively by i = l, r. 

Not considering the aerodynamic interference from the wing, the local angle of attack at 

the left and right horizontal tail panels is written as, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

0
0

1

cos
costantan

θ
φφθα

T

t
lt V

l &
 

(1-25) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= −

0
0

1

cos
costantan

θ
φφθα

T

t
rt V

l &
 

where lt is the distance of the selected location on the horizontal tail panel from the 

aircraft longitudinal axis, also another parameter to be identified. 

The aerodynamic derivatives in Eq. (1-24) are, like the wing, modeled by quadratic 

polynomials of the internal flow state variable as 
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( ) 2
111 tittitttiNti xcxbaxC ++=α  

( ) 2

( ) 2

2222 tittitttiNti xcxbxC ++=αα  (1-26) 

333 tittitttiNti xcxbxC ++= αα&  

 

► Side Force on Vertical Tail 

 

The sideslip angle values were relatively small in the wind-tunnel tests reported in Refs. 

[39], [40]. Because of that, the classic stability derivative approach was used to model the 

aerodynamic side force acting on the vertical tail, that is, 

vYtvYtvY CCC ββ ββ
&

&+=  (1-27) 

Where  and  are constant parameters. In Eq. βYtC β&YtC (1-27), vβ  and  are, 

respectively, local sideslip angle and its time-derivative at a selected location on the 

vertical tail. The distance of this location from the longitudinal body axis is represented 

by parameter . For the pure rolling oscillatory motion, 

vβ&

3l vβ  can be obtained as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= −

T
v V

lsinsinsin φφθβ
&

3
0

1
 

(1-28) 

In case of larger values of the sideslip angle, parameters  and  could also be 

defined as quadratic polynomials of some local, internal flow state variable. 

βYvC β&YvC

 

► Side Force on the Fuselage 

 

In this formulation, the only fuselage contribution to appear explicitly is that related to 

the lateral force. The fuselage contribution to the normal force is assumed to be lumped 

into those from the wing and the horizontal tail. For the same reason as in the case of the 

vertical tail, the side force acting on the fuselage is modeled as, 
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(1-29) ββ ββ
&

&YbYbbY CCC +=  

where β  and  are, respectively, the aircraft sideslip angle and its time-derivative. β&

 

The panel contributions are then summed up in an appropriate way to give the 

approximate aerodynamic characteristics of the whole aircraft, as shown below for a 

conventional airplane configuration.  

 

► Normal Force Coefficient 

The normal force coefficient of the aircraft is obtained by adding up the wing and 

horizontal tail contributions, that is  

( ) ( NtrNtlNwrNwlN CCCCC +++= ) (1-30) 

 

► Side Force Coefficient 

The contributors to the side force are the vertical tail and the fuselage. Thus, 

bYvYY CCC +=  (1-31) 

 

► Pitching Moment Coefficient 

Two components contribute to this coefficient: wing and horizontal tail. Adding the 

normal forces of these components multiplied by their corresponding arms about the 

transversal body axis y , the pitching moment coefficient is given by   

( ) ( )
c
xCC

c
xCCC t

NtrNtl
w

NwrNwlm +−+=
 

(1-32) 

where  and  are, respectively, the distances of the wing and horizontal tail 

aerodynamic centers to the aircraft C.G., and c is the aerodynamic chord length. 

wx tx

 

► Rolling Moment Coefficient 
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The rolling moment of the aircraft is generated by the normal forces on wing and 

horizontal tail panels, and by the side force from the vertical panel forces, all multiplied 

by arms about the longitudinal body axis x. Proceeding this way, the rolling moment 

coefficient is obtained as, 

( ) ( )
b
zC

b
yCC

b
yCCC v

vY
t

NtrNtl
w

NwrNwll +−+−=
 

(1-33) 

where , , and  are the moment arms for the wing, horizontal tail, and vertical tail, 

respectively, about the body axis x. The parameter b is the wing span. 

wy ty vz

 

► Yawing Moment Coefficient 

Yawing moment contributors are the elements where side forces are applied. Then, the 

yawing moment coefficient is generated by the vertical tail and fuselage as follows, 

b
xC

b
xCC b

bY
v

vYn −−=
 (1-34) 

where xb and xt are, respectively the moment arms of the fuselage and the vertical 

tail side forces with respect to the aircraft C.G. 
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1.2 The Wing Rock Phenomenon 
 

Wing rock is defined in reference [41] as “uncommanded lateral-directional motion, 

viewed by the pilot primarily as a roll oscillation.” For some types of aircraft 

configurations, as the angle of attack further increases up to some critical value around 20 

degrees a roll oscillation starts to grow in amplitude until it reaches a maximum value. At 

this point, the airplane continues to rock in a classic limit cycle behavior. This behavior 

occurs up to a higher critical value of the angle of attack (typically around 50 degrees). 

After that higher critical value of the angle of attack value, the roll oscillations are 

damped out. 

 

This kind of phenomenon was first observed at NASA´s Langley Research Center around 

1980 [42]. Wing rock can be described as a Dutch roll type of motion, during which the 

aircraft has sustained rigid body oscillations predominantly in roll, but also in yaw. It can 

appear in the subsonic flight regime and high angle of attack, or at transonic speeds and 

more moderate values of angle of attack [43]. When any perturbation in roll happens at 

higher values of the angle of attack, such as landing in crosswind or high load factor non-

coordinated maneuvers, wing rock can develop. A variety of aircraft exhibited this 

phenomenon, but the most susceptible configurations have highly swept planforms or 

strakes and long slender forebodies that produce vortical flows during excursions into the 

high angle-of-attack regime. In general, it may adversely affect the whole flight envelope, 

but it can be particularly dangerous if it happens during landing, when it limits the 

approach angles of attack of military, commercial high-speed civil transport aircraft 

configurations or orbital space shuttles. At higher speeds, it can also pose serious 

limitation to combat effectiveness both in subsonic and in transonic flow regimes, and 

severely limits the pilot’s ability to perform a tracking task.  

 

Wing rock has been encountered during the development of many military aircraft in 

service today. Some of the aircraft which have been documented to experience wing rock 
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are the A-4 Skyhawk, F-4 Phantom, F-5 Tiger, T-38 Talon, F-14 Tomcat, F-16 Fighting 

Falcon, F-18 Hornet, X-29, X-31, HP-115 [44], Gnat trainer, Tornado, and Harrier. 

 

We can see wing rock from two perspectives: from the global perspective of the flight 

dynamics or the particular perspective of the physical mechanisms that happens on each 

case. From the flight dynamics perspective, wing rock can be explained by the behavior 

of the stability derivatives and the energy exchange concept [45], summarized in Section 

(1.2.1) of this report. When it comes to the behavior of the stability derivatives, under a 

certain critical value of the angle of attack, the airplane exhibits stable dynamic lateral 

stability and roll motions following a disturbance damp out. This stable dynamic lateral 

stability is equivalent to positive roll damping, which means negative . At a certain 

angle of attack, roll damping becomes negative. As shown by Nguyen et al 

plC

[45], a loss of 

damping in roll at high angles of attack makes a configuration susceptible to wing rock 

but does not necessarily generate a sustained wing rock. To generate a sustained wing 

rock motion, an additional aerodynamic cause is necessary. For wing rock to occur, there 

must be a nonlinear variation of roll damping such that negative damping (destabilizing) 

exists at low values of sideslip/roll angle and positive damping (stabilizing) at higher 

values of sideslip/roll angle.  

 

The flow mechanism of the wing rock at high angles of attack depends on the aircraft 

configuration, but the principal source of wing rock is the lifting surfaces. Thin, low-

aspect ratio, highly swept delta wings are prone to develop wing rock at high angles of 

attack. However, aircraft configurations not having highly swept delta wings but 

featuring fuselages with long, slender forebodies are also known to exhibit wing rock. 

This latter type of wing rock is called wing-body wing rock or forebody-induced wing 

rock and it is known to occur even when the main lifting surface - the wing - is removed. 

For the configuration without the wing, the horizontal and vertical tail surfaces coming 

under the influence of the forebody vortex system produce the necessary rolling 

moments. From the published results on wing rock phenomenon, a good way to organize 

ideas is to classify wing rock occurrences according to three main types: slender-wing 

rock, conventional-wing rock, and wing-body rock, explained as follows. 
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Slender-wing rock is the occurrence of wing rock on highly swept-back, sharp leading 

edge delta wings, alone or with blended bodies, at sufficiently high angle of attack. It is 

triggered by some initial disturbance that initiates roll. Studies of the wing rock motion 

on flat plate, slender delta wings have provided interesting insights on the importance of 

unsteady aerodynamics to the wing rock motion [45], [46], [47]. At high angles of attack, 

slender wing flow separates right at the leading edge and generates vortices (the leading 

edge vortices). To describe the flow mechanism acting on this type of wing rock, 

consider a delta wing with sweep angle equal or larger than 76 degrees at an angle of 

attack between 20 and 50 degrees. Consider also a view from the trailing edge toward the 

leading edge. Now, let us suppose that a disturbance causes the wing to initially roll in 

the positive direction of the body axis. As the roll angle increases at a constant pitch 

angle, angle of attack and sideslip are related to the roll angle through Eqs. (A.2-6) in 

Appendix A.2. Because of these relations, the effective angle of attack on the wing 

decreases and the effective sideslip angle increases as the roll angle grows. The increased 

sideslip on the wing during roll causes the windward vortex on the down-going wing to 

move inboard and toward the upper surface, and the leeward vortex to move outboard 

and be lifted off. At a certain point, the rolling moment due to the vortex on the down-

going wing takes over the moment associated with the “lifted-off” vortex, and the 

movement first stops and then reverts. When the roll angle is back to zero, the dynamic 

hysteresis associated with the vertical location of the two leading edge vortices results in 

a residual rolling moment that keeps the oscillations going on. It appears as if the vortices 

have a sort of “inertia”: their vertical positions during oscillation have a delay when 

compared to the static ones. We extracted from [46] figures 1-4 and 1-5 that show the 

non-dimensional vertical and spanwise body coordinates of the vortices core, in addition 

to the crossflow streamlines and pressure distribution curves, obtained from 

computational simulations by using a discrete vortex potential model. It can be observed 

that the lag in vortex position makes the upgoing wing closer to its corresponding vortex 

core, and that these different positions results in the wing residual rolling moment at zero 

roll angle.  
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Conventional wing rock is that occurring on airplanes having straight or moderate-swept 

wings, and moderate to high aspect ratio. It can be subdivided into conventional-wing 

rock that happens at low or at high subsonic Mach numbers. Because in this case the 

wing aspect ratio is higher, two-dimensional streamwise flow effects dominate the 

aerodynamics, and in the low subsonic regime this kind of wing rock is related to 

dynamic stall [48]. According to tests made on the F-5A [43], at transonic speeds wing 

rock was generated by a limit cycle mechanism due to the fluctuating pressure changes 

on the wing top surface, especially near the wing tip region. In the cases observed, the 

major reason for the pressure change was the motion-induced variations in local angle of 

attack, which alternatively caused leading edge stall and recovery. Those fluctuating 

pressure changes are caused by flow separation driven by the shock-boundary layer 

interaction. 

 

Forebody-induced wing rock is that type of wing rock that happens because of vortices 

generated by the fuselage forebody. A generic aircraft model featuring a slender, pointed 

fuselage forebody was used in tests described in [49]. This generic aircraft model 

exhibited wing rock when fitted with different wings of varying aspect ratio and sweep, 

or even without any wing at all. Therefore, for this type of wing rock, the wing itself was 

not the primary cause of the motion. One possible explanation is the one found in 

reference [50]. According to Ericson, at higher angles of attack, the airplane loses 

damping in roll and sheds forebody vortices in an asymmetric way. These vortices are 

convected towards the tail surfaces, sucked down over their upper surfaces and produced 

the necessary rolling moments. Therefore, the lifting surfaces, either the wings or the tail 

surfaces, when coming under the influence of forebody vortices, served as rolling 

moment generators to sustain the wing rock. That is the reason that this kind of wing rock 

is called forebody-induced wing rock. 
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Figure 1-7 Crossflow streamlines and pressure distribution (dot line) for zero roll 

angle and positive roll rate. Figure reproduced from [46] with permission of the 

author. 

 

  



 33

 

 

 

 

 

 

 

 

 

Figure 1-8 Crossflow streamlines and pressure distribution (dot line) for zero roll 

angle and negative roll rate. Figure reproduced from [46] with permission of the 

author. 
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1.2.1 The Energy Exchange Concept 

 

When the model rolling moment coefficient as a function of the roll angle ( )φlC  can be 

determined for a wing undergoing wing rock, the energy exchange technique used by 

Nguyen et al [45] is very helpful in analyzing the physical mechanisms driving the limit-

cycle oscillation. If we consider the case where the model is constrained to one degree of 

freedom, the equation of motion for the system is  

( ) ( )∑
≈

+==
876

&&
0

frictionaeroRxx LLtLtI φ ( )tSbCq l∞=  
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Thus, when the model geometry, inertia, wind tunnel test conditions and roll angle time 

history are known, the rolling moment coefficient time-history ( )tCl  can be determined. 

The energy added to or extracted from the system during the motion for a specific time 

interval can be expressed as  

( )∫∞=Δ
2

1

    
t

t
l dttCbSqE φ&  (1-36) 

Eq. (1-36) may be rewritten in terms of the instantaneous roll angle ( )tφ  as the following 

line integral: 

( )[ ]∫∞=Δ
φ

φφ
C

l dtCbSqE     (1-37) 

where  is the curve obtained by plotting  as a function of the instantaneous roll 

angle 

φC lC

( )tφ  for the interval [ . Therefore, the energy exchanged in a cycle of motion is 

directly related to the area enclosed by . 

]21,tt

φC Figure 1-9 shows the conceptual drawings of 
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possible cases for , where the arrows indicate the direction in time. When the loop 

encloses an area in a clockwise sense, energy is being added to the system (

φC

Figure 1-9a), 

whereas counterclockwise loops indicate energy dissipation from the system (Figure 

1-9b). If a limit cycle occurs, the net energy exchange is zero (Figure 1-9c). Figure 1-10 

shows the actual roll angle time-history of a slender delta wing at an angle of attack 

where the roll oscillations damp out. It was obtained from wind tunnel tests by Arena, 

and reported in [46] and [51]. The corresponding φ×lC  loop is shown in Figure 1-11. 

Figure 1-12 presents a time history of wing rock buildup at °= 300θ  for tests reported in 

[51]. The dynamic rolling moment characteristics of the buildup cycle A are shown in 

Figure 1-13, where the clockwise loop in the plot indicates a dynamic instability. Notice 

that the restoring moment is roughly linear with roll angle. Since energy is being fed to 

the system, the roll angle amplitude is increasing. When the loop is very thin like the one 

shown, it accounts for the fact that the buildup happens very slowly. The analogous plot 

of the rolling moment coefficient after the system has reached steady state (cycle B) can 

be seen on Figure 1-14. There still is an unstable region between -20° and 20°, but two 

stable damping “lobes” have formed for the larger roll angles. The limit cycle oscillation 

is sustained because the area of the lobes equals the area of the unstable portion of the 

plot such that the net energy exchange is zero.  
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Figure 1-9 Conceptual drawings of the rolling moment coefficient versus roll angle. 

Figure reprinted from [52] by permission of the author. 
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Figure 1-10 Roll angle time-history for wing pitch angle where there is no wing 

rock. Figure reprinted from [46] by permission of the author. 

 

 

Figure 1-11 Rolling moment coefficient vs. roll angle cycle for a wing pitch angle 

where there is no wing rock. Figure reprinted from [46] by permission of the author. 
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Figure 1-12 Time history of wing rock buildup in free to roll tests at wing pitch 

angle equal 30 deg. Figure reproduced from [46] by permission of the author. 

 

 

 

Figure 1-13 Rolling moment coefficient for a cycle of wing rock buildup. Figure 

reproduced from [46] by permission of the author. 

 

  



 39

 

 

Figure 1-14 Rolling moment coefficient for a steady state cycle of wing rock. Figure 

reprinted from [46] by permission of the author. 

 

1.2.2 Experimental Investigations on the Slender Delta Wings 
 

This is a brief review of the references where unsteady aerodynamic measurements and 

wing rock motion data were taken and used to identify unsteady aerodynamic models 

investigated along the same lines as this research. As previously mentioned, the principal 

source of wing rock is the lifting surfaces. Furthermore, some of the aircraft unsteady 

aerodynamic models investigated here are a composition of basic aerodynamic models 

that represent the unsteady aerodynamic behavior of each of the lifting surfaces. Since 

these models include internal state variables that describe the flow characteristics, their 

construction is heavily based on observations made on the available experimental data. 

Most of the published experimental data is for slender delta wings. Also, because the 

most susceptible configurations to wing rock have highly swept planforms or strakes that 

produce vortical flows during excursions into the high angle-of-attack regime, it is 
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thought that the mechanisms which are present in the wing rock of slender delta wings 

will also be the dominant effects in the wing rock of complete aircraft configurations. 

Thus we focus our attention on this kind of lifting surface.  

 

The experimental work done by Nguyen, Yip, and Chambers [45] at NASA Langley 

provides data that helps us understand the fundamental flow mechanisms causing wing 

rock for slender delta wing configurations. This experimental work also led to the Energy 

Exchange Concept, described in Section 1.2.1, which is important to the current work. 

The data published in that reference for the slender delta wing free-to-roll dynamic tests 

are used here to identify the model parameters of the investigated formulations. As 

discussed in Section 1.2.1, analysis of the motions obtained in the free-to-roll tests were 

made by the analysis of the measured roll angle data. Nguyen et al. were able to derive an 

estimate of the roll acceleration by fitting a smoothing cubic spline to the roll angle time 

history data points, thus eliminating high frequency noise. With the roll acceleration 

determined, an estimate of the total aerodynamic rolling-moment coefficient was derived 

through Eq. (1-35). With the roll angle and the total aerodynamic time-histories, Nguyen 

et al were able to plot the φ×lC  loops for the angles of attack equal to 27 and 32 

degrees, as shown in Figures 1-15 and 1-16 and used in this research to identify 

parameters associated with the dynamic behavior.  

 

Levin and Katz [47] have also conducted free to roll tests on 76 and 80 degree swept 

delta wings. Only the delta wing with a sweep angle equal to 80 degrees and an aspect 

ratio of 0.71 (root chord = 0.4285 m, span = 0.150 m) demonstrated wing rock in the free 

to roll tests documented in that reference. In their experiments, static force and moment 

data were obtained. The corresponding experimental results for the static tests, shown in 

Figure 1-17 and Figure 1-18 for roll angles of 0, 10, 20 and 30 degrees, and for an 

airspeed of 14 m/s, helped to identify the unsteady aerodynamic model parameters 

associated with the static behavior of the model investigated in this research. Concerning 

the dynamic data, Levin and Katz obtained time histories of the roll angle, and of the 

lateral and normal force coefficients. However, they were not able to acquire 

experimental values for the rolling moment coefficients.  
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Figure 1-15 Cl vs. roll angle histogram for one cycle of wing rock at θ0 = 27 degree . 

Data extracted from [45]. 
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Figure 1-16 Cl vs. roll angle histogram for one cycle of wing rock at θ0 = 32 degree.  

Data extracted from [45]. 
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Figure 1-17 Normal force coefficient in balance coordinates vs. pitch angle – results 

from static tests. Data extracted from [47]. 
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Figure 1-18 Rolling moment vs. pitch angle – results from static tests. Data 

extracted from [47].  

 

 

 

Another reference that contains experimental data useful in the identification of the basic 

unsteady aerodynamic models investigated here is the one written by Arena [46]. The 

primary goal of that experimental investigation was to document motion history and flow 

field behavior on a slender delta wing undergoing wing rock to identify mechanisms that 

may be responsible for wing rock. Two delta wing models with a leading edge sweep 

angle of 80 degree were used. One of them was used for flow visualization and free-to- 

roll time histories determination. The other was instrumented for the steady and unsteady 

measurement of surface pressure. The main features of the experimental apparatus were 

the air bearings and the modular optical encoder, installed with the purpose of having a 

single degree of freedom motion with little friction from the bearing or from roll angle 

acquisition. The work documented the angle of attack range where wing rock exists for 

this particular wing, at a Reynolds number of 400,000. Inside that range, initial angles of 

attack were chosen to represent damped motion ( °= 20α ) and limit cycle wing rock 

( °= 30α ). The corresponding rolling moment coefficient vs. roll angle loops are 
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reproduced here in Figure 1-11 and Figure 1-14, respectively. The measurement of the 

rolling moment acting on the wing was possible by finite differencing the motion history 

of the wing. In order to have further insight into how the surface pressure creates the 

rolling moment, a motion control system was developed to guide the model through the 

wing rock time histories obtained in the free to roll experiments. The steady and unsteady 

flow visualization of vortex trajectories allowed measurements of the vortex core location 

for the wing undergoing wing rock, reproduced in Figure 1-19 for the chord location of 

75%, providing the vortex positions above a slender delta wing as a function of the roll 

angle during wing rock motion, and helped to shape the internal state equations of some 

of the unsteady aerodynamic models proposed and investigated here. The coordinate 

system used to give the positions of the vortex cores is shown in Figure 1-20. It was 

found that vortex breakdown is not a primary mechanism involved in the slender-wing 

rock motion, since it is not seen on the wing over a large range of angles of attack at 

which wing rock occurs. But when it occurs over the model, additional damping is added 

which results both in an overall reduction in the wing rock amplitude and in a jump in the 

reduced frequency. However the author stated that it is just an additional contribution to 

the damping and not one of the primary mechanisms responsible for the occurrence of the 

wing rock.  

 

The geometrical and physical differences between the wing models and experimental 

apparatus used in the tests published in [45], [46], and [47] are summarized in Table 1-1. 

The wings were fixed to the sting in different ways. The free to roll apparatus used by 

Nguyen, Yip, and Chambers [45] had its bearings and the potentiometer used to measure 

the roll angle located beneath the wing. This caused the center of rotation of the model to 

be two inches below the longitudinal axis of the wing. A sketch of this apparatus is 

shown on Figure 1-21. Levin and Katz managed to mount the bearings and potentiometer 

on the wing centerline. This caused the wing to have a relatively large center body hump, 

as shown in Figure 1-22.  
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1.2.3 Analytical and Computational Investigations on the Wing Rock 

 
Konstadinopoulos, Mook, and Nayfeh [53] numerically reproduced the slender delta 

wing wind tunnel tests whose results were published in [45], [47]. They used an unsteady 

vortex-lattice method (UVLM) to provide the aerodynamic loads and integrated the 

single degree-of-freedom equation of motion using a predictor-corrector scheme. The 

UVLM was coupled with the equation of motion and both the motion and the flow field 

were predicted interactively. Their simulations considered the geometrical and physical 

differences between the experimental apparatus used in both tests, as well as the damping 

due to the friction in the bearings of the stings. Simulations were done for the case where 

the axis of rotation was below the centerline of the wing, reproducing the arrangement 

used by Nguyen et al [45] in their tests, and also for the case where the axis of rotation 

was on the centerline, as in the experiments reported in [47]. An analytical representation 

of the rolling moment was developed to help the understanding of the wing rock 

dynamics. In this representation, the rolling moment is represented by the expansion in 

terms of angle of roll φ  and roll rate  given by Eq. φ& (1-38). 
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(1-38) 
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In Eq. (1-38), the coefficients  were determined by a least-squares fit with the 

numerical results found with the help of the UVLM. Since the curves of the rolling 

moment coefficient  vs. angle of roll 

ia

lC φ  change with the angle of attack, so do their 

coefficients. It was observed that some of the terms in Eq. (1-38) make virtually no 

contribution and their coefficients can be set equal to zero. This is the case for the 

coefficients . The simulations showed that when the angle of attack 

exceeds a critical value, the limit cycle develops after a small perturbation in roll. The 

UVLM is limited to angles of attack for which vortex bursting does not occur and to 

situations in which separation occurs only along the edges. 

12111098 ,,,, aaaaa
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Later, the nonlinear analysis of Eq. (1-38) was carried out in [54]. The analytical result 

was used to construct phase planes by using the method of multiple scales, and the global 

nature of the wing rock was revealed through stable limit cycles, unstable foci, saddle 

points, and domains of initial conditions that lead either to sustained oscillatory motion, 

divergence or damping.  

 

In addition to his experimental work, summarized here in Section 1.2.2, Arena [46] 

investigated the steady and unsteady behavior of delta wings in roll also with the 

development of a computational model since there were certain aspects of the flow field 

that could not be revealed with the experimental apparatus. For example, it was not 

possible to measure the unsteady behavior of vortex strength during wing rock. His 

computational model represented the separated flow field above the wing as a system of 

two discrete vortices in an inviscid flow. The position and strength of each vortex was 

captured by the formulation of specific boundary conditions. The idea was to use this 

computational model to capture the primary mechanisms responsible for wing rock that 

had not been captured during the wind tunnel tests, such as the vortex strength influence. 

According to Arena’s conclusions in [46], vortex strength hysteresis on the downward 

wing contributes with a rolling moment that opposes the direction of rotation and helps to 

stabilize the wing at the higher values of the roll angle. 

 

Saad [55] numerically simulated three degree of freedom wing rock motion through the 

flow solver code fdl3di: roll, sideslip and vertical motion. The results were obtained for a 

generic fighter model consisting of fore-body, cropped delta wing and vertical fin. Until 

then, wing rock numerical simulations had been limited to a single degree of freedom in 

roll and applied to simple delta-wing configurations. He studied the additional effects of 

sideslip and vertical motion, as well the effect of adding the vertical fin. The effect of 

adding the sideslip and vertical motion degrees of freedom to the simulations of the wing-

body configuration were found to delay the onset and to reduce the amplitude of wing 

rock by about 50% with no change in frequency. The aerodynamic effect of the fin was 

found to delay the vortex burst on the upper surface of the wing. As a net result of the 
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vertical fin inclusion, the oscillations were more damped, with significant increase in 

frequency. 

 

1.3 Overview of the Thesis 
 

The goal of the current research is to investigate functional, unsteady aerodynamic 

models with a state-space representation that could be coupled to the equations of motion 

to simulate wing rock. To achieve these goals, we insert modifications into an existing 

basic unsteady aerodynamic formulation and identify its parameters using published 

experimental data for slender delta wings. Since the identification results obtained with 

the pre-existing formulation are not satisfactory, we first develop a basic unsteady 

aerodynamic model that is capable of accounting for the static hysteresis phenomenon. 

Then, we add additional internal state variables representing both the spanwise and 

vertical motion of the vortex core, which account for the sideslip and roll angle on the 

lifting surface normal force. Next, we apply this model to each one of the lifting surfaces 

or panels in which the aircraft is split, and investigate its ability to represent the wing 

rock phenomenon. The unsteady aerodynamic model is finally coupled to the equations 

of motion to perform simulations of the wing rock phenomenon.  

 

The proposed models are described in Ch. 2. The identifications of their model 

parameters are shown in Ch. 3. Chapter 4 presents the simulations done with the models 

that were identified. Some final comments and conclusions are presented in Chapter 5.
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Figure 1-19 Vertical and spanwise vortex positions during wing rock. Data extracted 

from [46]. (a) Vertical position. (b) Spanwise position. 
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Table 1-1 Geometrical and physical parameters of some tested slender delta wings. 

 

 Wing 1 Wing 2 Wing 3 

 [45] [47] [46]

root chord cr, m 1.765 0.4285 0.422 

planform area S, m2 0.5491 0.0321 0.0314 

span b, m 0.622 0.150 0.149 

rolling moment of inertia ,  xxI

kg m2

9.18  210−× 2.7  410−× 1.13  310−×

ρ , kg/m3 1.187 1.2 1.2 

∞V , m/s 9.266 15 13.8 

 

 

 

Figure 1-20 Sketch of asymmetric vortex position – rear view. Figure reprinted 

from [46] by permission of the author. 
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Figure 1-21 Free to roll apparatus used by Nguyen, Yip, and Chambers. Figure 

reprinted from [45] by permission of the American Institute of Aeronautics and 

Astronautics, Inc. 
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Figure 1-22 Free to roll apparatus used by Levin and Katz [47]. Figure 

reprinted by permission of the American Institute of Aeronautics and 

Astronautics, Inc. 
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2 The Investigated Unsteady Aerodynamic Models 
 

Unsteady aerodynamic effects at high angles of attack resulting from separated and 

vortex flow development can significantly alter the aerodynamic loads with respect to 

their conventional representation. In the conventional approach, the unsteady effects are 

described using linear terms with unsteady aerodynamic derivatives. Nevertheless, there 

are special regions of incidence, e.g. , where the conventional representation is not 

valid. Since in unsteady flight conditions the aerodynamic forces and moments are time 

and motion history dependent, a dynamic model is needed for the development of a valid 

description. The special approaches using the differential equations that have been 

proposed can improve the aerodynamic model and take into account the nonlinear 

unsteady aerodynamic effects due to separated and vortex flow dynamics. A basic state-

space model with state-space representation was studied in refs. 

maxLC

[30], [32], [34], after the 

ideas of Goman and Khrabrov proposed in [29]. This general concept was described in 

Section 1.1.3. Fan and Lutze proposed in [30], [34] a variation of this model, and some of 

their contributions are mentioned in Section 1.1.3, as well. As a difference to the Goman 

and Khrabrov version, the variation proposed by Fan and Lutze uses the distance between 

the wing trailing edge and the separation point as the internal state variable, instead of the 

distance between wing leading edge and the separation point used by the Russian authors. 

The reason behind this choice was to have aerodynamic coefficients at low angles of 

attack independent of the internal state variable. That made this model more consistent 

with the conventional approach. De Oliveira and Lutze [32] added to this formulation an 

improvement that allows it to represent static hysteresis. The description of this 

improvement was described in Section 1.1.5. 

 

The application of the exact original state-space model to the rolling delta wing has some 

problems. One of them is that the separation point has different values for each of the 

side of the wing, and consequently so does the internal state variable. Another problem is 

that the angles of attack are different for each side of the wing when the wing is rolling. 
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Both of these problems make it difficult to use only one output equation to determine 

each aerodynamic coefficient. In a tentative approach to address the unsteady 

aerodynamic characteristics in multiple axes, Stagg and Lutze [39],[40] proposed 

dividing the airplane lifting surfaces into separate panels, and applied the basic state-

space model to characterize the unsteady aerodynamics of each one of them in the way 

described on Section 1.1.6. Here this panel formulation describing the unsteady 

aerodynamic characteristics of the aircraft in multiple axes is composed with some 

proposed basic unsteady aerodynamic models and investigated. The investigation starts 

with a model whose improvements over the original Stagg and Lutze model allows it to 

match some influences of the roll (or the sideslip) angle. Also, the basic unsteady 

aerodynamic model used in each panel is that described in Section 1.1.5, which is 

improved to represent static hysteresis. The second model investigated has some further 

modifications, for example, the addition of both the roll angle as an input variable, and of 

two internal state variables.  

Since the acquisition of wind tunnel experimental data was not part of this research, all 

the investigated models have their parameters identified with data available for slender 

delta wings taken from published references. The slender delta wing geometries and the 

data used to identify the model parameters are described in Section 3.2. 

 

2.1 The First Unsteady Aerodynamic Model Investigated  
 

The original state-space model was found to have good performance in describing the 

unsteady aerodynamics of the airplane when considered as a single lifting surface up to 

high angles of attack [29], [30], [34]. Nevertheless, this good performance was observed 

only for longitudinal motion, in which the only motion variable was the angle of attack. 

Trying to take advantage of the state-space formulation to find the simplest model that 

could describe the unsteady aerodynamics of the whole airplane in multiple axis, Stagg 

and Lutze [39],[40] proposed dividing the airplane into panels that represent lifting 

surfaces, and applied the basic state-space model presented in [30], [34] to characterize 

the unsteady aerodynamics of each one of them in the way described in Section 1.1.6. 

When the rolling moment coefficient was plotted against the sideslip angle in [39] for the 
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F-18 forced to oscillate in roll at pitch angle equal to 30 degrees with amplitude of 20 

degrees and a frequency of 1 Hz, the result is shown in Figure 2-1, where the arrows 

indicate direction in time. Comparing it to Figure 1-9, we can see that, according to the 

Energy Exchange Concept [45] described in Section 1.2.1, this model would not undergo 

limit cycle oscillations if the F-18 model was left free to rotate. Another try was made 

here to verify if a model based on this formulation could simulate wing rock by adding 

some improvements and identifying its parameters with the help of simulated 

experimental data.  
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Figure 2-1 Roll coeficient versus sideslip angle for the F-18 

 

 

Considering Figure 1-17, we notice that there is a different CN vs. α  curve for each value 

of the roll angle, and they have not only different slopes but also different angles of stall. 

One of the reasons for the different slopes is because the wing normal coefficient CN  

values shown in Figure 1-17 are represented in balance coordinates. That means that, 

because the wind tunnel balance used to take the experimental values of the delta wing 

normal coefficient  recorded only the vertical component, then to be compared to the NC
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experimental results the values of the wing normal coefficient in body axes  have to 

be converted to the normal coefficient in balance coordinates 

NC

( )balNC  through Eq. (2-1) 

below: 

( ) φcosNbalN CC =  (2-1) 

where φ  is the roll angle and  is the wing total normal coefficient in body axes. NC

Another possible reason for the slopes of the CN vs. α  curve being different for each 

value of the roll angle could be the wing aerodynamic characteristics variation with the 

sideslip angle. 

 

When the multi-axis state-space representation (see Section 1.1.6) is applied to the 

slender delta wing configuration, it is split into two lifting panels: left and right semi-

wings, so we drop the subscript “w”. Since this type of configuration has not tails, the 

number of parameters to be identified is less than the one corresponding to a conventional 

aircraft. In the present case, we have four unknowns: the left and right normal force 

coefficients and moment arms. Also reduced in number are the equations used: in the 

static case we have just one normal force equation like the first term of (1-30), and the 

rolling moment equation (1-33). There still is the dynamic relationship that we assumed 

between the normal forces on left and right wings (1-18), and the number of unknowns is 

reduced to three.  

 

Comparing Eq. (1-33) with Figure 1-18 one can notice that, when applied to that wing-

alone configuration, the original Stagg formulation does not have flexibility to account 

for the variation of the rolling moment coefficient static values with the angle of attack 

and with the roll angle variations. This happens because, in the multi-axis original 

formulation, the lateral arm yw has the same value for left and right wings. Also, in the 

static case, the normal force coefficient static values on both wings are the same because 

the angles of attack on both left and right wings have the same values. Consequently, if it 

was calculated through that formulation, the static responses of the rolling moment 

coefficient would be zero for all values of the roll angle and the original model will never 
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match the experimental data. To add more flexibility to Stagg’s formulation, we define, 

as additional model parameters, the set containing one different parameter for each of the 

left and right wing lateral arms ywl, ywr , free to vary with the roll angle (see Table 3-1). 

The results of the identification done for this first improvement to the Stagg’s 

formulation only using static experimental values, and are shown on Figure 2-2 and 

Figure 2-3. This parameter identification was done by a least –squares fit between the 

calculated values of the normal force and rolling moment coefficients and the 

experimental data taken from reference [47]. More details about the parameter 

identification can be seen in Chapter 3. Figure 2-4 shows the variation of the identified 

wing lateral arms with the roll angle. We see in Figure 2-2 and Figure 2-3 that the 

experimental values of the angle of stall change with the roll angle. The original 

formulation does not have the flexibility to account for that either. Trying to improve still 

further the match between the model responses and the experimental data, we let the 

parameters  and ∗α σ  vary with the roll angle such that there is one different identified 

value of each parameter per roll angle value (see Table 3-1). Finally, the series expansion 

of  in NC α  and α&  in Eq. (1-18) is also increased to a higher order in Eq. (2-5), due to 

the high nonlinearity exhibited by the experimental data. After adding these 

modifications, the first unsteady aerodynamic model for the slender delta wing to be 

investigated is obtained and summarized through Eqs. 2-2 to 2-7. The notation used is 

similar to that of Section 1.1.6.  
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► State equations: 

( )iii
i

x xx
dt
xd

ατατ α &,20,1 −=+  (2-2) 

 

 

► Output equations: 

(2-3) rNlNN CCC ,, +=  

rrNllN
r

rN
l

lNl yCyC
b
y

C
b
y

CC −=−= , 
(2-4) 

where 

( ) ( ) ( ) ( ) ( ) iiiNiiNiiNiiNiiNNiN xCxCxCxCxCCC αααααα
αααααα

ˆˆˆ
ˆ

2
ˆˆ

2
0 22 &&&

&&&
+++++=  

(2-5) 
 

with i = l (left), r (right) panel, and . t̂ ˆ αα && =

 

The spanwise positions ly , ry  of the normal force point of application, the sigmoid 

location angle of attack  and the slope ∗α σ  are made functions of the roll angle. The 

remaining functions and parameters for this formulation are: 
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( ) ( )( )∗−−+
=

αασ
α

i
ix

exp1
1

0  (2-6) 

( ) 2
111  c ba iiiN xxxC ++=α  

( ) 2
222  c ba2 iiiN xxxC ++=α  

( ) 2
333ˆ  c ba iiiN xxxC ++=α&  (2-7) 

( ) 2
444ˆ  c ba2 iiiN xxxC ++=α&  

( ) 2
555ˆ  c ba iiiN xxxC ++=αα &  

 

The parameters of this formulation that must be identified are: 

- the polynomial coefficients CN0, ai, bi, ci of Eqs. (2-7); 

- transient time-constant x,1τ  and time-delay constant ατ ,2  of Eq. (2-2), functions of the 

wing pitch angle 0θ  at which the dynamic experimental data are obtained; 

- the parameters  and ∗α σ  of the logistic equation (2-6) that represent the static position 

of the vortex breakdown over the panel. They are left free to vary with the roll angle at 

which the static experimental data was obtained and, therefore, there are one of each of 

these parameters for each static experimental value of the roll angle; 

- the normal force arms , , which are also varying with the roll angle at which the 

static experimental data are obtained. 

ly ry

 

The identification of these parameters is described in further detail in Section 3.3. 

As shown in Figures 3-4 to 3-9, the responses obtained for this, the first model 

investigated did not match the experimental data very well. Because of that, a second 

unsteady aerodynamic model was developed. Next, we present its description. 
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2.2 The Second Unsteady Aerodynamic Model Investigated 
 

As shown in Section 1.2.1, for the wing rock limit-cycle oscillations to occur, the rolling 

moment coefficient must laterally destabilize the wing at small roll angles and stabilize it 

at larger values. The fluid mechanism that does this and sustains the limit-cycle 

oscillations involves a time lag in the vortex core position and strength. In this second 

model to investigate, we propose to match these effects with a basic unsteady 

aerodynamic model that represents the variation of the panel normal lifting forces with 

the strength and vertical position of the vortex core vertical position as a function of the 

roll angle. Therefore, in this formulation, the panel normal lifting forces are modeled to 

be functions of both the angle of attack and the roll angle. Since the wing rock 

oscillations of this type of configuration are strongly related to the movement of the 

leading edge vortices, we try to find these functions by assuming that the points of 

application of the panel normal lifting forces coincide with the vortex core positions. The 

spanwise non-dimensional body-axes coordinates ( )tyi  are also taken as internal flow 

state variables, in addition to the chordwise coordinates ( )txi , associated with the region 

of the separated flow. A third type ( )tvi  of state variable, associated with the effects of 

both the vortex strength and vortex core vertical position, is also added to the system. The 

basic unsteady aerodynamic model proposed here is, in its most general form, composed 

of the state equations of the above mentioned state variables and the output (or observer) 

equations that give the values of the airplane rolling moment and normal force 

coefficients. The airplane force coefficients are the summation of the coefficients of each 

lifting surface panel that represents the airplane. The state equations are the first-order 

differential equations (2-8) to (2-10) whose above mentioned dependent variables ( )txi , 

( )tyi , and ( )tvi  represent the system dynamics. Equations (2-11) and (2-12) are the 

output equations. The input variables are the kinematic motion parameters, also called 

motion variables: the panel local angle of attack ( )tiα , the airplane roll angle ( )tφ , and 

their respective time derivatives ( )tiα& , ( )tφ& . For convenience, the roll angle ( )tφ  is 

chosen as the second motion variable instead of ( )tiβ  because all the experimental data 
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used to find the model parameters were published as a function of ( )tφ . For each fixed 

value of the wing pitch angle 0θ , the local sideslip angle time history ( )tiβ  can be 

determined through ( )tφ  and ( )tiα  time-histories by using Eqs. (1-22) and (1-28), 

derived in Appendix A.2. However, for a general type of motion where the pitch angle is 

not fixed, those relations are no longer valid.  

 

In this postulated model, the equations used to represent the unsteady aerodynamics for 

general flight conditions in each panel of the airplane are: 

( ) ( )iii
i f

dt
txd

αα &,,1=  (2-8) 

( ) ( )φφ &,,2 i
i f

dt
=

tyd
 (2-9) 

( ) ( )φφ &,,3 i
i f

dt
tvd
=  (2-10) 

( )φφαα && ,,,,,, iiiiiN yxgC =  (2-11) 

where the subscript i stands for each lifting panel, i.e., i = l (left) , r (right). 

The value of the normal force coefficient for the whole slender delta wing is found also 

through Eq. (2-3). 

 

As shown in Section 1.1.6, we can calculate the rolling moment coefficient for the 

aircraft through Eq. (1-33), which in the particular case of the slender delta wing reduces 

to: 

( ) ( )φφ rrNllNl yCyCC −=  (2-12) 

where ( )•y  are the non-dimensional arms of the normal force coefficient with respect to 

the longitudinal body axis, given by Eq. (2-9). 
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With the help of the formulation described in Section 1.1.5, the system composed by the 

Eqs. (2-8), (2-9), (2-10), and (2-11) results in the following equations:  

( ) ( )ieffDieffUi
i

x xDxUx
dt
xd

,,0,,01 αατ αα +=+  (2-13) 

( ) ( )effDieffUii
i

y yDyUy
dt

φφτ φφ ,,0,,01 +=+
yd

 (2-14) 

( ) ( )effDieffUii
i

v vDvUv
dt
vd

φφτ φφ ,,0,,01 +=+  (2-15) 

( ) ( )φα ,, ,,, iiNiiiNiN vCxCC Δ+=  (2-16) 

We do this because we want this model to be capable of representing static hysteresis, 

whenever it occurs. Equation (2-13) is the same as Eq. (1-12), that is, 

( )
2

1 α
α

Δ+
=
Δ signU  

(2-17) 

( )
2

1 α
α =D Δ−Δ sign

 (2-18)

with jj ααα −=Δ +1  for the given sequence of the static angles of attack jα , j = 1,2,…,l, 

or ( ) ( )jj tt ααα −=Δ +1  for the given time histories of angles of attack ( ){ }njj ttt ≤≤0,α  

in the considered panel. The static dependence between the internal state variable ix  and 

the angle of attack are determined for the up (U) and down (D) direction by 

( )[ ]∗−−+
=

UieffUx
Ux

αασ ,,
0 exp1

1
 

(2-19) 

( )[ ]∗−−+
=

DieffDx
Dx

αασ ,,
0 exp1

1
 (2-20) 
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Since all the effects due to the sideslip or to the roll angle are now included in the term 

( )φiNC ,Δ  of Eq. (2-16), the parameters  and ∗
•)(α )(, •xσ  related to the localization and 

shape of the sigmoids given by Eqs. (2-19) and (2-20) are not let free to vary with the roll 

angle in this case. The values of effα  are determined through the equation 

(2-21) 
iiieff αταα α &,2, −=  

with ατ ,2  being a time-delay constant related to the vortex burst location. Equation (2-14) 

is similar in structure to (2-13), and its nomenclature is given as follows,  

y1τ  = the transient time-constant related to the vortices core spanwise displacement. 

b
y

y i
i =  = non-dimensional distance between the panel normal lifting force point of 

application and the longitudinal axis. 

( )
2

1 φ
φ

Δ+
=
Δ signU

 
(2-22) 

( )
2

1 φ
φ =D Δ−Δ sign

 
(2-23) 

with jj φφφ −=Δ +1  or ( ) ( )jj tt φφφ −=Δ +1  respectively in the quasi-static and in the 

dynamic cases, where, in the quasi-static case, the given sequence of the static roll angles 

is jφ , j = 1,2,…,l, and where ( ) ( )ii tt φφφ −=Δ +1  for the given time histories of roll angles 

( ){ nii ttt ≤≤0, }φ . The time-delay effects on the vortex movements due to the roll angle 

are taken into account through 

φτφφ φ
&

,2−=eff , (2-24) 

where φτ ,2  is a time-delay constant related to the vortex core position, to be found from 

wind tunnel data. 

Since the vortex strength and vertical core position effects are considered to be lumped 

into Eq. (2-15), we want the state variables iy  to behave qualitatively like the wind 
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tunnel tests results shown in Figure 1-19. That means that iy  must get smaller for the 

panel that is going down. Because of that, the logistic functions that compose the right-

hand-side of (2-14) are built as follows, 

( ) ( )[ ]∗−+
=

UiyUiyi
Uiy

,,,,
,,0 exp1

1
φφσξ

φ  (2-25) 

( ) ( )[ ]∗−+
=

DiyDiyi
Diy

,,,,
,,0 exp1 φφσξ
φ 1

 (2-26)

where 1−=lξ  and 1=rξ  respectively for left (i = l) and right (i = r) panels. Symbols 

( )•,,iyσ  and  stand respectively for the slope and roll angle location of the logistic 

functions that represent the static variation of the vortex spanwise position with the roll 

angle. 

( )
∗

•,,iyφ

 

The state variable v  is defined to represent the increase in panel lift due to both the 

increase in vortex strength and the approximation of the vortex core to the panel upper 

surface, as the wing rolls. Because of that, the forcing terms of on the right-hand side of 

Eq. (2-15) are modeled to be  

( ) ( )[ ]∗−−+
=

UivUivi
Uiv

,,,,
,,0 exp1

1
φφσξ

φ  (2-27)

( ) ( )[ ]∗−−+
=

DivDivi
Div

,,,,
,,0 exp1 φφσξ
φ 1

 (2-28) 

In these last equations, the symbols ( )•,,ivσ  and  stand respectively for the slope and 

roll angle location of the logistic functions that represent the static variation of the effects 

of vortex vertical position and strength with the roll angle. 

( )
∗

•,,ivφ

In Eq. (2-16), the first parcel ( )iiN xC α,,  is taken as it was developed in [34], that is, as 

the following expansion in terms of the angle of attack α  and its non-dimensional time-

derivative , for the roll angle equal zero: α̂&
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(2-29) 
( ) ( ) ( ) ( ) iiiNiNiiNiiNiiNNiN xCCxCxCxCCC αααααα αααααα

ˆˆˆ
ˆ

2
ˆˆ

2
0, 22 &&&

&&&
+++++=  

where  

(2-30)2)( ijijjiN xcxbaxC ++=χ  

with , and ααααααχ ˆ,ˆ,ˆ,, 22 &&&= 5,4,3,2,1=j , respectively. The motion variable  is 

the non-dimensional angle of attack rate and t  is the characteristic time of the flow 

defined as in Eq. 

αα && t̂ˆ =

ˆ

(1-17). 

 

In Eq. (2-16), ( )φiNC ,Δ  is the parcel that accounts for the effects of the roll angle at a 

fixed pitch angle value 0θ . It is this normal force term that accounts for the effects due to 

both vortex vertical position and strength. The normal lifting force on a panel gets bigger 

as the roll angle changes in a way that makes the panel go down. Also, it was shown in 

[46] that the limit-cycle oscillations are sustained by a time lag in vortex core position 

and strength. To make this model capable of handling these variations in a nonlinear way, 

the panel normal force ( )φiNC ,Δ  is built according to the following dependence of the 

roll angle φ  and of the non-dimensional roll rate : φ̂&

( ) ( ) ( ) ( ) 53
, 53, φφφφ φφφ iNiNiNiiN vCvCvCvC ++=Δ ( ) ( ) 3ˆˆ

3 φφ φφ
&&

&& iNiN vCvC ++

( ) ( ) 22
22 φφφφ φφφφ

&&
&& iNiN vCvC ++ ˆˆ

 

(2-31)  
 
where 

V
b

2
ˆ φφ && =  (2-32)
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( ) 2
666 iiiN cbaC νννφ ++=  

2
777)(3 iiiN vcvbavC ++=φ  

2
888)(5 iiiN vcvbavC ++=φ  

2
999)( iiiN vcvbavC ++=φ&  

(2-33) 

2
101010)(3 iiiN vcvbavC ++=φ&  

2
111111)(2 iiiN vcvbavC ++=φφ &  

2
121212)(2 iiiN vcvbavC ++=φφ &  

 
V = free stream airspeed. 

The coefficients , are functions of the angle of attack, and are determined by a 

least-squares fit with the experimental data. The expansion terms in Eq. 

jjj cba ,,

(2-31) were 

picked in order to match the expansion developed by Konstadinopoulos, Mook, and 

Nayfeh for ( )φlC  in [53]. 

 

The parameters to be identified using wind tunnel data for this postulated model are 

dependent on the pitch angle 0θ  at which the identification is done. They are: 

- the polynomial coefficients CN0, aj, bj, cj, 5,4,3,2,1=j  of Eqs. (2-29) and (2-30); 

- the polynomial coefficients aj, bj, cj , 8,7,6=j ,9,10,11,12  of Eqs. (2-31) and (2-33); 

- transient time-constants x1τ , y1τ , v1τ  appearing respectively in Eqs. (2-13), (2-14), and 

(2-15);  

- time-delay constants ατ ,2 , φτ ,2  from Eqs. (2-21) and (2-24);  
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- parameters , , and ( )
∗
•α ( )

∗
•φ ( )•σ  of logistic equations (2-19), (2-20), (2-25), (2-26), 

(2-27), and (2-28). 

 

Later on this report, it is shown in Figures 3-10 through 3-17 that the model responses 

obtained for this unsteady aerodynamics model described above results in good 

agreement with the experimental data. Also, it is shown in Chapter 4 that this second 

model is able to simulate wing rock. 

 

Next, we describe some details of the model parameters identifications. 
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Figure 2-2 Static model responses vs experimental data for the normal force of the 

slender delta wing, static values in balance coordinates for the improved Stagg’s 

model. 
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Figure 2-3 Model responses vs experimental data for the rolling moment coefficient 

of the slender delta wing, static values for the improved Stagg’s model. 
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Figure 2-4 Variation of the normal force non-dimensional arms with the roll angle, 

static values for the improved Stagg’s model. 
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3 Model Parameters Identifications 
 

3.1 Parameter Identification Method 
 

The identification method used here is the minimum mean-square error approach. The 

models have their parameters identified using experimental data in three phases and the 

squared error is minimized through an unconstrained optimization process. In the first 

two phases, the parameter identification is done using static experimental data. First, we 

identify the parameters involved with the determination of the static terms of the normal 

lifting forces ( CNxr ). These parameters are those related to the quadratic polynomials that 

determine the stability derivatives with respect to the motion variables ( ), and 

those that are used to determine the static values of the internal state variables 

jjj cba ,,

ix  for each 

panel i, namely ,∗
•)(α )(•σ . Next, we identify only the parameters associated with the arms 

of the rolling moment coefficients ( Clxr ) using the experimental static values of the rolling 

moment coefficient. In those first two phases of the parameter identification, the 

parameters related to the dynamic behavior of the model are kept out of the optimization 

process. These dynamic parameters are the coefficients ( ) of the quadratic 

polynomials that represent the stability derivatives with respect to the time-rate of the 

motion variables, and the time-constant and time-delay parameters, stored in vector 

jjj cba ,,

dynxr . 

We then take the parameter values previously determined in the two identification phases 

described above and use them as initial guess for the third identification phase. In this 

third phase, the model parameters are determined when the mean squared error with 

respect to dynamic experimental data is minimized for each value of the sting pitch angle. 

The dynamic phase of the identification is done using the experimental values of the 

rolling moment time histories obtained as described in Section 3.2. Table 3-1 and Table 

3-2 show the elements of vectors CNxr , Clxr , and dynxr  for the first and the second 

investigated models, respectively. 
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When the quasi-static sequences of experimental data are considered, the error cost-

functions to be minimized are as follows, 

( ) ( ) ([ ]
2

1 1
00 ,,,ˆ

*
1 ∑∑

= =

−=
N

j

M

i
NCjiNjiNNCCN xCC

NM
x rr φθφθε )  (3-1) 

( ) ( ) ([ ]∑∑
= =

−=
j i

lCjiljillCCl xCC
NM

x
1 1

00 ,,,ˆ
*
1 rr φθφθε )

N M 2

 (3-2) 

where each value of the roll angle in the sequence jφ , j = 1,2, ... , N has a corresponding 

sequence of values for the wind tunnel sting pitch angle i0θ , i = 1,2, ... , M, as shown in 

Figures 1-17 and 1-18. At these points, the wind tunnel measurements are 

( ) ( ){ }NjMiCC jiljiN ,...,2,1;,...,2,1;,ˆ,,ˆ
00 ==φθφθ , while the model responses determined 

at the same points for a given sets NCxr , lCxr  of model parameters are 

( ) ( ){ }NjMixCxC lCjilNCjiN ,...,2,1;,...,2,1;,,,,, 00 ==
rr φθφθ . 

 

When the published values of wind tunnel dynamic measurements at unsteady flow 

conditions are used to identify parameters, one roll angle time history ( ){ }Fii Ttt ≤≤0,φ , 

such that FLii Tttttt =<<<<<<= + ......0 121 , is taken for each fixed value of the sting 

pitch angle 0θ  in the sequence k0θ , k = 1, 2, ... , K . If the corresponding dynamic wind 

tunnel measurements of the rolling moment coefficient can be represented by 

( )( ){ }KkLitC il ,...,2,1;,...,2,1;,ˆ
0 ==θφ  and the values of the model responses calculated 

at the same points for given set dynxr  of model parameters are 

( )( ){ KkLixtC il ,...,2,1;,...,2,1;,, 0 == }rθφ , the error cost-function for the dynamic phase 

of the identification is 
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( ) ( )( ) ( )( )[ ]
2

1
00 ,,,ˆ1∑

=

−=
L

i
dynilildyndyn xtCtC

L
x rr θφθφε  (3-3) 

For known sequences of experimental data at each fixed pitch angle 0θ , the design 

variables in the cost-functions (3-1) to (3-3) are the model parameters stored in CNxr , Clxr , 

and dynxr . Representing the cost-functions in terms of these model parameters, we have 

( )CNCN xrε , ( ClCl xr )ε , and ( )dyndyn xrε . In this particular case, these individual cost-functions 

are controlled by different sets of variables, that is, ∗
CNxr , ∗

Clxr , ∗
dynxr  are the solutions to 

individual objectives, shown as follows 

( ) ( )CNCNCNCN xfx rr ε min, =∗∗

 

( ) ( )ClClClCl xfxr ε min, =
r∗∗

 (3-4) 

( ) ( )dyndyndyndyn xfxr ε min, =
r∗∗

 

In this research, MATLAB™ scripts have been used to find the values of ( )∗∗
CNCNx ε,r , 

( )∗∗
ClClx ε,r , and ( )∗∗

dyndynx ε,r . These scripts call the built-in function fminsearch, a 

multidimensional unconstrained nonlinear minimization based on the Nelder-Mead 

algorithm [56]. 

 

Next, we show the experimental data used to identify the model parameters and present 

some of the results of the identification. 

 

3.2 Simulated Experimental Data Used in Parameter Identification 
 

Since wind tunnel tests are not part of this research, previously published experimental 

data are used to identify the parameters of the investigated models. Because not all the 

needed data could be found in just one reference, data from several references are 

combined to form the set of simulated experimental data used in the parameter 
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identification. The static data used for the parameter identification are those obtained by 

Levin and Katz [47] for the slender delta wing whose geometry is shown in Figure 1-22. 

These static experimental data are reproduced in Figure 1-17 and Figure 1-18. Here, it is 

assumed that this wing undergoes wing rock for pitch angles between 22 and 45 degrees 

of angle of attack. It is also assumed that this wing has a dynamic behavior during steady 

state limit cycles similar to the experimental data obtained by Nguyen, Yip, and 

Chambers [45] for 0θ  = 27 (Figure 1-15) and 32 deg (Figure 1-16). The rolling moment 

coefficient experimental histogram for 0θ  = 27 deg is also used to identify the model 

parameters for 0θ  = 38 deg. The rolling moment coefficient experimental histogram for 

0θ  = 20 deg is also used to identify model parameters for 0θ  = 45 deg. All these data are 

multiplied by correction factors, to make the maximum absolute values of the rolling 

moment coefficient in the cycle consistent with the static value at the same pitch and roll 

angles shown in Figure 1-18. For the wing pitch angles at which the oscillations in roll 

damp out, the experimental data used to identify the parameters are assumed to have the 

same qualitative behavior exhibited in Figure 1-11. At these values of the pitch angle, the 

model parameters are identified on the first cycle in roll.  

 

The simulated dynamic experimental data set was extracted from [45] as described next. 

The roll angle time history used at angles of attack equal to 27 deg and 38 deg is obtained 

from reference [45], and shown in figures 3-13 and 3-16. This roll angle time history was 

originally obtained in [45] for the angle of attack equal to 27 deg, where the wing 

undergoes wing rock, but it is assumed here to be valid also for an angle of attack of 38 

deg. The roll angle time history used for the angles of attack equal to 20 and 45 deg is 

shown in figures 3-10 and 3-13. The values of the roll angle φ  corresponding to chosen 

discrete values of time were taken from these time histories. The corresponding values of 

the rolling moment coefficients were taken from the φ×lC  plots for each discrete value 

of φ . The resulting simulated experimental  time histories are shown in figures 3-4, 3-

6, 3-8, 3-11, 3-14, 3-17, and 3-20. 

lC
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3.3 Identification Results 
 

The whole set of model parameters involved in the previously discussed aerodynamic 

formulations is stored as vector xr . In order to merge the slender delta wing unsteady 

aerodynamic model with the equations of motion and proceed with further analyses, the 

models corresponding to the formulations described in Chapter 2 are identified using the 

slender delta wing experimental data described in Section 3.2, and the results are 

presented in the next Section.  

 

3.3.1 Parameter Identification for the First Investigated Model 
 

The results of the parameter identification of the first investigated model using the static 

experimental data are shown from Figure 3-1 to Figure 3-3. Comparing Figure 1-19 and 

Figure 3-3, we see that the values of the rolling moment arms vary with the roll angle in 

the opposite direction from expectations. The reason for that is that this formulation does 

not include the representation of vortex strength and vertical position, which would be 

responsible for the pressure distribution surfaces over the wing panels. Therefore, the 

restoring rolling moment increases for larger roll angle values is simulated in this 

formulation by a bigger moment arm. The remaining parameters identified using static 

experimental data are shown on Eqs. (3-5) to (3-7), and in Table 3-4.  

 

Next, the model parameters found for the first investigated model are shown in Equations 

(3-5) to (3-22). 

( ) ( ) 2
2-0.005288 iiNiiNNi xCxCC αα

αα ++=

( ) ( ) (3-5) ( ) ˆˆˆ 2
iiiNiiNiiN xCxCxC αααα

αααα ˆˆˆ 2 &&&
&&&

+++  

where: 
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( ) 2 5.427- 7.293-0.6703 iiiN xxxC =α  (3-6)

( ) 2 1.838 3.261-1.4532 iiiN xxxC +=α  (3-7)

i = left, right panel. 

The terms of Eq. (3-5) which are dependent on unsteady aerodynamics have parameters 

identified using the rolling moment coefficient experimental time-histories, for one value 

of the wing pitch angle at a time. The results of this phase of the identification for the 

first investigated model are presented in Figures 3-4 to 3-9. The identified parameters of 

the first investigated model at some selected values of the pitch angle θ0 are shown as 

follows on Eqs. (3-8) to (3-22):  

 

► 200 =θ deg: 

( ) 2 0.005699 761.9-9.656 iiiN xxxC ++=α&  (3-8)

( ) 2 0.53422 iiN xxC =α&  (3-9)

( ) 0=xC

ˆ

ˆ

(3-10) iN αα &  

tx  0.1995,1 =τ  (3-11) 

t 0.7952,2 =ατ  (3-12) 

 

► 270 =θ deg: 

( ) 2 0.005660 785.8-10.94 iiiN xxxC ++=α&  (3-13)

( ) 2 0.37572 iiN xxC =α&  (3-14) 
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( ) 0=xC

ˆ=τ

ˆ

(3-15) iN αα &  

(3-16) tx  0.1932,1  

t 0.7924,2 =ατ  (3-17) 

► 450 =θ deg: 

( ) iiN xxC  002444.0-57.74−=α&  (3-18) 

( ) 1861−=xC 2 iNα&  (3-19) 

( ) =

ˆ

=

41.77iN xC αα &  (3-20) 

tx  829.4-,1 =τ  (3-21) 

0,2 ατ  (3-22) 

where  s 01428.0ˆ =t
 

When we compare the model and the experimental data time-history responses in Figure 

3-4 to Figure 3-9, it can be observed that they are not in good agreement. At the pitch 

angles of 20 and 27 degree, they are only similar qualitatively. At 45 degree, they are not 

similar even qualitatively. Trying to improve the agreement between model responses 

and experimental data, the formulation described in Section 2.2 is proposed. The 

corresponding identification results are presented in the following Section. 
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Figure 3-1 Static normal force coefficient in balance coordinates vs sting pitch angle. 

Model responses (lines) and experimental data (geometric figures) for the improved 

Stagg’s model – the first investigated model. 
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Figure 3-2 Static experimental values of the rolling moment coefficients (geometric 

figures) and model responses (lines) vs. wing pitch angle for the first investigated 

model. 
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Figure 3-3 Identified static values of the normal forces non-dimensional arms vs. the 
roll angles for the first investigated model 
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Figure 3-4 Rolling moment coefficient time histories for the first investigated model 
at θ0 = 20 deg. 
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Figure 3-5 Rolling moment coefficient vs. roll angle for the first investigated model 
at θ0 = 20 deg. 

 

 

  



 82

 

 

 

 

 
 

Figure 3-6 Rolling moment coefficient time histories for the first investigated model 
at θ0 = 27 deg. 

 

 

 

 

 

 

  



 83

 

 

 

 

 
 

Figure 3-7 Rolling moment coefficient vs. roll angle for the first investigated model 
at θ0 = 27 deg. 
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Figure 3-8 Rolling moment coefficient time histories for the first investigated model 
at θ0 = 45 deg. 
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Figure 3-9 Rolling moment coefficient vs. roll angle for the first investigated model 
at θ0 = 45 deg. 
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3.3.2 Parameter Identification for the Second Investigated Model 
 

In this Section, we present the identification results for the unsteady aerodynamic 

formulation described in Section 2.2, when applied to a slender delta wing at angle of 

attack and with a degree of freedom only in roll. The identification is done with the help 

of the same experimental data set already described on Section 3.2. The sub-sets of 

design variables considered in the identification are shown on Table 3-2. 

 

The first try to identify the parameters of the second proposed and investigated 

formulation is done by using the procedure exactly as described in Section 3.1 for the 

wing at θ0 = 27 degrees, that means that the parameters related to the rolling moment 

arms identified using the static experimental data were kept fixed when the dynamic 

phase of the identification was made. The results of this first try were not good enough, 

probably because the static and dynamic experimental data used in the identifications 

come from different sources. In a second try, we left the parameters of the model 

parameters vector ∗
Clxr  free to vary in the dynamic phase of the identification. The results 

thus obtained match the experimental data quite well, as can be seen in figures 3-10 to 3-

17. The fact that in this second proposed and investigated unsteady aerodynamic model 

we choose internal state variables that are related to physical characteristics of the flow 

allows for better insight. Some of the plots of the internal state variables for the wing 

pitch angle θ0 = 27 deg are shown in Figure 3-22. According to the identification results 

shown in this figure, the vortex breakdown barely goes ahead of the trailing edge. This is 

consistent with the experimental observations [46] that show that slender wing rock 

happens even when vortex breakdown is not seen over the wing. Figure 3-22 is also 

consistent with what is expected for both the y  and v  internal state variables. We can 

see on that figure that the internal state variable y , related to the spanwise positions of 

the vortex core, oscillates between the centerline and the half-span. Also on that figure, 

the internal state variable related to the vortex strength and vertical position is in phase 
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with the roll angle, and attains its maximum and minimum values at the extreme values 

of the roll angle in such a way that the restoring moments keep the oscillations going. 

 

The second model has 62 parameters to be identified, that makes it more capable of 

fitting the data. Nevertheless, to find the right set of model parameters is far from 

straightforward. If the unconstrained optimization process is carried out for the complete 

roll angle time history since the beginning, a good match is hard to achieve. The best 

approach is to proceed with the identification starting with a part of the time history, say 

one fifth of the whole time history. After good agreement between model response and 

simulated experimental data was obtained for that part of the time history, another 

fraction was added, and so on. That procedure was used to get the results shown in 

figures 3-11 to 3-21. The identified values of the second investigated model parameters 

are shown in tables 3-5 to 3-9.  
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Figure 3-10 Roll angle time history for θ0 = 20 deg (above), and corresponding angle 
of attack time history for each half-wing (below). 
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Figure 3-11 Rolling moment coefficient time-history at θ0 = 20 deg, second 
investigated model. 
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Figure 3-12 Rolling moment coefficient vs. roll angle loops at θ0 = 20 deg, second 
investigated model. 
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Figure 3-13 Roll angle time history for θ0 = 27 deg (above), and corresponding angle 
of attack time history for each half-wing (below). 
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Figure 3-14 Rolling moment coefficient time-history at θ0 = 27 deg, second 
investigated model. 
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Figure 3-15 Rolling moment coefficient vs. roll angle loops at θ0 = 27 deg. 
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Figure 3-16 Roll angle time history for θ0 = 38 deg (above), and corresponding angle 
of attack time history for each half-wing (below). 
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Figure 3-17 Rolling moment coefficient time-history at θ0 = 38 deg. 
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Figure 3-18 Rolling moment coefficient vs. roll angle loops at θ0 = 38 deg. 
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Figure 3-19 Roll angle time history for θ0 = 45 deg (above), and 
corresponding angle of attack time history for each half-wing (below). 
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Figure 3-20 Rolling moment coefficient time-history at θ0 = 45 deg. 
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Figure 3-21 Rolling moment coefficient vs. roll angle loops at θ0 = 45 deg 
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Figure 3-22 Time histories at θ0 = 27 deg of the internal state variables related to the 
spanwise and vertical positions of the vortices cores. 
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Table 3-1 Model parameters for the first investigated model. 

 

i xCN(i) xCl(i) xdyn(i) 

1 CN0 yl @ °= 0φ  a3

2 a1 yl @ °= 10φ  b3

3 b1 yl @ °= 20φ  c3

4 c1 yl @ °= 30φ  a4

5 a2 yr @ °= 0φ  b4

6 b2 yr @ °= 10φ  c4

7 c2 yr @ °= 20φ  a5

8 °=∗ 0 @ φαD  yr @ °= 30φ  b5

9 °=∗ 01 @ φαD  - c5

10 °=∗ 02 @ φαD
- 1τ  

11 °=∗ 03 @ φαD
- 2τ  

12 °=∗ 0 @ φαU  - - 

13 °=∗ 01 @ φαU  - - 

14 °=∗ 02 @ φαU
- - 

15 °=∗ 03 @ φαU  - - 

16 °= 0 @ φσ D  - - 

17 °= 01 @ φσ D  - - 

18 °= 02 @ φσ D - - 

19 °= 03 @ φσ D - - 

20 °= 0 @ φσU  - - 

21 °= 01 @ φσU  - - 

22 °= 02 @ φσU - - 

23 °= 03 @ φσU - - 
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Table 3-2 Model parameters for the second investigated model. 

 

i xCN(i) xCl(i) xdyn(i) 

1 CN0 ∗
Dly ,,φ  a3

2 a1 ∗
Uly ,,φ  b3

3 b1 Dly ,,σ  c3

4 c1 Uly ,,σ  a4

5 a2 ∗
Dry ,,φ  b4

6 b2 ∗
Ury ,,φ  c4

7 c2 Dry ,,σ  a5

8 a6 Ury ,,σ  b5

9 b6 - c5

10 c6 - a9

11 a7 - b9

12 b7 - c9

13 c7 - a10

14 a8 - b10

15 b8 - c10

16 c8 - a11

17 ∗
Dα  - b11

18 ∗
Uα  - c11

19 Dσ  - a12

20 Uσ  - b12
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Table 3-3 Continuation of Table 3-2

 

i xCN(i) xCl(i) xdyn(i) 

21 ∗
Dlv ,,φ  - c12

22 ∗
Ulv ,,φ  - x,1τ  

23 Dlv ,,σ  - y,1τ  

24 Ulv ,,σ  - v,1τ  

25 ∗
Drv ,,φ  - ατ ,2  

26 ∗
Urv ,,φ  - φτ ,2  

27 Drv ,,σ  -  

28 Urv ,,σ  -  

 

 

 

Table 3-4 Parameters related to the internal state driving equation location and 

slope in function of the roll angle for the first investigated model. 

 

φ  

[deg]

∗α  σ  

0 1.354 4.775 

10 1.465 3.660 

20 1.543 3.205 

30 1.454 3.724 
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Table 3-5 Identified values of the second investigated model parameters stored as 
xCN  

 

i xCN(i) θ0 = 20 deg θ0 = 27 deg θ0 = 38 deg θ0 = 45 deg 

1 CN0 2.7404e-002 2.1850e-002 2.1850e-002 2.7404e-002 

2 a1 6.8707e-001 6.8711e-001 6.8711e-001 6.8707e-001 

3 b1 -7.0906e+000 -7.0919e+000 -7.0919e+000 -7.0906e+000 

4 c1 -5.2137 e+000 -5.2155e+000 -5.2155e+000 -5.2137e+000 

5 a2 1.6909 e+000 1.6872e+000 1.6872e+000 1.6909e+000 

6 b2 -3.0125 e+000 -3.0145e+000 -3.0145e+000 -3.0125e+000 

7 c2 2.1221 e+000 2.1195e+000 2.1195e+000 2.1221e+000 

8 a6 -2.6740e-001 -2.2958e-001 -2.2958e-001 -2.6740e-001 

9 b6 -2.6043e-002 5.9983e-002 5.9983e-002 -2.6043e-002 

10 c6 1.4537e-001 1.7257e-001 1.7257e-001 1.4537e-001 

11 a7 8.9613e-003 2.6163e-001 2.6163e-001 8.9613e-003 

12 b7 1.2309e-001 1.1374e-001 1.1374e-001 1.2309e-001 

13 c7 7.9218e-002 7.9529e-002 7.9529e-002 7.9218e-002 

14 a8 1.4662 e+000 9.9747e-002 9.9747e-002 1.4662e+000 

15 b8 4.2017e-002 3.9816e-002 3.9816e-002 4.2017e-002 

16 c8 2.3602e-002 2.4769e-002 2.4769e-002 2.3602e-002 

17 ∗
Dα  1.4160e+000 2.8554e+000 3.3317e+000 2.1722e+000 

18 ∗
Uα  1.4160e+000 2.8554e+000 3.3317e+000 2.1722e+000 

19 Dσ  2.0682e+000 1.0377e+001 1.1598e+001 2.8981e+000 

20 Uσ  2.0682e+000 1.0377e+001 1.1598e+001 2.8981e+000 
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Table 3-6 Continuation of Table 3-5. 

i xCN(i) θ0 = 20 deg θ0 = 27 deg θ0 = 38 deg θ0 = 45 deg 

21 ∗
Dlv ,,φ  2.1314e-002 3.1542e-002 2.4476e-002 2.2465e-002 

22 ∗
Ulv ,,φ  -3.5402e-002 2.6730e-002 3.1913e-002 -3.4784e-002 

23 Dlv ,,σ  1.4597e+001 6.3498e+000 8.4220e+000 1.6358e+001 

24 Ulv ,,σ  1.0026e-001 5.9295e+000 7.4075e+000 8.6172e-002 

25 ∗
Drv ,,φ  6.1938e-002 2.0780e-001 1.9686e-001 6.0358e-002 

26 ∗
Urv ,,φ  5.7646e-002 5.2698e-001 5.6696e-001 5.6214e-002 

27 Drv ,,σ  1.3842e+001 3.7205e+000 3.6031e+000 1.5137e+001 

28 Urv ,,σ  1.1438e+001 1.5301e+001 1.7665e+001 1.2999e+001 

 

Table 3-7 Identified values of the second investigated model parameters stored as xCl

 

i xCl(i) θ0 = 20 deg θ0 = 27 deg θ0 = 38 deg θ0 = 45 deg 
1 ∗

Dly ,,φ  1.2602e+001 -1.9827e-001 -2.0148e-001 1.2446e+001 

2 ∗
Uly ,,φ  1.2602e+001 -1.9827e-001 -2.0148e-001 1.2446e+001 

3 Dly ,,σ  -1.2015e+003 -5.3463e+000 -4.4443e+000 -1.2232e+003 

4 Uly ,,σ  -7.8353e+000 -1.0263e+001 -5.0803e+000 -7.8896e+000 

5 ∗
Dry ,,φ  -1.6449e+003 -2.5374e+002 -2.4108e+002 -1.7883e+003 

6 ∗
Ury ,,φ  -1.6449e+003 -2.5374e+002 -2.4108e+002 -1.7883e+003 

7 Dry ,,σ  2.8408e-001 4.9048e-003 4.9760e-003 2.6722e-001 
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8 Ury ,,σ  3.6123e-003 1.3593e-003 1.2434e-003 3.6795e-003 

 

 

Table 3-8 Identified values of the second investigated model parameters stored as 
xdyn

 

i xdyn(i) θ0 = 20 deg θ0 = 27 deg θ0 = 38 deg θ0 = 45 deg 

1 a3 -7.1836e-001 -2.6355e+000 -2.3342e+000 -7.2887e-001 

2 b3 -1.7830e+002 -8.3922e+001 -7.7390e+001 -1.7330e+002 

3 c3 -3.5270e+001 -3.5080e+003 -2.2559e+003 -3.7521e+001 

4 a4 2.7081e+002 9.1614e+002 1.3472e+003 2.4691e+002 

5 b4 -2.2916e+003 -3.0140e+004 -3.5954e+004 -4.2587e+003 

6 c4 -1.6381e+003 -3.5130e+003 -4.8785e+003 -1.7617e+003 

7 a5 -4.8981e+002 -2.5102e+001 -1.9191e+001 -1.3918e+002 

8 b5 -1.9642e+003 -3.3407e+002 -2.2134e+002 -2.3841e+003 

9 c5 -3.2078e+002 -5.9000e+003 -3.8720e+003 -3.3461e+002 

10 a9 6.0626e-002 -1.3660e-010 -1.5806e-010 6.3042e-002 

11 b9 -6.9690e-011 -1.3880e-010 -1.5829e-010 -7.2307e-011 

12 c9 -1.0345e-010 -1.2464e-010 -1.1902e-010 -1.1695e-010 

13 a10 -1.8674e+001 -1.2404e-010 -1.4855e-010 -1.9274e+001 

14 b10 -1.9758e-011 -6.7498e-011 -9.1097e-011 -1.9740e-011 

15 c10 -5.7676e-011 -8.6019e-011 -9.4511e-011 -5.9421e-011 

16 a11 6.0378e+001 -1.6238e-010 -1.4520e-010 8.0884e+001 

17 b11 -5.5131e-011 -1.0544e-010 -9.6867e-011 -5.5152e-011 

18 c11 -8.2905e-011 -1.0210e-010 -1.1436e-010 -9.1052e-011 

19 a12 3.4144e-002 -1.3602e-010 -1.7319e-010 3.6664e-002 

20 b12 -1.3943e-011 -1.5217e-010 -1.8883e-010 -1.6742e-011 
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Table 3-9 Continuation of Table 3-8 

i xdyn(i) θ0 = 20 deg θ0 = 27 deg θ0 = 38 deg θ0 = 45 deg 

21 c12 -2.8514e-011 -1.3321e-010 -1.3431e-010 -2.7301e-011 

22 x,1τ  2.4910e+001 8.8934e+000 9.4968e+000 3.0446e+001 

23 y,1τ  2.4684e+003 4.2317e+001 6.8737e+001 6.1722e+003 

24 v,1τ  1.3224e+000 1.0958e+002 1.6284e+002 1.1687e+000 

25 ατ ,2  3.0909e+001 4.4349e+001 8.7504e+000 1.6491e+001 

26 φτ ,2  1.8651e+000 1.2740e+001 1.1641e+001 1.9255e+000 
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4 Numerical Simulations in Roll 
 

In this Chapter, the single degree of freedom numerical simulation in roll of the slender 

delta wing shown on Figure 1-22 is carried out using the second proposed unsteady 

aerodynamic model, defined in Section 2.2. 

 

We start by reducing the set of six degree of freedom rigid body equations of motion in 

body axes to the simple single degree of freedom pure roll case. Then, we add to the 

equations of motion the state and output equations of the unsteady aerodynamic model 

and perform some simulations. The six degree of freedom rigid body equations of motion 

in body axes are [57]

mXgrvqwu /sin =+−+ θ&  

mYgpwruv /sincos =−−+ φθ&  

mZgqupvw /coscos =−−+ φθ&  (4-1) 

( ) ( ) ( ) ( ) LpqrIqprIqrIqrIIpI xzxyyzyyzzxx =+−−+−+−+ &&& 22  

( ) ( ) ( ) ( ) MrpIqrpIrpqIprIIqI xzxyyzzzxxyy =−++−−+−+ 22&&&  

( ) ( ) ( ) ( ) NpqrIprqIpqIpqIIrI xzyzxyxxyyzz =−+−−−+−+ &&& 22  

θψφ sin&& −=p  

φθψφθ sincoscos && +=q  

φθφθψ sincoscos && −=r  

 

4.1 Rigid Body Dynamics 
The derivation of the six degree of freedom equations of motion for a rigid body can be 

found in several references, for example [4], [58] and [59]. When in body axes 

coordinates, they are written as shown in (4-1). 

 

In the case of sting-mounted wind tunnel tests, only the roll degree of freedom is 

considered. Then, the body axes components of linear velocity u, v, w, of angular velocity 
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q, r, the Euler angles time rates , θ& ψ& , and their time derivatives are zero. As a 

consequence, the general aircraft equations of motion (4-1) are reduced to 

LpI xx =&  (4-2)

φ&=p  

which is a two variable state space system. Here, L stands for the rolling moment 

component in body axes. 

 

4.2 Complete Dynamic System  
 

To describe the complete dynamic system, the rigid body system of equations must be 

coupled to the unsteady aerodynamic model equations. The aerodynamic model appears 

in the rigid body equations (4-1) through the rolling moment coefficient in the system 

(4-2), that is: 

l
xx

C
I
Sbqp == φ&&&  

As described in Chapter 2 for the second proposed aircraft unsteady aerodynamic model, 

the moment coefficients are obtained by multiplying left and right wing force coefficients 

by their arms along the corresponding body axis. The complete description of the 

functional unsteady aerodynamic formulation (4-2) used is in Section 2.2. In order to 

determine the delta wing motion, equations (4-2) must be coupled to equations (2-13), 

(2-14), (2-15). The resulting dynamic system built in this way is given by the eight first-

order differential equations (4-3)
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p=φ&  

l
xx

C
I
Sbqp =&  

( ) ( )leffDleffUl
l

x xDxUx
dt
xd

,,0,,01 αατ αα +=+  

( ) ( )reffDreffUr
r

x xDxUx
dt
xd

,,0,,01 αατ αα +=+  

( ) ( )effDleffUll
l

y yDyUy
dt
yd

φφτ φφ ,,0,,01 +=+  (4-3) 

( ) ( )effDreffUrr
r

y yDyUy
dt
yd

φφτ φφ ,,0,,01 +=+  

( ) ( )effDleffUll
l

v vDvUv
dt
vd

φφτ φφ ,,0,,01 +=+  

( ) ( )effDreffUrr
r

v vDvUv
dt
vd

φφτ φφ ,,0,,01 +=+  

 

The dynamic equations (4-3) must be integrated simultaneously to simulate the slender 

delta wing single degree-of-freedom roll motion. The internal state variables ix , iy , iv  

are coupled to the two first equations of motion through the rolling moment coefficient 

Cl, which is determined by Eq. (2-12), reproduced below for the convenience of the 

reader: 

( ) ( )φφ rrNllNl yCyCC −=  (4-4) 

In that equation, the left and right panel normal force coefficients are multiplied by their 

arms iy . The normal force coefficients are calculated from the remaining internal state 

variables through Eqs. (2-16), (2-29), (2-30), (2-31), and (2-33). 
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4.3 Results of the Simulations 
 

The slender delta wing used in the simulations is wing 2 of Table 1-1. Nevertheless, since 

part of the aerodynamic experimental data used to identify the parameters were originally 

obtained for wing 1, we took the value of its moment of inertia. Therefore, the mixed 

characteristics of the wing used in the simulations are span =b  0.150 m, root chord =rc  

0.4285 m, sweep angle at the leading edge 80 degrees, and rolling moment of inertia  

= 9.18  kg m

xxI

210−× 2. The air density value adopted for the simulations is =ρ 1.2 kg/m3, 

and the airspeed is VT = 9.27 m/s. The first simulation is done for the wing starting from 

rest at =0φ 5 deg, =0θ 30 deg. At these conditions, the wing is expected to exhibit wing 

rock, and occurs, as Figures 4-1 and 4-2 show. The roll attractor is not located at null roll 

angle, as expected from wind tunnel tests like the one whose results are shown on Figure 

1-12. Also, the amplitude is much smaller in the present simulations. We attribute this 

and other differences between these simulations and the classical wing rock behavior to 

the scarcity of the experimental data available to identify the parameters. Figures 4-4 and 

4-5 show the results of the simulation starting at =0θ 30 deg, =0φ -5 deg, and 0 

deg/s, and we can see that the roll attractor at 

=0φ&

=φ  -12 deg is confirmed. To better 

compare our results to those shown in Figure 1-12, we simulate wing rock with the wing 

departing from the roll attractor position. This result shows that the build up time is much 

shorter in the present case. Finally, a simulation is started at =0θ  25 deg, and the results 

are presented in Figures 4-7 and 4-8. At this pitch angle, wing rock is not supposed to 

occur. Results show that it does not in the simulations either, but since the area enclosed 

by the loop in Figure 3-12 is so small, the lateral stability of the wing is found to be 

practically neutral, and it slowly diverges from the initial position. 
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Figure 4-1 Free to roll simulations at wing pitch angle equal 30 deg, starting at roll 
angle equal 5 degree. 
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Figure 4-2 Phase-plane of the simulation response at pitch angle equal 30 deg, initial 
roll angle of 5 degree. 
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Figure 4-3 Free to roll simulations at wing pitch angle equal 30 deg, starting at roll 
angle equal -5 degree. 
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Figure 4-4 Phase-plane of the simulation response at pitch angle equal 30 deg, initial 
roll angle of -5 degree. 
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Figure 4-5 Free to roll simulations at wing pitch angle equal 30 deg, starting at roll 
angle equal -12 degree. 
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Figure 4-6 Phase-plane of the simulation response at pitch angle equal 30 deg, initial 
roll angle of -12 degree. 
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Figure 4-7 Free to roll simulations at wing pitch angle equal 25 deg, starting at roll 
angle equal -10 degree. 
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Figure 4-8 Phase-plane of the simulation response at pitch angle equal 25 deg, initial 
roll angle of -10 degree. 
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5 Conclusions 
 

Physical models may have a higher computational cost than the functional ones, but their 

derivation follows a rationale that is dictated by the physical laws that, like a roadmap, 

lead to a logical result. Otherwise, there are theoretically lots of functional models 

capable of representing a certain physical phenomenon and this research has shown that 

the job of figuring out the one that fits can be daunting. Here, the job of finding one 

dynamic functional model with a state-space formulation that represents wing rock was 

made a little bit less daunting by following the guidance of physical properties of the 

flow observed in previous work. As a result, the second proposed and investigated model 

was shown to be capable of representing wing rock even when used with sparse 

experimental data. We believe that, with the help of a better set of experimental data, 

obtained from the wind tunnel or from computational fluid dynamic programs, far better 

results can be reached. 

 

It is opportune to remember that the slender delta wing configuration simulated here was 

split into just two panels, and that the simulation is carried out for just one degree of 

freedom. According to the results shown in Section 4.2, the application of the proposed 

formulation to this kind of problem gives as a result a dynamic system containing two 

equations of motion plus six internal state equations for the unsteady aerodynamic model, 

making a total of eight first-order differential equations to be simultaneously integrated. 

Notice that, if we had a conventional airplane configuration split into six panels to be 

simulated in a six degree of freedom motion, the total number of state equations would be 

thirty. 

 

In system identification, an appropriate model should have the following characteristics: 

(a) to reproduce well enough the plant behavior in the range where the data used to 

identify parameters were gathered; 

(b) the parameter identification should be easy; 

(c) have good ability for generalization. 
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Considering these characteristics, the second model investigated can be considered to be 

promising. Its formulation represents the wing rock phenomenon while allowing good 

insight into some of the physical properties of the flow. Even though the simultaneous 

integration of up to thirty state equations can not be considered low-cost computational 

work, it is lower than the computational cost of any physical method. 

 

As future work in this subject is considered, we suggest the use of a physical numerical 

method like, for example, the UVLM as a sort of virtual wind tunnel, to get more 

consistent simulated experimental data to better identify the proposed model. 
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Appendices 
 

 

 

 

Appendix A 
 

 

 

A.1 The Convolution Integral Theorem 
 

Also called the Superposition Theorem or Duhamel’s integral theorem [57]. 

 

Let  to be the Laplace transform of ( )sX1 ( )tx1 , and ( )sX 2  be the transform of ( )tx2 . 

Then the function  whose transform is the product ( )tx3 ( ) ( ) (sXsXsX 213  )=  is 

( ) ( ) ( ) τττ
τ

dtxxtx
t

  2
0

13 −= ∫
=

 

 

The theorem of this section helps with the calculation of transient responses of linear 

systems to complicated forcing functions. The general response appears as the 

superposition of responses to a sequence of steps or impulses that represent the actual 

forcing function. 
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A.2 Angle of attack and sideslip variation during rolling motion at fixed 

pitch angle 
 

In a wind tunnel working in steady state conditions, the free stream velocity vector is 

constant and horizontal. We therefore choose the X axis of the local horizontal reference 

system to be coincident with the velocity vector. When the airplane model rolls around 

the sting, the effective angle of attack ( )tα and sideslip ( )tβ  in a given time t are related 

to the model roll angle ( )tφ  at that moment.  

The definitions for the angle of attack and sideslip angle as a function of the body-axes 

components u, v, and w of the air velocity are [57], [59], [60]: 

( )
u
wt 1tan−=α          (A.2-1) 

( )
222

11

wvu
vsin

V
vsint

++
== −−β       (A.2-2) 

The u, v, and w velocity body-axes components can be related to the air velocity through 

a local horizontal to the body axis reference systems transformation matrix TB,H, such 

that, in the particular case where the heading angle ψ  is zero, we have 
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Therefore,  
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0cosθVu =  

φθ sinVsinv 0=  

φθ cos0Vsinw =          (A.2-5) 

 

Substituting the Eqs. (A.2-5) into the definitions (A.2-1) and (A.2-2), we get  

 

( ) ( )[ ]tt φθα costantan 0
1−=  

( ) ( )[ tt φθβ sin sinsin 0
1−= ]        (A.2-6) 

 

Figure A.2-1 shows the variations of ( )tα  and ( )tβ  with ( )tφ  for °= 200θ . At °= 0φ , 

the model sideslip angle is zero, and its angle of attack is equal 0θ . As the roll angle 

grows from 0 to 90 degree, the model angle of attack is reduced to zero and its sideslip 

angle grows to the value of the pitch angle.   
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Fig. A.2-1 Variation of the aerodynamic angles with the roll angle for a pure rolling 

motion in wind tunnel for pitch angle equal 20 deg. 
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