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(ABSTRACT) 
 

Today’s high performance aircraft are operating in expanded flight envelopes, often 
maneuvering at high angular rates at high angles-of-attack, even above maximum lift.  Current 
aerodynamic models are inadequate in predicting flight characteristics in the expanded envelope, 
such as rapid aircraft departures and other unusual motions.  Unsteady flows of aircraft are of 
real concern.  The ability to accurately measure aerodynamic loads directly impacts the ability to 
accurately model and predict flight.  Current wind tunnel testing techniques do not adequately 
address the data fidelity of a test point under the influence of fluctuating loads and moments.  
Additionally, forced oscillation test techniques, one of the primary tools used to develop 
dynamic models, do not currently provide estimates of the uncertainty of the results during an 
oscillation cycle.  Further, in testing models across a range of flight conditions, there are 
frequently parts of the envelope which are well behaved and require few data points to arrive at a 
sound answer, and other parts of the envelope where the responses are much more active and 
require a large sample of data to arrive at an answer with statistical significance.  Currently, test 
methods do not factor changes of flow physics into data acquisition schemes, so in many cases 
data are obtained over more iterations than required, or insufficient data may be obtained to 
determine a valid estimate. Methods of providing a measure of data integrity for static and forced 
oscillation test techniques are presented with examples.  A method for optimizing required 
forced oscillation cycles based on decay of uncertainty gradients and balance tolerances is also 
presented. 
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 Background of testing 
 

1-1.1  Static test considerations 
 
Static wind tunnel tests are inherently “un-static” or unsteady with time.  These unsteady 

effects are usually small at low angles-of-attack, α and have traditionally been time averaged or 
simply filtered out and thus assumed negligible.  Unsteady aerodynamics become significant 
near maximum lift and often result in stall or loss of control departures in flight.  Repeats of 
static tests at high α often result in multiple state, discontinuous data over very small increments 
in α and sideslip.  For example reference [1] described several repeat static α-sweeps of the F/A-
18E which exhibited discontinuous multiple states, i.e. opposite signs, in rolling moment around 
α = 15º.  Even though we can acknowledge that the concept of “static” aerodynamics is an ideal 
simplification, current data analysis and modeling techniques depend on that assumption.  
Therefore, a repeatable value of the forces or moments needs to be arrived at to fulfill the need 
for static data, and quantification of the confidence bounds due not only unsteady aerodynamic 
effects, but also the other factors involved in test measurements need to be available to enable 
useful interpretations of the data. 

 
1-1.2  Dynamic data 

 
Forced oscillation and rotary balance testing are the key sources of dynamic aerodynamic 

information for aircraft simulation and modeling.  The rotary balance tests result in steady-state 
rotational rate aerodynamic information as the model is rotated about its velocity vector.  The 
forced oscillation tests provide aerodynamic measurements while the model is sinusoidally 
oscillated about one of the body axes.  Traditionally only frequencies near the Dutch roll natural 
frequency and short period natural frequency of the aircraft were tested over small amplitudes to 
estimate damping derivatives.  These damping derivatives were then assumed to be linear with 
angular rate.  Forced oscillation tests have documented effects of reduced frequency in the 
1960’s [2], however modeling of those effects has only recently begun to be addressed in current 
testing and simulation. This effect of reduced frequency may be an indication of time-
dependence in the aerodynamic response due to unsteady motions of the model.  Additional 
drivers at work in precipitating a change in how forced oscillation data are obtained is that with 
the improved computer and data storage capabilities today, we are now measuring and saving 
entire time histories of the forces and moments on the model during the test instead of relying on 
the traditional hardware-based data reduction schemes which produced the standard linear 
derivatives. 
 

 Current Testing Needs 
 

Aerodynamic coefficient build-up equations have been used to model aerodynamic 
characteristics of airplanes for simulation and analysis for over 75 years.  Dynamic aerodynamic 

1 
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characteristics have traditionally been modeled by damping derivatives - linear with angular rate.  
These damping derivatives traditionally have been obtained using forced oscillation wind tunnel 
tests.  These tests involve measuring forces and moments on a model during sinusoidal 
oscillations at set frequencies and amplitudes.  Although this linear representation of damping 
effects has worked well in the past, today’s high performance aircraft are operating in expanded 
flight envelopes, often maneuvering at high angular rates at high angles-of-attack, even above 
maximum lift.  Current models are inadequate for predicting flight characteristics in the 
expanded envelope, such as rapid aircraft departures and other unusual motions [3].   
 
1-2.1  Nonlinear and unsteady flows in static tests 

 
Static aerodynamic information is essential for any aerodynamic model as it provides the 

basis for predicting flight performance and aircraft stability.  The expanded envelope of today’s 
high performance aircraft requires ground testing at high angles-of-attack in nonlinear and 
unsteady flight regimes.  Nonlinear aerodynamics has always posed a modeling problem while 
unsteady effects have traditionally been neglected.  However today unsteady flows of aircraft are 
of real concern as with the pre-production F/A –18E wing drop problem, which prompted the 
Abrupt Wing Stall (AWS) program [4].  The ability to accurately measure static aerodynamic 
loads directly impacts the ability to accurately model and predict flight.   

 
1-2.2  New modeling methods for dynamic data  

 
The continuing development of dynamic test methods such as forced oscillation, rotary 

balance, ramp [5], multi-axis, wide-band sweeps (Schroeder sweeps), oscillatory coning, free-to-
roll, etc. have opened new doors for modeling non-linear and unsteady aerodynamics.  Recent 
modeling approaches include single-point [5], indicial [3], fuzzy logic [6], state-space [7], and 
the list goes on and on.  Each of these models had limited success.  Moreover, few if any of these 
papers provided any quantitative assessment of the integrity of the data.  In fact it is common 
practice not to provide uncertainty estimations, instrumentation tolerances or even the range of 
the data.  It is important to know how well the data has been measured that models are being 
applied to.  Large uncertainties may indicate an absence of accounting for some important 
variables in the test design and math model development, as well as indicating instrumentation 
uncertainties and flow unsteadiness. 
 

 Current techniques for assessment of data integrity 
 
1-3.1  Test conduct approaches  

 
One proposed method of quantifying data integrity of a wind tunnel test result is through 

Statistical Quality Control (SQC).  SQC requires replication over significant amounts of time 
with check-standard models for defined test conditions.  It is suggested in time all error sources: 
instrumentation, environmental, human, etc. will be exercised and thus be expressed in the data.  
The time scales required to exercise all error sources may be on the order of days, months or 
even years.  The information provided by this technique is then used to determine if the location 
(mean) and dispersion (variance) are moving with time.  If location and dispersion are constant 
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the process is said to be in a state of  “statistical control”.  The dispersion of the check standard is 
then scaled to give a measure of reproducibility to the customer [8].   

The other end of the spectrum is Modern Design of Experiments (MDOE).  MDOE 
involves tailoring the experiment process to meet defined uncertainty objectives through 
randomization, blocking, and replication.  For example, if angle-of-attack, Mach, and Reynolds 
number were independent variables of the test matrix; these variables would all be changed on 
every data point and set in random order.  One has to wonder what implications this technique 
has in the presence of unsteady or nonlinear aerodynamics?  Blocking, or obtaining, the data in 
blocks of time is said to ‘defend against systematic shifts that can occur from one block of time 
to another’ [9].  The example given for selecting blocks is to schedule block boundaries at staff 
shift changes.  This would reduce unexplained variance due to different techniques and skill 
levels of the tunnel personnel.  Replication is simply repeating the process.   

Both SQC and MDOE would require the current static and dynamic testing process to 
change dramatically and would not provide a mechanism to address data integrity for data 
already collected.   

 
1-3.2  Uncertainty Analysis  

 
An uncertainty analysis could be done by Monte Carlo simulation where the random 

errors and elemental systematic errors for each variable are assumed to belong to some 
distribution, such as a Gaussian distribution.  These errors are then randomly selected and added 
to the assumed true values of the independent variables to get a “measured” value.  The 
measured values are then used in the data reduction equation to calculate a result.  This process is 
repeated N times.  The mean and standard deviation are then calculated to estimate the 
uncertainty.   

Uncertainty propagation quantifies the effects of elemental systematic and random 
uncertainties as they are propagated through data reduction equations to a final result.  The 
technique is best suited for identifying significant error sources during the planning phase of an 
experiment.  However it can be applied during and/or after the experiment is over [10].   
 

 Improved data integrity and efficient testing  
 
Uncertainty propagation is a practical approach for an online real-time estimation of data 

integrity.  The assumptions involved with uncertainty propagation require an understanding of 
basic statistical concepts such as the mean, standard deviation, and probability distribution 
function.  Methods of providing a measure of data integrity through estimation of propagated 
uncertainty for body-axis aerodynamic coefficients from static and forced oscillation tests will be 
presented with examples.  Finally, a method of determining how many repeat cycles of forced 
oscillation testing are needed based on decay of uncertainty gradients and a user specified 
threshold will be presented.  This procedure could reduce test time required to conduct a forced 
oscillation test substantially while insuring that enough data has been acquired for accurate 
estimates of the force and moment coefficients.  Additionally, the test engineer is provided with 
quantitative error bound estimates for the forced oscillation test results for the first time.   
 



 

2  Statistical Considerations for 
Propagation of Uncertainties 

 
 
 
2-1  Basic concepts and definitions 
 

Error or inaccuracy is an inherent part of every measurement.  The application of 
experimental data in an analytical solution requires an understanding of the experimental 
uncertainties involved.  Consider an experiment that requires several measurements or readings 
of a variable, x.  The i and i+1 measurements are shown in Figure 2.1.  Assuming the true value 
of x is known, the inaccuracy or total measurement error, δ of each reading is the difference 
between the measured value and the true value.  The distribution of all possible readings is called 
the parent distribution or parent population.  This distribution often consists of an infinite 
number of readings.  Collecting the parent population experimentally is simply not practical.  
The set of values obtained is usually a sample of the population.  Typically, as more 
measurements are taken the random variation within the sample would produce a histogram as 
shown in Figure 2.2.  As the number of readings approached infinity the distribution may form a 
smooth curve such as that in Figure 2.3.   

 

R
ea

di
ng

s

 

xixi+1

εiεi+1 
δi+1 

δi 

xtrue 

β

x

Figure 2.1  Errors in the measurement of a variable x for two readings. 
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Figure 2.2  Errors in the measurement of a variable x: histogram of multiple readings. 
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Figure 2.3  Errors in the measurement of a variable x: histogram of an infinite number of 
readings. 
 

The difference between the mean, µ of an infinite number of readings and the true value 
is the only theoretical constant component of the total error of each measurement.  This 
systematic component of the error is referred to as the bias error, β.  The random component of 
the total error for each measurement is the precision error, ε.   
 
2-1.1  Gaussian parent distribution 
 

In cases where the variation in the readings come from many small random errors each of 
equal magnitude, with each error being just as likely to be negative as positive, the smooth 
distribution of an infinite number of readings coincides with the Gaussian distribution.  The 
Gaussian distribution has been shown to describe more experimental and instrumentation 
variation than any other statistical distribution.  The Gaussian distribution curve, otherwise 
referred to as the probability density function, has an area of 1. In other words, the probability 
that any measurement, no matter how unlikely, will be included under the distribution curve is 
100%.  The probability that a reading, xi will fall within ±∆x about the mean µ is 
 

 ∫
−

−=
1

1

2 2
1 2

1)(Prob
τ

τ

τ τ
π

τ de  (2.1) 

 
where the normalized deviation of xi from µ is defined as 
 

 
σ
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 (2.2) 

 
Here µ and σ are the distribution mean and standard deviation respectively such that  
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The square of the standard deviation is the variance of the distribution.   
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2-1.2  Confidence intervals of a Gaussian parent distribution 
  

Equation (2.1) has shown we can be 100% confident any reading may exist between ±∞.  
A more practical “degree of goodness” would be to know the probability any reading would fall 
under the “meatier” part of the bell curve.  If various values of τ are solved for, it can be shown 
that a τ of 1.96 gives a probability of 95%.  Furthermore the probability expression for τ = 1.96 
can be written as 
 

 95.0)96.196.1(Prob)96.1(Prob =≤
−

≤−==
σ

µτ ix
 (2.5) 

 
Rearranging to isolate xi, 
 
 95.0)96.196.1(Prob =+≤≤− σµσµ ix  (2.6) 
 
we can be 95% confident a single reading xi will fall within ±1.96σ of the mean of the 
distribution.   
 
2-1.3  Samples from a Gaussian parent distribution 
 

The set of values obtained when making measurements is only a sample of the infinite 
parent population, which formed the Gaussian distribution.  Therefore the statistical properties of 
a finite distribution must be considered.  The mean of a sample population is defined as  
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i
iN xx
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1  (2.7) 

 
where N is the number of readings, xi.  The precision index of a sample population, also known 
as the sample standard deviation, is given by 
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where the (N-1) occurs because the sample mean x  is used instead of µ.  One degree of freedom 
is lost because the same sample used to calculate Sx was already used to calculate x .   

Generally the sample mean and the population mean will not be the same.  The question 
then becomes how close are the two means?  What if several samples are collected?  Each 
sample would have a different mean and standard deviation.  However, the sample means will be 
normally distributed with mean µ and standard deviation, σ  such that 

 

 
N

σσ =  (2.9) 
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This implies the uncertainty of the mean due to random error can be decreased by taking many 
readings.  However, this is a function of rapidly diminishing returns due to the inverse square 
root.  Again, the standard deviation is not known so the sample standard deviation must be used 
as an estimate such that the sample standard deviation of the mean is defined by 

 

 
N

S
S x

x =  (2.10) 

 
2-1.4  Confidence intervals of a sample population 
 
The parent population standard deviation, σ is not known and must be estimated by the sample 
standard deviation, Sx.  The confidence limit for a sample is the precision limit, Px where 
 
  (2.11) xx HSP =
 
and the precision limit of the mean is defined as 
 

 
N

HS
HSP x

xx ==  (2.12) 

 
The coverage factor, H is generally taken as 2 for a 95% confidence interval.  This assumes a 
large sample size and the parent population has Gaussian distributed error.  A coverage factor of 
2 will converge to a 95% confidence interval as the sample size approaches infinity.  This 
implies, for H = 2, we will be 95% confident that the next reading will be within xPx ±  or µ will 
be within xPx ± .  A sample size of at least 10 will be considered appropriate for a coverage 
factor of 2 [11]. 
 
2-1.5  Statistical rejection of “wild” readings 
 

Occasionally “wild” measurements are recorded.   These points are out of line with the 
others and are sometimes called “outliers”. They have a tendency to displace the sample mean 
and widen the precision limits.  If these points can be verified as a problem with the experiment 
then they can be discarded.  However this is usually not the case and a statistical cleansing must 
be used.  Chauvenet’s criterion for statistical rejection of wild readings from a sample population 
does that.  It rejects readings beyond the confidence interval defined by 
 

 
N2
11)(Prob −=τ  (2.13) 
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Here is the maximum allowable deviation from the sample mean, maxx x .  Beyond the 
readings are rejected.  Chauvenet’s criterion can only be used once for a given sample.  It may be 
applied “online” or as readings are being recorded if and only if all previous readings are used in 
the calculation of the new τ.  In other words, rejected readings from the previous N reading 
sample are used when Chauvenet’s criterion is applied for the new N+1 reading sample.  Those 
readings rejected from the N reading sample may or may not be considered “wild” when 
Chauvenet’s criterion is applied to the N+1 reading sample.  For example if the 45

maxx

th reading x45 
of a sample of 100 readings can be considered “wild” by τ100 it may be rejected and x  and Sx can 
be recalculated without x45.  However, when the next reading x101 is recorded, x  and Sx will in 
all likelihood change and x45 could quite possibly not be considered wild by τ101.   
 
2-1.6  Systematic error estimation 
 

There will always be some uncertainty associated with the estimate of the systematic or 
bias error, β in a measurement.  Typically the bias error estimate, B is taken as the accuracy of 
the instrument given by the manufacturer or calibration laboratory.  As we will see in chapter 4 
the term “accuracy” is often used with different meanings from manufacturer to manufacturer 
and even from calibration laboratory to calibration laboratory.  In general every instrument, even 
if from the same assembly line, has a different systematic error.  Manufacturers, sometimes, 
sample their product line and test the systematic error of instruments in the sample.  This bias 
error estimate should be given with the same level of confidence as the precision limits used by 
the customer, typically with 95% confidence.  However this is not always what is done.  The 
instrument can be sent to a calibration laboratory to be calibrated against a standard, or another 
instrument that has a much better accuracy.  Calibration will minimize the bias error in the 
instrument but only to the accuracy of the standard used.   
 
2-2 

)

 Uncertainty of measurements 
 

Estimations for systematic errors, B and random errors, P have been presented, but what 
about the overall uncertainty, U in a measurement?  There are two ways of combining the two 
error estimates: straight addition and root-sum-square.  We will use the RSS method, as it 
remains a 95% confidence interval whereas the straight addition increased the uncertainty to 
99% confidence limits.  The total estimate of the uncertainty thus is given by 
 

 ( 2
1

22
xx PBU

RSS
+=  (2.15) 

 
or  
 

 ( )2
1

22
xx PBU

RSS
+=  (2.16) 

 
2-2.1  Theory of propagation of uncertainties  
 

The uncertainties discussed thus far have been of a single measured variable.  Often the 
result of interest cannot directly be measured and must be computed from a system of measured 
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variables in some type of data reduction equation.  How do the systematic and random errors of 
each variable propagate through the data reduction equation to yield a systematic and random 
error in the final result?  Consider a Taylor series expansion of the function 
 
  (2.17) ),( yxrr =
 
of the measured variables x and y such that  
  

 ......)()( TOHyy
y
rxx

x
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∂+=  (2.18) 

 
Neglecting the higher order terms and taking  to the left-hand side relates the total error in 
the k

truer
th determination of the result r to the total errors in the measured variables such that   
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where  
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The variance of the distribution of the total errors for N determinations of the result is given by 
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Taking the limit as N approaches infinity gives 
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assuming there are no systematic error/random error correlations.  Of course in reality the exact 
σ’s are never known so estimates must be used.  The estimate of the variance of the distribution 
of total errors, u  is  2

c
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Here b2and S2 are the estimates of the variances of the systematic and random errors respectively 
and bxy and Sxy are the estimates of the covariance of the systematic and random errors 
respectively in x and y.  The variance is the average of the squared deviation of a variable from 
its mean, the covariance is the average of the products of the deviations of two variables from 
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their means.  The covariance is a measure of correlation between two variables.  Consider a 
general function 
 
 )  (2.24) ,...,,( 21 Jxxxrr =
 
the estimate of the variance of the distribution of the total errors in the result is  
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The final estimate of the uncertainty of the result is given by 
 
  (2.26) cr KuU =
 
Again, assuming a large sample size (N > 9) and Gaussian distributed error, K = 2 for a 95% 
confidence limit.  This results in the uncertainty propagation equations 
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where B is given as an estimate of the systematic error with 95% confidence such that B=2b.  
From this point forward (2Sx) will be referred to as the precision limit for computational 
simplification. 
 
2-2.2  Discussion of correlated systematic errors 

 
Correlated errors are those that are not independent of each other.  For example if two 

variables are measured with the same instrument the systematic errors in those variables from 
that instrument will be the same.  Likewise if two instruments are calibrated against the same 
standard all systematic errors of measurements made with those instruments will be correlated 
with one another.  There is no statistical approach with which to make an estimate of the 
covariance in systematic errors.  The approach that consistently gives the best approximation for 
correlated systematic errors is [11]  
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where Q is the number of common elemental error sources for variables xi and xk.  Equation 
(2.29) assumes perfect correlation between Bi and Bk.  Correlation of systematic errors can 
sometimes be advantageous.  Consider measuring the difference between two readings with the 
same bias error of the variable x with the same instrument such that 
 
  (2.30) 12 xxr −=
 
Using the systematic uncertainty propagation equation yields 
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since the bias errors for each measurement are the same.  Here the systematic error, B in each 
reading is correlated, equal and the partial derivatives with respect to each variable are of equal 
magnitude and opposite sign, which yields a systematic error in the result of zero.  If the partial 
derivatives are not of opposite sign, such as in an average, the correlation will be additive.  
Consider an average of two readings where each reading again has equal bias, B and the biases 
are correlated. 
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as opposed to if the biases are were uncorrelated  
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Equations (2.31), (2.33) and (2.34) demonstrate why careful consideration of correlated 
systematic error sources should always be part of planning the calibration process. 
 
2-2.3  Random errors direct from the result 
 

Correlated random errors are often too difficult or impossible to predict in the planning 
phase of an experiment and thus are often not modeled.  If multiple results are available the 
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random uncertainty can be directly calculated from the result.  For example consider a result that 
is determined N times with individual values 
 
   Nrrr ,...,, 21

 
which have an average of  
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and a standard deviation of  
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and 
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The random uncertainty calculated directly from the result inherently includes the effects of all 
correlated random error sources.   

Random errors are traditionally defined as errors that do not correlate with anything; and 
example being broadband white noise.  Structural dynamics, vortex shedding, the fan beat 
frequency, etc. along with white noise are potential sources of variation in wind tunnel data.  
Many of these sources could possibly be correlated with the signal content from the balance and 
differential pressure transducer.  The term “random” will be used to define all content that is 
unsteady or not fixed.   
 
2-2.4  Uncertainty in regressions 
  

Experimental information is often modeled by a regression.  Calibration constants, 
interpolations, and curve fits of the final results are examples of common regressions of 
experimental data.  The regression, like the final result, inherits the uncertainty of the 
experimental data.  For example consider a linear least-squares curve fit of N data pairs such that 
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and  
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The slope, s and y-intercept, p are functions of every data pair.  The regression then becomes 
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The uncertainty of y at a measured or specified value of x is found by applying the uncertainty 
propagation equations [11] to obtain 
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The first seven terms of Eq. (2.42) are the uncertainty contributions of the data pairs.  The 

eighth and ninth terms arise from uncertainty in xnew.  The tenth term is necessary if the same 
instrument used to measure xi is used to measure xnew and the last term is only necessary if xnew 
and yi have common error sources.  Note the partial derivatives with respect to xi and yi are 
functions of xnew.  Reference [11] suggests an additional fit be applied to the uncertainty curve, 
Uy such that in general 
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Here U  is any curve fit that models the uncertainty common to the experiment, 
which generated the x

)( newregressy x−

y

i and yi data pairs.  For example, if a pressure transducer is to be calibrated 
it is often sent to a calibration laboratory.  The calibration lab then generates the xi and yi data 
pairs necessary for the calibration with their instrumentation and standards.  The calibrated 
transducer is then returned to the customer with a calibration report, which includes the 
calibration xi and yi data pairs and calibration constants from a regression of the calibration data   
If the uncertainties of the xi and yi data pairs used in the calibration are available the uncertainty 
of the regression, U  can be estimated by the first seven terms in Eq. (2.42).  The 
additional uncertainty due to x

)( newregress x−

new from the customer’s instrumentation can be combined with that 
from the calibration so the uncertainty of y is 
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Every calibration report is different and usually includes a measure of accuracy of the 

instrument.  It is common for this “degree of goodness” to be listed as percent reading or percent 
full scale of the instrument output.  In general these statements are regressions of the calibration 
data.  It is up the experimentalist to discuss the meaning and assumptions of any uncertainty 
statements with the calibration laboratory. 

Analytical determinations of the partial derivatives of higher order polynomial 
regressions are prohibitive especially with multiple independent variables and numerous data 
pairs.  Numerical approximations are typically used in such situations.   

 
 
 
 
 



 

3  Description of Tests 
 
 
 
3-1  Introduction 
 

A static wind tunnel test is optimally defined as having steady free stream flow over a 
steady motionless model.  The term “static” is a bit of a misnomer as real flows are always 
unsteady and models are never entirely motionless.  The reality is that flows can be established 
that are very near steady conditions for sufficiently small Reynolds numbers.  The incoming free 
stream flow can be ‘characterized by a time-independent mean flow with a superimposed 
additive fluctuating contribution most often characterized by a turbulence level’ [12].  The free 
stream flow is also non-uniform.  The interaction of the flow with the model generates additional 
fluctuations in the flow, which in turn produces fluctuations in the loads on the model.  Along 
with the unsteady free stream there can be any number of factors that may induce dynamic 
motions of an otherwise “static” model.  The system is generally a combination of the free 
stream flow, unsteady flow induced by the model, vibrations of the support structure or the 
tunnel itself, aeroelastics of the model, etc.  Static wind tunnel test conditions and models are at 
best quasi-steady and quasi-static respectively.  These quasi states lead to inherent variation in 
the data.  The “data” is often but not limited to voltages measured from a balance.   

Forced oscillation tests are inherently subject to unsteady flow conditions as the models 
are deliberately oscillated.  The tests involve measuring forces and moments on a model during 
sinusoidal oscillations at set frequencies and amplitudes.  The frequency of oscillation is ideally 
constant however this not the reality nor is the oscillation purely sinusoidal.  Again, the test 
conditions are quasi-sinusoidal. 

Static and forced oscillation wind tunnel tests were conducted at the 14- by 22-Foot 
Subsonic Tunnel at NASA Langley Research Center (figure 3.1).  The test had three objectives.  
First the tests were to provide the necessary data to assess the influence of blockage of two 
different model support structures on the aerodynamic coefficients of a fighter and a generic civil 
transport configuration.  No corrections for blockage or any other type were made so that the 
impact of blockage between the two supports would be apparent.  The second was to provide 
data necessary for simulation and modeling.  Finally the test was to provide data necessary to 
support an uncertainty analysis of the calculated body axis aerodynamic coefficients for static 
and forced oscillation tests.   

 

 
Figure 3.1  Schematic of 14- by 22-Foot Subsonic Tunnel [13]. 
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The 14- by 22-Foot Subsonic Tunnel provided a unique ability to test with closed and 
open test sections.  The tests consisted of measuring the forces and moments with an internal 
strain-gage balance and wall pressures from electronically scanned pressure (ESP) modules 
when the test section was closed.  The uncertainty of the measurements from the ESP system is 
beyond the scope of this thesis and will not be quantified.   

The 14- by 22-Foot Subsonic Tunnel provided a unique ability to test with closed and 
open test sections.  The tests consisted of measuring the forces and moments with an internal 
strain-gage balance and wall pressures from electronically scanned pressure (ESP) modules 
when the test section was closed.  The uncertainty of the measurements from the ESP system is 
beyond the scope of this thesis and will not be quantified.   
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Figure 3.2  Schematics of (a) fighter model [3] and (b) generic civil transport model [14].  Note 
drawings are to scale with respect to one another. 
 

 Description of models 
 

 The models used in the test are part of current simulation and modeling studies.  Each 
model produces a unique flow-field and brings its own inherent uncertainty.  The Generic Civil 
Transport (GCT) has a high-aspect ratio wing of roughly 7.95.  Its flow field is dramatically 
different than that of the highly swept wing of the fighter model, which has a vortex dominated 
flow field.  Three-view drawings of the two models are shown in figure 3.2.  The civil transport 
was tested at a dynamic pressure of 10 psf at a range of α’s of  ±90º.  Few adverse model 
dynamics during the test were encountered.  The fighter model on the other hand was planned for 
testing at a range of  α’s of ±90º and with a dynamic pressure of 6.7 psf, however model 
dynamics resulted in exceedance of balance limits around α  = 50º.  Balance limits forced the test 
to be run at a q of 0.95 psf to achieve the desired α schedule. 
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3-3  Description of model supports 
 
The model supports used were the Forced Oscillation (FO) rig, and the Small Model 

Support (SMS).  The Forced Oscillation rig provides the capability of static and dynamic testing, 
however it is primarily used for dynamic testing.  Forced oscillation testing is literally forcing 
oscillations in the pitch, roll, or yaw axis (Click hyperlinks for videos).  Figure 3.3 displays three 
possible mounting configurations.  The models can be mounted with the sting thru the top or 
bottom of the model for pitch or yaw oscillations or mounted with a straight or bent sting for roll 
oscillations.  Angle-of-attack is set by rotating the turntable with the model mounted ±90 degrees 
to wings level (i.e. ±90 degrees of bank).  The advantages of using the FO rig primarily rest with 
dynamic testing.  One advantage for static testing is the model orientation theoretically never 
changes with respect to the gravity vector, as the angle-of-attack is set.  This leads to the 
assumption of a level turntable and a constant weight tare.  The major drawback of the FO rig 
with respect to static testing is blockage.  It has overall more projected area than the SMS.  The 
FO support post is suspected to influence the aerodynamic performance of the model.  The post 
also becomes a problem at large ±α’s.  The post blankets the model at high α’s for pitch and yaw 
mounts thus requiring a configuration change to continue large α sweeps.  The sting is a potential 
source of aerodynamic interference for top mounts as it may blanket the vertical tail.    The FO 
rig can be used to generate sideslip depending on the setup.  Top or bottom mounting in the yaw 
axis allows arbitrary selection of sideslip, the sideslip for a roll axis mount will vary with the 
angle-of-attack and no sideslip is possible for pitch mounts. 
 

 
(a) (b) (c) 

Figure 3.3  Fighter model mounted right wing up on the Forced Oscillation rig ; (a) bottom 
mount for pitch oscillations with a closed test section, (b) aft mount for roll oscillations with a 
closed test section, and (c) top mount for yaw oscillations with an open test section (Click on 
pictures for larger view). 

 
The SMS (figure 3.4a) has no dynamic testing capabilities.  It is the primary model 

support for static testing.  It has the ability to arbitrarily set a constant sideslip angle from ±90º 
with the turntable and α’s from -10º to 90º.   
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(a) (b) 
Figure 3.4  Generic civil transport model in closed test section; (a) mounted wings level on SMS 
and (b) bottom mounted for roll oscillations on forced oscillation rig with “bent” sting [14]. 

 
 
 
 



 

4  Uncertainty of Instrumentation 
 
 
 
4-1  

4-2 

Introduction 
 

The uncertainty of an aerodynamic coefficient is an amalgamation of countless elemental 
error sources.  Wind tunnel turbulence, flow angularity, vibrations, electromagnetics, installation 
effects, environmental effects, test technique, and even operator error all affect the quality of the 
coefficients in addition to instrumentation accuracies, calibration regressions, and data reduction 
algorithms.  This report will encompass those sources quantifiable without further testing, i.e. the 
instrumentation accuracies, calibration regressions, and data reduction algorithms used. 

 
 General error sources and paths 

 
Wind tunnel test procedures and instrumentation vary with facility, test engineer, and 

certainly with the test objectives.  The data reduction procedures used to estimate aerodynamic 
coefficients for static and forced oscillation are conceptually similar.  Balance and 
attitude/orientation measurements are recorded first with the wind off.  These measurements are 
collectively called tares.  They are used to subtract weights and inertial effects from the forces 
and moments recorded with the wind on.  Tares are acquired from the data acquisition system as 
voltages.  The data acquisition system contributes its own uncertainties to the voltages output 
from the balance and attitude/orientation instruments. The acquired tare is then sent to a 
workstation for conversion to engineering units, corrections, interpolations, and data reduction.  
Each one of those steps contributes error as well as round-off error from operating in the digital 
environment.  Round-off error will be considered negligible relative to other error sources and 
will not be quantified, however it is important to note all computations are in a finite digital 
domain.   

Errors from data acquisition in the tare and wind-on runs combine with errors from the 
balance sensitivities, interaction coefficients and model attitude/orientation sensitivities.  Tares 
are typically recorded at attitudes/orientations with a slightly larger range but fewer set points 
than wind-on runs for static tests and thus tare values will be interpolated for data reduction.  
Forced oscillation tests are similar in that the tare must be interpolated, however this is due to 
sampling and will be discussed in detail in subsequent chapters.  Interpolations are treated as 
regressions for uncertainty propagation.  As such the uncertainties from tare forces and moments 
(ordinate) and tare attitudes/orientations (abscissa) combine with uncertainties from the wind on 
run attitudes/orientations to give a final uncertainty in the interpolated tare forces and moments.  
The uncertainty from the data acquisition system also combines with errors in the pressure 
transducer sensitivity and dynamic pressure correction uncertainties to yield a final uncertainty 
on dynamic pressure.   

Figure 4.1 illustrates how error sources from tares and wind on runs combine with 
sensitivities of instruments (calibration regressions), interpolations and finally into the data 
reduction equation to produce uncertainty on the body axis aerodynamic coefficients.  Blue and 
Green are used to represent error paths of tare measurements and wind on run measurements 

19 
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respectively.  Error sources are listed in rounded rectangles.  Red is used to illustrate error 
contributions from both tare measurements and wind on run measurements. 

 

Figure 4.1  Error sources and paths from wind on run measurements and wind off tare 
measurements that contribute to aerodynamic coefficient uncertainties. 
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4-2.1  Data acquisition system  
 

Typical wind tunnel tests use a data acquisition computer with analog-to-digital 
converters (ADC) and amplifiers to convert and record signals from instrumentation used in the 
test.  For this test all balance and transducer voltages were measured and acquired with a ±10.24-
V 16 bit NEFF 620 data acquisition system.  The system can be set with anti-aliasing filters of 1 
(or 4-Hz depending on the ADC card), 10, 100, or 1000-Hz.  ADC cards can be sample-and-hold 
or progressive scan.  Two gain settings are available for each channel.  The preamp gain can be 
1, 8, 64, or 512.  A post amplifier can be used to provide auto-ranging over a 1-to-32 gain range 
in six binary steps.  If auto-ranging is used, the 3 least significant bits are used to report the post 
amplifier gain.  This results in 12 bits of resolution with 1 sign bit as apposed to 15 bits of 
resolution with 1 sign bit if auto ranging is not used. 

NEFF provided a system error budget upon request.  The uncertainty of the data 
acquisition system varies with the filter used, the total gain (preamp* post amp.), and the drift in 
temperature from calibration.  The breakdown of systematic and random error estimations 
provided in the system error budget is listed in Table 4.1.  It is assumed the estimations are made 
with 95% confidence and each channel is independent.  Full scale range, FS is given in Volts and 
is defined by 
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gain total
24.10FS =  (4.1) 

 

Table 4.1  NEFF data acquisition error sources and accuracies. 
NEFF Error Sources & Accuracies 

Systematic Errors 
Basic Accuracy ± (0.02% FS + 2µV) 
Gain Stability ±0.002% FS / DEG. C 
Zero Stability ±1µV / DEG. C 

Random Errors 
RTO ±2.5mV / total gain 
 RTI Filter Setting (Hz) RTI (V) 

  1 ±1.00E-06 
  10 ±1.00E-06 
  100 ±2.00E-06 
  1000 ±6.00E-06 

 
The individual systematic and random errors are root-sum-squared such that the bias of the 
NEFF is 
 
 222 )Stability Zero()StabilityGain ()Accuracy Basic( ++=NEFFB  (4.2) 
 
and the precision limit is  
 22 )RTI(RTO)()2( +=NEFFS  (4.3) 
 
where RTO and RTI are the element of temperature coefficient Relative To Output and Relative 
To Input respectively [15]  These uncertainties will be combined with every sample from the 
data acquisition system.   
 
4-2.2  Pressure transducer accuracy 

 
The differential pressure transducer used was a Rosemount model 1221.  It had a range of 

0 to 36-psf with a manufacture’s specified combined non-linearity and hysteresis of ±0.12 % of 
full scale.  This simply specifies the instrument is within ±0.043-psf of some specified linear 
model or sensitivity (20-volts/psid).  The transducer was then calibrated to a combined non-
linearity and hysteresis of ±0.024 % of full scale (±0.009-psf) with a reported sensitivity of 
20.00221-volts/psid.  This measure of accuracy is merely the percentage full scale of the 
maximum difference between the calibration data and a linear least-squares fit of the data using a 
linear model.   

The reference standard used to apply the pressure to the transducer during calibration and 
the voltmeter used to read the output voltage of the transducer are listed in Table 4.2 along with 
their respective manufacture’s listed accuracies.  These accuracies are considered systematic 
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Table 4.2  

errors.  The calibration laboratory is a well-controlled environment.  Thus any random errors 
from the calibration are considered to be negligible.   
 

Manufacturer’s reported accuracies of pressure transducer calibration instrumentation. 
Rosemount Differential Pressure Transducer Calibration Instrumentation Accuracies 

CALIBRATION INSTRUMENT RANGE MANUFACTURER'S 
ACCURACY 

Ruska Quartz Pressure Standard 0-100 TORR ±0.003% full scale + 0.010% reading
Fluke DVM, Model No. 8842A 0.1 µVDC -1000 VDC ±0.0035% reading + 0.0002V* 
 *Accuracy varies with range setting.  Accuracy listed is for 20 VDC setting. 
 

Table 4.3  Strain-gauge balance accuracies 
FF10C Strain-gauge Balance Accuracies 

Component Full Scale 
(lb or in*lb)

Accuracy % FS 
(95% conf.) 

Normal 400 ±0.06 
Axial 200 ±0.10 
Pitch 2000 ±0.06 
Roll 1230 ±0.10 
Yaw 2000 ±0.05 
Side 200 0.08 

 
4-2.3  Balance accuracies  
 

The balance used in the tests was an internal strain-gauge balance, called FF10C.  This 
balance is considered to have relatively low interactions.  As a result only the linear interaction 
terms of the entire non-linear second order interaction model were used to reduce the wind 
tunnel data.  The calibration laboratory provided accuracies with 95% confidence of the non-
linear model (Table 4.3).  Accuracies for a linear model would in all likelihood be worse.  It is 
beyond the scope of this thesis to evaluate the accuracies of a new linear model.  It will be 
assumed the accuracies given in table 4.3 are representative of those of a linear model.  It should 
be noted these estimates are for the full scale condition.  The actual balance accuracies are 
neither constant or linear over the range of the balance; however, the actual variation of the 
accuracy over the measurement range was not known.  Therefore, variation of accuracy with 
measurement load was not considered.   

 
4-2.4  Model attitude/orientation 
 

The model attitude/orientation is measured by a variety of different instruments 
depending on the type of test and model support.  Static tests on the SMS use an angle 
measurement system called a QFLEX to measure the attitude of the model.  The QFLEX is 
mounted internal to the model.  This system consists of two orthogonal accelerometers in the 
longitudinal plane of the model with one accelerometer parallel to the longitudinal axis. 
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Table 4.4  

The forced oscillation support system, which will also be discussed later, provides a 
single degree of freedom oscillation about one of the body axes.  It uses an angular displacement 
transducer (ADT) to measure the angle of oscillation.  The angle-of-attack is then set by the test 
section turntable requiring the model to be mounted such that the lateral-directional axis is in the 
vertical plane, or with a ±90º bank.  

The accuracies from calibrations of the QFLEX and ADT are listed in table 4.4.  The 
QFLEX accuracy is listed as two times the standard deviation of the difference between the 
calibration data and a linear fit.  The ADT is listed as maximum nonlinearity in percent full 
scale, which is understood to be the maximum difference between the calibration data and a 
linear fit in percent full scale.  The accuracy of the turntable was not available and had to be 
estimated from previous experience.  

 

Angular measurement system accuracies 

Angular Measurement Systems 
Instrument 

 
Range  

(Degrees) 
Accuracy 
(Degrees) 

QFLEX ±180 ±0.005 
ADT ±30 ±0.016% FS 
Turntable ±180 ±0.1 

 



 

5  Dynamic Pressure Uncertainty 
 
 
 
5-1  

5-2 

Introduction  
 

The preceding chapters discussed the necessary mathematical tools and assumptions that 
will be applied to estimate the uncertainty in wind tunnel aerodynamic force and moment 
coefficients from this point forward.  The uncertainties of aerodynamic force and moment 
coefficients from any wind tunnel tests are functions of the uncertainties in the measured free 
stream dynamic pressure.  An example is presented which illustrates how uncertainties from 
instrumentation calibration and uncertainties from wind tunnel calibration propagate through the 
data reduction to the final estimate of dynamic pressure.  This formulation will be used to 
determine the aerodynamic coefficients and their uncertainties in subsequent chapters. 
 

 Pressure measurement process 
 
The free stream dynamic pressure was determined from the difference between a static 

probe in the contraction cone and static atmospheric reservoir in the control room [12].  This 
static delta was measured by a differential pressure transducer, which output a voltage, Vq for a 
given pressure differential or measured dynamic pressure, qm such that   

 
 )  (5.1) (

zqqqm VVmq −=
 
where V  was the wind off voltage and m

zq q is the sensitivity constant from a linear least squares 
regression of the pressure transducer calibration data.  The test section was calibrated by 
measuring the dynamic pressure in the test section, qCal. and the pressure differential from the 
contraction cone and the reservoir, .  The ratio of the two pressures, c  where 

.Calmq
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was fit with a second order least-squares regression as a function of .  The measured 
dynamic pressure was then corrected to the dynamic pressure of the empty test section by a test 
section flow calibration factor, c

.Calmq

prime where 
 
  (5.3) 2''' mmprime qcqbac ++=
 
Here a’, b’, and c’ are coefficients from a second order least-squares regression of the test 
section flow calibration data.  The corrected dynamic pressure, q is  

 
  (5.4) primemcqq =
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5-3  Uncertainty in dynamic pressure 
 

The calculated dynamic pressure is a function of four coefficients and two measured 
variables.  Each coefficient is in turn a function of the calibration data from which it arose.  The 
pressure transducer calibration laboratory chose a first order linear regression, such as Eq. (2.38), 
to model the calibration data for the Rosemount differential pressure transducer.  However, as 
shown in Eq. (5.1), the data reduction program for the aerodynamic coefficients neglects the y-
intercept.  The calibration laboratory and data reduction models respectively are 
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or  
 
  (5.6) qqqqm bVVmq
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where Pp and Vp are equivalent to qm and (  respectively and b)

zqq VV − q is the y-intercept.  The 
slope of Eq. (5.1), mq, can be expanded as a function of the calibration constants so that 
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Here V and are the data pairs from the differential pressure transducer calibration.  The 
uncertainties of Eqns (5.6) and (5.7) are determined using Eq. (2.42) such that 
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The biases of variables from the same instrument were considered perfectly correlated.  For 
example the covariance of two applied pressures from the calibration is  
 
  (5.9) ) 0.003%   (0.01%*)  0.003%    (0.01% FS.FS...

PPPPB
kikCaliCal CalCalPP ++=

 
where is full scale of the pressure standard, 100 Torr or 1.934 psi and  and  are 
individual pressure readings from the calibration.  Figure 5.1 shows how the uncertainties from 
Eqs. (5.5) and (5.7) compare with the accuracy quoted on the calibration report, ±0.024 % FS.   
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Figure 5.1  Uncertainties from different models of the measured dynamic pressure compared to 
quoted accuracy on calibration report. 
 

Figure 5.1 is an excellent example of how the uncertainty of a regression varies with the 
independent variables and especially how dramatically the uncertainty curve can change from 
model to model.  All three first order linear models for the measured dynamic pressure could 
very well be considered acceptable, as each of them provides a good approximation of the 
sensitivity.  However, their uncertainties are quite different.  One way to validate the actual 
uncertainty variation over the range of the transducer is to repeat the calibration multiple times 
with small step sizes between set points.     

A regression of the uncertainty associated with the calibration data in Eq. (5.7) is 
necessary to avoid carrying tables of the calibration data around for new values of V.  Following 
Eq. (2.44) 

 
 ( )2222222 )2()2(2

zqqzqqzqqmm VVVVVVqregressqq SSBBBmUU ++−++= −  (5.10) 
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where   
 
  (5.11) )(10x 59.1 -6

zm qqregressq VVU −=−

 
The next step in the dynamic pressure measurement process is to apply the test section 

flow calibration correction or the dynamic pressure correction, cprime.  Recall from Eqns. (5.2) 
and (5.3), cprime is a function of the test section flow calibration data and the measured dynamic 
pressure from the wind tunnel test.  Different instruments were used to record qCal., and q

.Calmq

.Calm

m.   
Thus, no correlated bias exists between them except for installation effects between q and qm 
from the static probe in the contraction cone and common pressure lines, neither of which will be 
quantified. 

The systematic error associated with c is 
.Calprime
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Each transducer that recorded  and q

.Calmq

.Cal
f=

Cal had a manufacturer’s accuracy of 0.01% FS with a 
full scale range of 1.0 psi.  Neglecting installation effects the biases of  and q

.Calmq Cal are equal 
such that  but are not correlated.  Clearly the biases between individual 

measurements of  and between individual measurements of q
.. CalCalm qq BB =

.Calmq

kCalprime .

Cal are correlated.  How should 
these correlations be accounted for with  in the regression of the test section flow 
calibration data?  Recall c .  The covariance approximation 

is given by  

.Calprimec
),

.. Calmq( calprime q

iCalprime ccB
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Multiple q-sweeps, all at the same measured dynamic pressures, were made during the 

test section flow calibration.  Equation (2.12) will be used to estimate the random uncertainty of 
each of the 18 individual c  with a confidence of 95%.  The random uncertainty of each 

 measurement will be considered negligible until better estimates are available.  The total 

uncertainty of  can now be determined following Eq. (2.42) such that 

iCalprime .

kCalmq
.

primec
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Equation (5.14) simplifies to the form given by Eq. (2.44) as the only unknowns prior to the test 
are V  and V .  The total uncertainty for  is thus q zq primec
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where U  is a curve fit of the uncertainty from the coefficients, a, b and c in 
c

),(
zprime qqregressc VVf=−

prime .  A 5th order fit was chosen such that 
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Figure 5.2 shows the ( q , ) data pairs recorded in the calibration in black dots.  

Red dots show the ( , c ) data pairs rejected by Chauvenet’s criterion and consequently 
.Calm

.Calprime

.Calprimec

.Calmq
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not used.  The solid blue line is the mean of .  The solid black line is Eq. (5.2) with 
its uncertainty,U  in dashed black lines.  The blue error bars are the typical two times the 
standard deviation, or 2S

)(
.. CalCal mprime qc

primec

x (commonly mistaken as 2σ).   
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Figure 5.2  Closed test section flow calibration data with calibration uncertainty curves.  Note 
the difference between the typical 2Sx error bars and the uncertainty. 
 

The total uncertainty in the dynamic pressure is determined in the same manner as Eq. 
(5.14).  After working through the algebra 
  
  (5.17) 222222 )'3

mprime qmregresscmq UqcUqU += −

 
The uncertainty curves in figure 5.2 deserve some discussion.  Recall the propagation of 

uncertainty equations assumes a first order Taylor series expansion of the variance about the 
nominal conditions is sufficient to approximate the variance.  This results in the root-sum-square 
of the gradients of the function with respect to the independent variables times the variance of 
the independent variables. A parametric study was done on the second-order regression of the 
test section flow calibration data.  Figure 5.3a is a locus of the gradients with respect to the 
calibration data as they vary with the new qm.  Assuming no correlations and the uncertainty of 
each data point is equal to unity; figure 5.3b shows how the summation of the squared gradients 
results in the shapes of the uncertainty of cprime in figure 5.2.  Note the uncertainty for each 
calibration data point is in reality not equal. The uncertainties, which are large at low q and small 
at high q, are then scaled by the gradients in figure 5.3a.  This is why the uncertainty curve in 
figure 5.3b is slightly different than the uncertainty of cprime in figure 5.2.  The odd shapes of the 
uncertainty cures are due to the root-sum-square of the gradients of the higher-order regression. 
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Figure 5.3  Influence of gradients on uncertainty curve.  (a) Locus of gradients of cprime with 
respect to individual measurements,  and  as they vary with q

.Calmq
.Calprimec m.  (b) Root-sum-

square of gradients assuming no correlations and all uncertainties are equal to unity.  
 



 

6  Uncertainty of Static Tests 
 
 
 
6-1  

6-2 

Introduction 
 

Model forces and moments are determined from measuring the voltages of a six-
component internal strain-gauge balance with the wind on, which is called a “run”, and with the 
wind off, called a “tare”.  The tare in a static test is a weight tare, meaning it is the loads of the 
balance due to the gravitational force.  Usually, but not necessarily, the tare is taken before the 
run.  Then the tare is subtracted from the run to yield the aerodynamic forces and moments.   

 
 Static force and moment measurement process 

 
The first step in the data reduction process is to subtract the zero-load balance readings or 

just “zeros”, voltages of the balance acquired before a run or tare is executed.  These zeros, 
denoted with z subscripts are then subtracted from subsequent balance measurements for that run 
or tare to remove any voltage changes not associated with the test.  The zeros for runs and tares 
are always taken at the same model position. 

The next step is to convert the voltages to engineering units.  This is done with sensitivity 
constants provided by the balance calibration laboratory.  All balance sensitivities and 
interactions, which will be discussed later, are functions of the excitation voltage.  The balance 
calibration was conducted with an excitation voltage, V = 5.000 Volts.  The excitation voltage of 
the balance during testing however varies from 5 Volts by as much as ±0.003 Volts.  The 
excitation voltage, VI where the subscript I is R for run or T for tare, is measured during testing 
with the data acquisition system and then used to correct the measured balance voltages by 
applying the ratio of VR/V or VT/V to the balance measurements.  This approach introduces only 
the uncertainty of the data acquisition system on VR and VT.  The uncertainty of the excitation 
voltage during calibration, V will be considered negligible as the calibration laboratory is 
assumed a well-controlled environment.  The normal force of the balance for a run is thus 
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 (6.1)  

 
where kN is the normal force sensitivity constant in units of lbf/(mV/V) or in-lbf/(mV/V).  V  
and V  are the measured voltages of the run and zero values, respectively, of the balance 
normal force channel.  The subscript U indicates uncorrected or measured which indicates no 
interactions have been removed.  Let k be a vector of sensitivity constants, V be a vector of 
balance voltages, and X

RN

zRN

IF

I be a vector of forces and moments such that 
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]
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  (6.3) [ T
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  (6.4) [ T

IIIIIII YnlmANX =
 
The general form of Eq. (6.1) is then 
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 (6.5) 

where 
  ,...,2,1=i
 
The subscript i indicates the force or moment considered.  The forces and moments measured 
from the balance have contributions of the other forces and moments due to inherent balance 
interactions.  Considering only the linear interactions the measured normal force, for example, 
would be  
 
  (6.6) TTTTTTT YcnclcmcAcNcN

U 6,15,1143,12,11,1 +++++=
 
where c , c , etc. are the linear interaction coefficients from the balance interaction matrix, C 
such that 
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The corrected forces and moments are then computed from the measured forces and moments 
with the linear interactions removed.  For example, the corrected tare normal force is 
 
 ( )( ) 1,16,15,1143,12,1 cYcnclcmcAcNN TTTTTTT U

++++−=  (6.8) 
 
In general the uncorrected balance loads are  
 
  (6.9) II CXX

U
=

 
Solving for  yields  IX
 
  (6.10) 

UII XCX 1−=
 
Equation (6.10) is the generic form for forces and moments from either a run or a tare.  As 
discussed in Ch. 4, for various reasons tares are not always recorded at the same orientation as 
every set point in a run.  Thus tare values must be interpolated.  The data reduction program 
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currently uses a cubic spline to interpolate tare values, .  The aerodynamic loads, X are then 
found by subtracting the interpolated tare forces and moments from the run forces and moments 
such that 

intTX

 
  (6.11) 

hii TRi XXX
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Here  
 
  (6.12) 3
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where , ,  and  are the coefficients of the cubic spline for the h
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s

,0 hi
s

,1 hi
s

,2 hi
s

,3
th  interval of the ith 

component.  The aerodynamic coefficients, CX are then calculated as 
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where  
 
 [ TSSbSbcSSSK = ]

6-3 

 (6.14) 
 

 Uncertainty of static aerodynamic coefficients 
 

The combined systematic uncertainties of the balance sensitivities and the balance 
interactions are provided in table 4.3.  As discussed in Ch. 4 these uncertainties are for a non-
linear interaction model and are given at the calibration full scale condition.  They are assumed 
to be representative of the accuracies for a linear model.   

The uncertainty of the measured balance loads using the uncertainty propagation 
equations results in  
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where U  is the uncertainty from the balance calibration data that remains in the sensitivity 
constant.  Let M = C

regresski −
-1 where  and let ][ , jimM = κ be a diagonal matrix of k such that 
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  The uncertainty of the corrected forces and moments follows as  
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where  is the combined uncertainty from m][ iIXB i,j and ki, the sensitivity coefficients and the 

balance interaction coefficients, respectively for the ith balance component.  The balance 
accuracies provided in table 4.3 will be used to estimate .   ][ iIXB

The cubic spline interpolation, with N data pairs, can be expressed in functional form as 
 

 ( )RTFFTTiT zTTzhi
VVVVVkmfX αα ,,],[,],[,,],[ 6...1,,int

=  (6.18) 

 
where [VT] and Tα  are 1 x N vectors and [  is a 6 x N matrix.  The uncertainty of the 
interpolated tare,  is then expressed in Eq. (6.19).  The first two terms in Eq. (6.19) are 

necessary to propagate the estimates of uncertainties associated with the balance interactions and 
sensitivities.  The partial derivatives are taken with respect to [  because the estimates in 

table 4.3 are the uncertainties of the corrected components.  [  is the 6 x N matrix of tare 
loads used to generate the spline coefficients.  The third through sixth terms propagate the 
uncertainty of the excitation voltages for each set point in the tare and the tare zeros.  Terms 
seven through ten propagate the uncertainty of the voltages from the balance channels and the 
respective zeros.  The last four terms account for the uncertainty of the orientation during the tare 
and the orientation the interpolation is evaluated at, 

]
TFV

hiT ,int
X

]
, jiTX

]TX

Rα . 
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The uncertainty in the aerodynamic loads can simply be expressed as 

 
  (6.20) 

hiTiRhiTiRi XXXXX BUUU
,int,int

2222 −+=

 
Here the correlated bias,  between the run and interpolated tare is 

hiTiI XXB
,int
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The calculation of the aerodynamic loads shares no variables, measurements or common 

data acquisition channels as the dynamic pressure calculation.  The uncertainty contribution from 
any of the constants, Ki is considered negligible as << K

iXC i and the uncertainty, U  is 
considered small.  The uncertainty of the aerodynamic coefficients is thus 
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The precision limit in the preceding equations was presented as 2Sx, which implies we are 

95% confident the next reading will fall between ±Ux.  Static tests are typically interested in 
averages over time periods that are large relative to the time scales of factors that have 
significant influence on the data and the random content in the data.  If an average is the 
objective of the test, the uncertainty for the mean xU± is a better metric, thus NS2 should be 
used for the precision limit. 
 
6-4  Static tests results of fighter model 
 

Typically static data is acquired at 10 Hz for a sample period of 8 seconds and filtered 
with a 1 Hz low-pass 2-pole Butterworth anti-aliasing filter at the wind tunnel facility used for 
this research.  Selected static runs and their appropriate tares throughout the tests were sampled 
at 200 Hz for a sample period of 20 seconds and filtered at 100 Hz.  The higher frequency filter 
and faster sample rate were chosen to capture a broad spectrum of the observed model dynamics.  
The longer sample period was selected to observe how the mean and standard deviation vary 
with time.  The sample rate of the run will be indicated for each example.  The auto-ranging 
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function of the data acquisition system was used for all channels.  Auto-ranging optimizes the 
resolution of the data, however it periodically changes gains for no apparent reason when a data 
sample is recorded.  The change in gains is usually one binary step over the sample period.  The 
minimum gain that was used during the sample will be used to calculate the uncertainty in the 
NEFF ADC for that channel as it gives the most conservative estimate of uncertainty.  No 
significant temperature change was observed in the air conditioned control room, where the data 
acquisition system is housed, thus no temperature effects will be taken into account.  Time 
histories of static run data are traditionally not saved.  All data is normally saved as averages.  
No time histories for tares, tare zeros or run zeros are available.  Estimates of their uncertainties 
will be considered to be equal to the calculated uncertainties for the zero α condition of the run.   

 
6-4.1  Total uncertainty from propagation 

 
The uncertainty of all balance loads for both models vary with the angle-of-attack.  As 

one would expect, the variance of the forces and moments increase with ±α and peak near stall as 
the flow transitions from fully attached to fully separated.  The flow in this transition region 
often induces adverse model dynamics as such was the case with the fighter model discussed in 
Ch. 3.  Figures 6.1 through 6.6 are the results of the uncertainty propagation for the body axis 
aerodynamic coefficients of the fighter model from one run on the FO rig.  The uncertainties 
shown are the 95% confidence limits of the next reading.  The 95% confidence limits of the 
uncertainty of the mean are not shown because they rapidly approach the bias as the number of 
readings approaches infinity.  The 95% confidence limits near stall are nearly 25% of the overall 
range of the normal force coefficient (figure 6.1). The majority of uncertainty in the normal force 
coefficient after filtering is due to the systematic error or bias.  The majority of the bias is comes 
from the second term in Eq. (6.22) which is due to the dynamic pressure.  Equation (6.22) shows 
the low dynamic pressure and high normal force coefficient values magnify the uncertainty from 
the dynamic pressure, which is approximately  97% U  over the range of the pressure 
transducer.  The same trend can be seen in all other coefficients but it is not as dramatic as with 
normal force because the other coefficients are much smaller than 1.  Thus the uncertainty 
contribution from the balance dominates the uncertainty contribution of all other coefficients.  
Most of the dynamics that occur during a traditional test are lost due to the standard 1 Hz low 
pass filter.  For instance, with unfiltered data, the 95% confidence limits for the yawing moment 
coefficient near stall, with all control surfaces at zero, are greater than the control power of the 
aircraft.  The yawing moment and side force axes are aligned with the gravity vector on a 
cantilevered support, which would explain some of the variation in the two coefficients before 
filtering.   

regresscprime −

 
6-4.2  Spectral content 
 

The fighter model in the previous results was bottom mounted as shown in figure 3.3a 
and the FO rig was set up for yaw oscillations as shown in figure 3.3c.  The FO rig was locked 
from oscillating at zero θz for the static test while the data from the run and the tare were each 
sampled at 200 Hz and used 100 Hz anti-aliasing filters.  Notice, in figures 6.1 through 6.6, the 
large difference between the total uncertainty of the sampled data (filtered as described above) 
and the total uncertainty of the post-filtered data, which was digitally filtered at 1 Hz with a low-
pass Inverse Fast Fourier Transform (IFFT) filter, described in appendix A.   
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Figure 6.1  Total uncertainty of normal force coefficient from propagation method for sampled 
and post-filtered data verses the bias contribution.   
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Figure 6.2  Total uncertainty of axial force coefficient from propagation method for sampled and 
post-filtered data verses the bias contribution.   
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Figure 6.3  Total uncertainty of pitching moment coefficient from propagation method for 
sampled and post-filtered data verses the bias contribution. 
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Figure 6.4  Total uncertainty of rolling moment coefficient from propagation method for 
sampled and post-filtered data verses the bias contribution. 
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Figure 6.5  Total uncertainty of yawing moment coefficient from propagation method for 
sampled and post-filtered data verses the bias contribution.   
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Figure 6.6  Total uncertainty of side force coefficient from propagation method for sampled and 
post-filtered data verses the bias contribution.  Note the magnitude of the uncertainty of the 
sampled data. 
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Consider the data used to calculate the coefficients presented in figures 6.1 through 6.6 at 
40º angle-of-attack.  The power spectral magnitude can be estimated using MATLAB’s built-in 
function, psd, which uses Welch's averaged, modified periodogram method with a Hanning 
window [16].  This method was employed purely for convenience and intended solely for 
estimation of spectral content.  The data records were 4000 samples each.  No overlap or 
detrending mode was used [17].  A tradeoff exists between spectral resolution and the accuracy 
of the power spectrum estimate [18].  Longer data records give better frequency resolution as ∆f 
= 1/T, where ∆f is the frequency resolution and T is the period of the data record.  However, 
higher resolution comes at a cost to accuracy of the magnitude estimate.  Figures 6.7 through 
6.22 show the power spectrums of each signal acquired by the data acquisition system during the 
run and the spectrums of a Ground Vibration Test or GVT.  Two power spectrum estimates are 
shown on each figure; one with 4000 sample window for frequency resolution and the other with 
a 250-sample window, along with its 95% confidence intervals, for estimation of the magnitude 
of each spectral line.  The mean of each signal was removed from the spectrum, as it provides no 
insight to the random component of the signal.   

A GVT was done simply by recording time histories of all channels and impacting the 
model once by hand.  Two GVTs where done for each moment axis for each model setup at null 
conditions i.e. q = 0, α = 0, etc.  The GVTs presented below are the results of one impact in on 
the side of the nose of the model, which was in the gravity vector and produced a yawing 
moment. 

The balance excitation voltage is 5 VDC.  Its spectrum during the run and during GVT, 
figures 6.7 and 6.8 respectively are just what one would expect for a constant signal with random 
white noise.  Figure 6.7 is the type of spectrum ideal “static” data should have, i.e. flat!  
However, as discussed in chapter 3, static wind tunnel tests, no matter how good the flow 
quality, will often contain spectral content other than random white noise.  Figures 6.8 through 
6.22, for example all contain 60 Hz noise which could possibly be emitted by the lights in the 
test section and has nothing to due with the aerodynamics.  Notice the spectral content in the 
GVT for the dynamic pressure signal, where the wind is off, is very similar to that in the wind on 
spectrum (figure 6.22 and 6.21 respectively).  The causes of these frequencies are not yet 
understood.  The model has been observed to oscillate during static testing and so the spikes 
around 5 Hz in all of the balance signals are most likely the first dynamic modes of the support 
structure or the sting, which the GVTs support.  These oscillations affect the static aerodynamics.  
References [19] and [5] among others, have shown aerodynamics have a “time history effect”, 
that is the aerodynamics of a model at a current state depend on previous states.  The amplitudes 
of dynamic tests in references [19] and [5] are usually large relative to the amplitudes observed 
from static tests.  Nonetheless, the broad range of spectral content in the balance signals leaves 
no guarantee the means of dynamic time histories would equal to that of a purely static model.  
However, it will be assumed, as is typically done in practice, the frequencies of the aerodynamics 
of interest lie below 1 Hz and hence the data will be post-filtered as described above.   
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Figure 6.7  Power spectrum of mean zero balance excitation voltage signal from run. 
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Figure 6.8  Power spectrum of mean zero balance excitation voltage signal from GVT. 
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Figure 6.9  Power spectrum of mean zero normal force signal of the balance from run. 
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Figure 6.10  Power spectrum of mean zero normal force signal of the balance from GVT. 
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Figure 6.11  Power spectrum of mean zero axial force signal of the balance from run. 
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Figure 6.12  Power spectrum of mean zero axial force signal of the balance from GVT. 



Chapter 6  Uncertainty of Static Tests 45 

 

10-1 100 101 102
-100

-80

-60

-40

-20

0

20

40

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (d

B
)

Mean-zero pitching moment signal, α  = 40°, q = 1 psf

→Filtered→Filtered

4000 pt. window
250 pt. window
±95% conf.

 
Figure 6.13  Power spectrum of mean zero pitching moment signal of the balance from run. 
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Figure 6.14  Power spectrum of mean zero pitching moment signal of the balance from GVT. 
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Figure 6.15  Power spectrum of mean zero rolling moment signal of the balance from run. 
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Figure 6.16  Power spectrum of mean zero rolling moment signal of the balance from GVT. 
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Figure 6.17  Power spectrum of mean zero yawing moment signal of the balance from run. 
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Figure 6.18  Power spectrum of mean zero yawing moment signal of the balance from GVT. 
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Figure 6.19  Power spectrum of mean zero side force signal of the balance from run. 
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Figure 6.20  Power spectrum of mean zero side force signal of the balance from GVT. 
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Figure 6.21  Power spectrum of mean zero dynamic pressure signal from run. 
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Figure 6.22  Power spectrum of mean zero dynamic pressure signal of the balance from GVT. 
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6-4.3  Random uncertainty directly from the result 
 
Direct determination of the random uncertainty of the result was discussed in chapter 2.  

If all time histories were saved during the static tests, direct determination of the random 
uncertainty of the coefficients would be straightforward.  However, one would expect the 
random uncertainty of the tares, tare zeros and run zeros to be negligible compared to the random 
uncertainty of the wind-on run.  Computing the standard deviation of a time history of 
coefficients would certainly be computationally simpler than propagating the random uncertainty 
through to the result however; the systematic uncertainty must still be propagated.  Figures 6.23 
through 6.28 show the coefficient results after filtering and compare the total uncertainty from 
propagation, Upropagation and total uncertainty from combining the propagated bias with the 
random uncertainty directly from the result, UDirect.  Note the scales are different than those 
before.  Again, the 95% confidence limits of the uncertainty of the mean are not shown.  In most 
cases the uncertainty direct from the result is the same as the uncertainty found from 
propagation.  This is important because it implies there are little to no correlated random 
uncertainties and it indicates the propagation was done correctly.  The only component with any 
consistent difference between Upropagation and UDirect is side force (figure 6.28).  Yawing moment 
has the largest interaction with side force.  There could be a correlation between the random 
uncertainty with the yawing moment signal and the random uncertainty of the side force signal.  
However the difference between the two methods is considered negligible.  The direct method 
will be used to estimate the random uncertainty contribution from this point forward.  
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Figure 6.23  Total uncertainty of normal force coefficient from propagation and direct 
determination of random uncertainty after low-pass filtering at 1 Hz. 
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Figure 6.24  Total uncertainty of axial force coefficient from propagation and direct 
determination of random uncertainty after low-pass filtering at 1 Hz. 
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Figure 6.25  Total uncertainty of pitching moment coefficient from propagation and direct 
determination of random uncertainty after low-pass filtering at 1 Hz. 
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Figure 6.26  Total uncertainty of rolling moment coefficient from propagation and direct 
determination of random uncertainty after low-pass filtering at 1 Hz. 
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Figure 6.27  Total uncertainty of yawing moment coefficient from propagation and direct 
determination of random uncertainty after low-pass filtering at 1 Hz. 
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Figure 6.28  Total uncertainty of side force coefficient from propagation and direct 
determination of random uncertainty after low-pass filtering at 1 Hz. 
 



 

7  Uncertainty in Forced Oscillation  
 
 
 
7-1  

7-2 

Introduction 
 

Forced oscillation tests use the same internal strain-gauge balance as used in static testing 
to measure the forces and moments of the model.  The major difference between static testing 
and forced oscillation for determining aerodynamic loads is the addition of inertial loads created 
by the oscillations, which need to be removed in addition to gravity tares.  Models oscillate and 
vibrate during static tests, however models are routinely forced to oscillate at amplitudes up to 
30º at frequencies greater than 1 Hz in dynamic tests.  Strain-gauge balances can be thought of as 
a coupled multi-axis mass-spring-damper system with several natural frequencies ranging 
anywhere from around 30 Hz up to the neighborhood of 120 Hz, however coupling of balance 
models can give substantially lower natural frequencies.  These frequencies could easily be 
excited by perturbations from mechanical imperfections of the FO rig.  Several open issues 
remain regarding the current measurement of dynamic testing – including what happens to the 
nonlinear interactions under dynamic conditions and what implications do multi-axis oscillatory 
motions have on the accuracy of the balance over its range?  These issues will not be addressed 
here.  
 

 Forced oscillation force and moment measurement process 
 
The data reduction process for forced oscillation testing is somewhat similar to that of 

static testing.  The first difference arises from a purely operational inconvenience.  The FO rig 
allows no direct control of the position of the model about the oscillation axis.  Oscillations can 
only be turned on or off.  The model must be manually set to a reference position if so desired.  
This process is cumbersome and time-consuming.  As a result no electrical zeros are removed 
from the balance signals before each the run and the tare.  The measured balance loads are thus   
 

 2V
VVk

V
VV

V
kX IFiI

F
i

I
I

IiU
==  (7.1) 

 
A consequence of not removing electrical offsets is that tares and runs are recorded back to back 
with the assumption the electrical offsets do not change.  Interactions are then applied using Eq. 
(6.10).  Forced oscillation tares are oscillated at the same amplitude and frequency as the run, 
however; tares are only recorded at one attitude, typically at zero α, as the gravity vector with 
respect to the model is assumed not to change as the turntable is positioned.  These tares are not 
only weight tares but serve as inertial tares as well.   

Traditionally data is sampled at 200 Hz for 40 sinusoidal periods or 40 cycles.  The ADT 
is also sampled to record the time history of the cycle position, θ.  Variable frequencies and 
amplitudes with a fixed sample rate give rise to variable position samples, meaning samples are 
not recorded at the same cycle position for each cycle.  For this reason each cycle must be 
interpolated from the data acquisition time-stamp time-history.  Cycle endpoints are found by 
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interpolating the time, t where 0=θ  and the angular rate, , where  can be approximated 
by a forward difference.  The slope of the position at 

0>θ&
0

θ&
=θ is approximately linear with time so a 

linear interpolation can be used to find t  such that 0=θ
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Here the subscripts k and j represent the kth endpoint and jth point in the sample record 

respectively.  The next step is to interpolate n points within the period of each cycle so that 
Tθ aligns with Rθ  when the tare loads are removed from the run loads and then reduced by the 

dynamic pressure.  The sample rate is high enough such that the spacing between samples at the 
peaks of the cycles are small.  Experience has shown a cubic spline often produces unrealistic 
interpolations at closely spaced peaks.  For this reason a linear interpolation of the form  
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was used to interpolate the tare and run loads and angular position such that 
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and  
 
  nh ,...2,1=
 
Here tk,h is the interpolated time of the kth cycle.  The subscript h is the hth element in the n length 
time vector.  The FO rig uses a DC motor, which is not able to hold a constant angular-rate under 
the varying aerodynamic and inertial loads through the oscillations.  The varying angular-rate 
results in a slightly varying frequency throughout the sample record.  These variations can be 
observed during the test on a frequency counter in the control room, typically around ±0.01 Hz.  
Unfortunately, neither the angular-rate of the motor nor the frequency was recorded.  The 
interpolated cycles for each run and tare respectively are then averaged to one cycle as 
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Next the averaged interpolated tare is subtracted from the averaged interpolated run to get the 
final aerodynamic loads, X such that 
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 Finally, the aerodynamic coefficients are found from 
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where, q  is the time average of the dynamic pressure over the run, such that 
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7-3  Uncertainty of forced oscillation aerodynamic coefficients 
 

The systematic uncertainty of the uncorrected loads and the corrected loads is essentially 
the same as with the static test, with the exception of the zeros such that 
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The auto-range function is not used for forced oscillation tests, so the systematic error for each 
balance channel is constant.  The voltage ratio was applied before the data was stored and no 
time history of the excitation voltage is available so it and its systematic error is constant as well.  
The only variables in Eq. (7.13) that are not constant are the balance voltages and the random 
uncertainties.  Random uncertainties will be estimated directly from the result of the average 
cycle, i.e  
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and the random uncertainty of the dynamic pressure is found from its standard deviation, 
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The standard deviations above are then propagated into the aerodynamic loads with a coverage 
factor for 95% confidence, ie 2.  The systematic errors will still have to be propagated.  Recall 
the “random” uncertainties are all non-repeatable measurements at the same values of 

hIntIθ .   

The next step in propagating the systematic errors comes with interpolating the time of 
where a cycle starts, Eq. (7.2).  First consider the general form of the uncertainty of a linear 
interpolation, 
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It can be shown if the uncertainty associated with x, xj, xj+1, y, yj and yj+1 is correlated and equal, 
such that Eq. (7.17) can be simplified as 
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then Eq. (7.17) simplifies to  
 
  (7.19) [ ] [ ] 2222 10
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This situation is true for Eq. (7.5) above, if θ in Eq. (7.2) is assumed to be perfectly correlated 
and has equal uncertainty with the measured positions, 

jIθ  and 
1+jIθ .   Technically this is not true 

as θ is chosen, with no uncertainty, to be zero.  However, the accuracy of the ADT, uncertainty 
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contribution on the position from the DAC and the tolerance of the DAC time stamp are small 
with respect to the accuracy of the balance and the random uncertainty in the data.  If the balance 
excitation voltage and the voltages from each balance channel were constant over the time period 
between tj and tj+1, then the systematic uncertainty of would simply be an interpolation of 

the systematic uncertainties of  and .  This is a reasonable assumption considering the 
time period between t

hkiIntIX
,

jiIX
, 1, +jiIX

j and tj+1 is 0.05 seconds for the 200 Hz sampling rate. 
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Equation (2.33) has shown, if the gradients are equal and the uncertainty for each term is 
equal and perfectly correlated, the uncertainty of the average is equal to that of each term used in 
the average.  The gradients of Eq. (7.8) are constant and so is the uncertainty estimation for each 
term; therefore the systematic error of θ is equal to the accuracy of the ADT.  Chapter 5 has 

shown the systematic error of the dynamic pressure and the gradients of the uncertainty are 
functions of Vq.  Considering the range of variation of the systematic error in q is less than 
0.002% of q over the run its systematic error can reasonably be assumed to be constant and thus 
an average of the systematic uncertainty of each qj will suffice.  Neither the gradients nor the 
systematic uncertainties of Eq. (7.7) are constant or equal. The same assumptions as with the 
interpolations could be proposed except, as will be seen later, the loads vary significantly from 
cycle to cycle at the same cycle position.  Nevertheless, the dominating term in Eq. (7.13), the 
balance accuracy, has a constant gradient and is equal for all readings.  The balance accuracy is 
at least 4 orders of magnitude larger than the root-sum-square of all other bias contributions for 
each load.  Thus, all contributions from averaging can be considered negligible.   

The uncertainty of the aerodynamic loads can then be determined from  
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Equation (7.20) simplifies to  
 

 22 ))
hi

h
+≅  (7.24) 

 
as .  It is important to note the systematic uncertainty of the aerodynamic loads 

cancels out, in part due to the assumptions that were made for interpolation and averaging of the 
cycles, but by in large the cancellation occurs because the estimates of the balance accuracy are 
constant for both the run and the tare.  Had a variable estimate of the balance accuracy, based on 

][][ iTiR XX BB =
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load, been available the same assumptions for interpolation and averaging would apply and there 
would be a systematic contribution to the uncertainty estimate. 

The uncertainty of the body-axis aerodynamic coefficients for the averaged interpolated 
cycle is similar to Eq. (6.22) in that  
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where  
 
 222 )2( qqq SBU +=   (7.26) 
 
7-4  Dynamic test results of fighter model 
 

Forced oscillation tests typically sample data at 200 Hz for 40 consecutive sinusoidal 
cycles for a given angle-of-attack as discussed earlier.  The same 100 Hz anti-aliasing filters, as 
with the static tests, are used for all forced oscillation tests where time-histories are recorded.  
Typically the position and corrected balance loads are then digitally low-pass filtered at 4 Hz 
before the cycles are interpolated and averaged.   

A few runs and tares were made that sampled data for 120 continuous cycles at selected 
α’s.  α refers to the angle-of-attack where the cycle position for a yaw oscillation about the z-
axis, 0=zθ .  The actual angle-of-attack and sideslip angles can be found from  

 
 )tan()sec()tan( yz θθα =  (7.27) 
 
 )cos()sin()sin( yz θθβ −=  (7.28) 
 
where yθ  is equivalent the turntable angle.  The extended cycle count was selected to observe 
how the variation of the cycles changed over time.  Each α was selected based on the variation in 
the aerodynamic loads over the angle-of-attack range of previous forced oscillation runs.  The 
α’s chosen for the fighter model were 10, 38, 40, 50 and 60 degrees.  The amplitude of the 
oscillations was ±5 degrees. 

The information removed by the 4 Hz filter for a top-mounted yaw oscillation 
configuration (figure 3.3c) at 40º angle-of-attack can be seen in figures 7.1 through 7.6.  The 
spectrums are again mean-zero and generated as described in section 6-4.2 .  The frequency of 
oscillation for the data shown is 0.5 Hz and is denoted with a green circle.  Note the relative 
magnitude of frequencies filtered out to that of the oscillation frequency particularly in normal 
force, pitching moment, yawing moment and side force (figures 7.1, 7.3, 7.5 and 7.6 
respectively) where the magnitude of the structural vibration around 5 Hz is greater than that of 
the response at the oscillation frequency.  The rolling moment response is slightly higher than the 
structural noise (figure 7.4).  Axial force has a 20 dB higher response than all other frequencies 
in that channel for this condition.  Also, note the second harmonic in side force that is not filtered 
out (figure 6.6). 
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Figure 7.1  Power spectrum of mean zero corrected normal force. 
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Figure 7.2  Power spectrum of mean zero corrected axial force. 
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Figure 7.3  Power spectrum of mean zero corrected pitching moment. 
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Figure 7.4  Power spectrum of mean zero corrected rolling moment. 
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Figure 7.5  Power spectrum of mean zero corrected yawing moment. 
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Figure 7.6  Power spectrum of mean zero corrected side force.  Note the magnitude of the first 
harmonic 
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As with the static test, low α’s typically have low uncertainties.  The unsteady 
aerodynamics usually then increase to a maximum around stall and then decrease post-stall.  The 
total uncertainty after 120 oscillations is shown in figures 7.7 through 7.36.  Coefficient data for 
all 120 interpolated continuous cycles, their mean and their bias are shown.  Note the largest 
contribution to the total uncertainty for each balance component, except normal force, is due to 
the inherent unsteady aerodynamics and structural vibrations that were not filtered out.  To 
understand the large bias in normal force let us return to Eq. (7.25).  The dynamic pressure for 
the run shown was 0.95 psf.  Recall the bias from interpolation and averaging the forces was 
considered negligible and was neglected.  Thus only the bias from the dynamic pressure is 
included in the uncertainty estimates.  Equation (7.25) shows that when  and  the 
uncertainty from the dynamic pressure is magnified into C . 

1<q 1>xC

x

Equations (7.27) and (7.28) show the angle-of-attack and the sideslip angle increase with 
zθ  for a yaw oscillation.  The maximum change in α for a ±5º amplitude oscillation is less than 

0.11º (occurs at °= 45yθ and °±= 5zθ ).  The maximum change in sideslip is always the 
amplitude, which occurs at °= 0yθ .  The changes in states for this run are small.  This is evident 
in the longitudinal coefficients as neither normal force, axial force nor pitching moment exhibit 
much change over the cycles or hysteresis loops.  The angle-of-attack is nearly constant over the 
cycle so any slope in the hysteresis loops indicates a relationship with sideslip.  Figure 7.21 has a 
peculiar asymmetry.  Post-test inspection revealed that one leading edge of the fighter model 
wing was sharper than the other – apparently due to some previous model repair.  This may be a 
factor in the asymmetries seen in the hysteresis loops.   
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Figure 7.7  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for normal force coefficient. 
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Figure 7.8  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for normal force coefficient. 
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Figure 7.9  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for normal force coefficient. 
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Figure 7.10  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for normal force coefficient. 
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Figure 7.11  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for normal force coefficient. 
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Figure 7.12  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for axial force coefficient. 
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Figure 7.13  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for axial force coefficient. 
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Figure 7.14  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for axial force coefficient. 
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Figure 7.15  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for axial force coefficient. 
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Figure 7.16  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for axial force coefficient. 
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Figure 7.17  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for pitching moment coefficient. 
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Figure 7.18  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for pitching moment coefficient. 
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Figure 7.19  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for pitching moment coefficient. 
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Figure 7.20  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for pitching moment coefficient. 
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Figure 7.21  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for pitching moment coefficient. 
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Figure 7.22  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for rolling moment coefficient. 
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Figure 7.23  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for rolling moment coefficient. 
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Figure 7.24  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for rolling moment coefficient. 
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Figure 7.25  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for rolling moment coefficient. 
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Figure 7.26  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for rolling moment coefficient. 
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Figure 7.27  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for yawing moment coefficient. 
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Figure 7.28  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for yawing moment coefficient. 
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Figure 7.29  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for yawing moment coefficient. 
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Figure 7.30  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for yawing moment coefficient. 
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Figure 7.31  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for yawing moment coefficient. 
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Figure 7.32  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for side force coefficient. 
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Figure 7.33  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for side force coefficient. 
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Figure 7.34  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for side force coefficient. 
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Figure 7.35  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for side force coefficient. 
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Figure 7.36  Time-history of 120 cycles oscillated at 0.5 Hz and uncertainty of 100 interpolated 
points around the mean cycle for side force coefficient. 
 

The difference between the values of the yawing moment at positive and negative yaw 
rates at °= 0zθ  indicate the magnitude of yaw damping,  and the direction of the loops - while 
not shown on the figures - indicate the sign of the yaw rate damping.  The sign of the yaw rate 
damping can often change with sideslip as shown by the twist in figure 7.31.  Side force has a 
similar trend.    The slope of the hysteresis loops can change often change with α.  Figure 7.27 
shows a stable positive C at α = 10º, a negative unstable at 38º, 40º and 50º and finally a 

stable positive C at α = 60º.    The uncertainty estimates show how much variation there is in 
the data from cycle to cycle.  They provide valuable insight to the shapes of strange average 
cycles such as in figures 7.30 and 7.35 that would otherwise not be available.   

βl βl
C

βl

 
7-5  Dynamic test results of Generic Civil Transport model 
 

Forced oscillation tests were conducted on the Generic Civil Transport.  Due to 
proprietary concerns the magnitude of the results cannot be shown.  However the scales for each 
individual coefficient are constant.  One roll oscillation run (similar to figure 3.3b) was sampled 
for 120 cycles at selected α’s just as with the fighter model.  Again, α in this context is the angle-
of-attack at 0=θ  or in this case 0=xθ . The angle-of-attack actually changes throughout the 
oscillation.  The α’s chosen were 4, 16, 26, and 50 degrees.  The model was oscillated at 0.92 Hz 
with an amplitude of ±20 degrees.  The total uncertainty after 120 oscillations is shown in figures 
7.37 through 7.60.  All 120 interpolated continuous cycles, the mean cycle and the bias are also 
shown in gray.  The actual angle-of-attack and sideslip angles, which occur during the cycles, 
can be found from  



Chapter 7  Uncertainty in Forced Oscillation  79 

 

) tan()cos()tan( yx θθα =  (7.29) 
 
 )sin()sin()sin( yx θθβ =  (7.30) 

 
The bias is far less for the GCT than with the fighter because of the larger dynamic 

pressure of 10 psf.  Equation (7.25) shows the uncertainty is inversely proportional to q.  It 
would thus seem testing at a higher dynamic pressure would solve all uncertainty woes.  Recall 
the uncertainty is a combination of unsteady aerodynamics, structural dynamics, unsteady free 
stream, electrical noise, etc.  There are no guarantees testing at a higher dynamic pressure would 
not induce larger structural noise in the data.  Recall, this was in fact the case with the fighter 
model discussed in chapter 3. 

The higher amplitude of this run results in larger variations of states across the cycle, 
which contributes to data showing cleaner trends than seen with the small amplitude fighter data.  
The angle-of-attack, as seen from Eq. (7.29) has a period twice that if the oscillation frequency.  
This produces a “bend” in the hysteresis loops of longitudinal coefficients as seen in figures 7.37 
through 7.48.  The “twists” in longitudinal coefficients such as in figure 7.39 are caused by the 
time lag of the flow [7] as the model roll rate changes directions.  The slopes of the hysteresis 
loops indicate the aerodynamic response with a change in sideslip.  The direction of the loops 
and the delta in the loops between positive and negative roll rates at Pos = 0º indicates the sign 
and magnitude of the roll rate damping.  Twists such as in figure 7.56 indicate a change in sign 
of roll rate damping.   
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Figure 7.37  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for normal force coefficient at α = 4º. 
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Figure 7.38  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for normal force coefficient at α = 16º. 
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Figure 7.39  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for normal force coefficient at α = 26º. 

 



Chapter 7  Uncertainty in Forced Oscillation  81 

 

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

 

 

 

 

 

Pos (deg)

CN

GCT model, roll osc., α  = 50°, q = 10 psf, f = 0.92 Hz, Amp. = ±20°

Time-histories
Uncertainty
Bias
Mean

 
Figure 7.40  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for normal force coefficient at α = 50º. 

 

-25 -20 -15 -10 -5 0 5 10 15 20 25
 

 

 

 

 

 

 

 

0

 

 

Pos (deg)

CA

GCT model, roll osc., α  = 4°, q = 10 psf, f = 0.92 Hz, Amp. = ±20°

Time-histories
Uncertainty
Bias
Mean

 
Figure 7.41  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for axial force coefficient at α = 4º. 
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Figure 7.42  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for axial force coefficient at α = 16º. 
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Figure 7.43  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for axial force coefficient at α = 26º. 
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Figure 7.44  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for axial force coefficient at α = 50º. 
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Figure 7.45  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for pitching moment coefficient at α = 4º. 
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Figure 7.46  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for pitching moment coefficient at α = 16º. 
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Figure 7.47  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for pitching moment coefficient at α = 26º. 
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Figure 7.48  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for pitching moment coefficient at α = 50º. 
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Figure 7.49  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for rolling moment coefficient at α = 4º. 
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Figure 7.50  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for rolling moment coefficient at α = 16º. 
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Figure 7.51  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for rolling moment coefficient at α = 26º. 
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Figure 7.52  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for rolling moment coefficient at α = 50º. 
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Figure 7.53  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for yawing moment coefficient at α = 4º. 
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Figure 7.54  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for yawing moment coefficient at α = 16º. 
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Figure 7.55  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for yawing moment coefficient at α = 26º. 
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Figure 7.56  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for yawing moment coefficient at α = 50º. 
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Figure 7.57  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for side force coefficient at α = 4º. 
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Figure 7.58  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for side force coefficient at α = 16º. 
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Figure 7.59  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for side force coefficient at α = 26º. 
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Figure 7.60  Time-history of 120 cycles for GCT oscillated at 0.92 Hz and uncertainty of 100 
interpolated points around the mean cycle for side force coefficient at α = 50º. 
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Introduction 
 
The material presented thus far provided a means of estimating the uncertainty of wind 

tunnel data.  The techniques presented were applied after the complete data set was collected and 
thus provided an estimate of uncertainty after the test was over.  One question every wind tunnel 
test engineer should ask himself/herself is, “Am I sampling long enough?” or conversely “Why 
am I sampling so long?”  Coleman and Steele suggest ‘data sets for determining estimates of 
standard deviations must be acquired over a time period that is large relative to the time scales of 
the factors that have a significant influence on the data and that contribute to the random errors.’  
Two questions then arise: what are the factors that have significant influence on the data and 
what factors contribute to the random error in the data?  The “data” for any wind tunnel test are 
all measurements acquired.  There is no doubt the inherent unsteady aerodynamics can be a 
significant factor for both the mean of the data and the random “error” or uncertainty.  As stated 
many times before, the random uncertainty is a combination of unsteady aerodynamics, 
structural vibrations, electrical noise, etc.  The hope is the latter are small with respect to the 
aerodynamics.  The question still remains, how does one know how long to sample?  Typically a 
spectrum of the data will provide insight to the lowest frequency of significance, i.e. the lowest 
frequency with a spike above the noise floor.  This method works well if the signal to noise ratio 
is high enough.  Another approach is to study how the mean and standard deviation of the data 
change with time.  Chapters 6 and 7 described typical static and forced oscillation test 
techniques, which sampled data for 8 seconds and 40 cycles respectively.  Each sample period 
whether it is measured in time or cycles was selected after a study of spectrums and rolling 
means of an increasing period for several models over a range of conditions.  The goal at the 
time was to determine a sample period long enough to encompass any significant variation 
within the data from several different models at various conditions.  Thus, the standard sample 
periods of 8 seconds for static tests and 40 cycles for forced oscillation tests were selected and 
remain the standard for testing in the subject tunnel with the test rigs used.  The selection of the 
standard periods was primarily influenced by regions near and post stall, which require longer 
sample periods to estimate a “good” mean.  Relatively benign regions, such as the linear region 
of the lift curve, are often over sampled.  What is needed is a real-time or near real-time 
condition specific analysis of when is the “right” time to stop acquiring data at a given test 
condition.     

 
 Dynamic testing considerations 

 
Forced oscillation testing stands to benefit the most from any kind of data acquisition 

optimization since it is much more time consuming than static testing.  The frequencies tested 
ranged from approximately 0.30 Hz to 1.10 Hz.  A low frequency run with 40 oscillations and 
with 20 angle-of-attack points would take about 45 minutes, neglecting time to set the angle-of-
attack, bring the tunnel up to q and record the tare.  The cost of a large subsonic wind tunnel can 
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range from $20,000 to $30,000 per day.  The low frequency run above, with two 8 hr. shifts, 
equates to a $940 to $1400 investment.   

The objective, for any measurement, is to estimate where in some n-dimensional space 
the true answer lies, usually within some bounds.  This is certainly the case with wind tunnel 
tests.  The mean serves as a reference point or expected value for the given conditions.  The 
uncertainty bounds the range about the mean of inherent unsteady aerodynamics at that 
condition, with a specified confidence.  It will be assumed the range of variation about the mean 
is symmetric, i.e. the uncertainty could equally be positive or negative, or Gaussian.   

Equations (2.3) and (2.4) show the mean and the standard deviation of a Gaussian 
distribution will approach the true mean and true standard deviation as the number of readings 
approaches infinity.  These mean and standard deviation histories, which are continuously 
recalculated as new readings are available will be defined as the “rolling mean” and “rolling 
standard deviation”.  The deltas between successive rolling means and rolling standard 
deviations or their gradients will generally decay as the number of readings approaches infinity.  
The gradients may oscillate in sign, as the random error is equally likely to be positive or 
negative, but the over all decay of the absolute value of the gradients will be similar to an 
asymptotic decay.   

Consider the gradients of the rolling standard deviation of all 100 points around the cycle 
in figure 7.51.  Every point will have a different gradient.  The location on the cycle at which the 
maximum gradient occurs may be different from cycle to cycle.  That maximum gradient can be 
used to identify how much the uncertainty of the entire cycle is changing from cycle to cycle.  
Now consider a 10-cycle moving average of the maximum gradients, gm (figure 8.1).  A moving 
average was necessary to smooth the maximum gradients.  Ten cycles were chosen for the 
moving average so the precision limit could be estimated with 95% confidence by 2Sx [11].  The 
moments from the run and the tare were non-dimensionalized based on the mean dynamic 
pressure (or expected mean dynamic pressure when non-dimensionalizing the tare), the reference 
area and span from figure 3.2b.  The non-dimensionalization was necessary to compare the 
gradients of the moments from the run and tare with the gradient of the coefficient.  Notice, at 
the scale presented, the gradients level off around 60 cycles.  The tare gradients level even 
sooner.  A threshold could be set such that if a gradient crosses a prescribed tolerance there is no 
need to continue collecting data at that condition.  The bias of the balance, for example would be 
a good tolerance limit.  However there is no guarantee a threshold will be met especially when a 
new model is tested.  Some flexibility needs to be built into the stopping criteria.   

The goal is to stop when the mean and uncertainty (or standard deviation since the bias is 
fixed) stop changing significantly.  It is proposed a threshold be set that is 10% of the average 
rate of change of the uncertainty after 11 cycles.  The 11-cycle wait is needed because the 
standard deviation of the first cycle is zero.  This would provide a metric, which is case specific, 
provides an upper bound on the uncertainty around the cycle, and is sensitive to variation of the 
mean.  If the variation in the cycles is small, such as in the linear region of the lift curve slope, 
the 10% threshold will be very low.  To prevent from sampling forever to reduce the already low 
values, another threshold is needed, and use of the known balance accuracies are proposed.  The 
balance accuracy as a function of load is not available as discussed in chapter 4.  However, 
experience has shown that balance measurements can be made to at least half of the full-scale 
accuracy reported by the calibration laboratory.  Thus half the listed balance accuracy will be 
used as a fixed threshold.  The final data acquisition stopping criteria is achieved when gm is 
10% of the gm after the initial 11 cycles or less then half of the balance accuracy.  Data 
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acquisition continues until these criteria are satisfied for all balance components.  This process is 
outlined in Figure 8.2.  Figures 8.3 through 8.14 show the time history of stopping criteria for the 
tare and the data from the roll oscillations of the GCT.  The gradient of the mean is also shown 
for reference but is not used as a stopping criterion.   
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Figure 8.1  10 cycle moving average of the absolute value of gradients of mean and uncertainty 
as they vary with increasing cycles for the non-dimensionalized tare rolling moment, non-
dimensionalized run rolling moment and rolling moment coefficient of the GCT, α = 26º. 
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Figure 8.2  Flowchart of forced oscillation data acquisition termination process. 
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Figure 8.3  Time history of stopping criteria for normal force of tare for 121 cycles.  Circles 
indicate what cycle stopping criteria is met. 
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Figure 8.4  Time history of stopping criteria for axial force of tare for 121 cycles.  Circles 
indicate what cycle stopping criteria is met. 
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Figure 8.5  Time history of stopping criteria for pitching moment of tare for 121 cycles.  Circles 
indicate what cycle stopping criteria is met. 
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Figure 8.6  Time history of stopping criteria for rolling moment of tare for 121 cycles.  Circles 
indicate what cycle stopping criteria is met. 
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Figure 8.7  Time history of stopping criteria for yawing moment of tare for 121 cycles.  Circles 
indicate what cycle stopping criteria is met. 
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Figure 8.8  Time history of stopping criteria for side force of tare for 121 cycles.  Circles 
indicate what cycle stopping criteria is met. 
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Figure 8.9  Time history of stopping criteria for normal force of run at 26 degrees for 121 cycles.  
Circles indicate what cycle stopping criteria is met. 
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Figure 8.10  Time history of stopping criteria for axial force of run at 26 degrees for 121 cycles.  
Circles indicate what cycle stopping criteria is met. 
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Figure 8.11  Time history of stopping criteria for pitching moment of run at 26 degrees for 121 
cycles.  Circles indicate what cycle stopping criteria is met. 
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Figure 8.12  Time history of stopping criteria for rolling moment of run at 26 degrees for 121 
cycles.  Circles indicate what cycle stopping criteria is met. 
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Figure 8.13  Time history of stopping criteria for yawing moment of run at 26 degrees for 121 
cycles.  Circles indicate what cycle stopping criteria is met. 
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Figure 8.14  Time history of stopping criteria for side force of run at 26 degrees for 121 cycles.  
Circles indicate what cycle stopping criteria is met. 
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The stopping criteria presented applies to all corrected balance loads, i.e. after 
interactions are removed.  Figures 8.9 through 8.14 show the stopping criteria are not met at the 
same time for all balance loads.  Thus the last load to meet the terminating conditions will 
terminate sampling for that condition.  Figures 8.3 through 8.8 show the tare could have been 
stopped after 20 cycles, likewise figures 8.9 through 8.14 show sampling at 26 degrees could 
have ended after 56 cycles.  Pitching moment was the last to meet its threshold for the 
uncertainty.  Note in this example yawing moment was the last to meet the criteria for the mean.  
Normally, the gradients of the uncertainty are more conservative, in terms of cycles, than that of 
the mean.  Figures 8.15 and 8.16 show the results of the stopping criteria for the 120 cycle runs 
of the fighter model and GCT presented in chapter 7.  The yaw oscillations for the fighter model 
presented in chapter 7 could have ended after 11 cycles for the tare and 11, 38, 37, 48 and 40 
cycles at α = 10º, 38º, 40º, 50º and 60º respectively.  The roll oscillations for the GCT could have 
stopped after 20 cycles for the tare and15, 24, 60, and 45 cycles at α = 4º, 16º, 26º and 50º 
respectively.  The number of cycles for the fighter and the GCT examples were reduced by 23% 
and 18% respectively from the 40-cycle standard.  Figures 8.18 and 8.19 give examples of how 
this technique can be used for post-analysis of standard 40-cycle data to see where more cycles 
were needed and where more cycles were recorded than necessary.  Green is used to indicate the 
stopping criteria were meet before the cycle limits, 40-cycles, where reached.  Red indicates the 
stopping criteria were not reached before reaching the end of the recorded data cycles.  The first 
and last 450 points in the 40-cycle time-histories were removed to remove any transients from 
the filter.  This is why the cycle limits do not reach exactly 40 in some cases, but do reach the 
total number of complete cycles.  As one would expect more data is acquired than needed in the 
linear region and not enough near and post stall. 
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Figure 8.15  Cycles required for fighter model using stopping criteria. 
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Figure 8.16  Cycles required for GCT model using stopping criteria. 
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Figure 8.17  Example of post-analysis for fighter model. 
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Figure 8.18  Example of post-analysis for GCT model. 

 
 



 

9  Conclusions and Recommendations 
 
 
 
9-1 

9-2  

 Assessment of data integrity 
 
Methods of providing a measure of data integrity through estimation of propagated 

uncertainty for body-axis aerodynamic coefficients from static and forced oscillation tests have 
been presented with examples.  The only systematic error source of significance, relative to the 
random uncertainty, was the balance accuracy.  It is recommended an uncertainty analysis be 
conducted on the balance during calibration to determine the uncertainty as a function of load.  
An investigation of the dynamic response of the balance is also recommended.  The random 
uncertainty from propagation was approximately equal to the random uncertainty from direct 
determination of the result for the static test.  Therefore any correlated random uncertainties are 
assumed negligible.  The major contribution to the random uncertainty was due to the variation 
in the measured balance voltages as expected.  Spectral analysis has shown significant high 
frequency content in the system.  It is recommended a study be conducted of the effects of high 
frequency vibrations on static and dynamic aerodynamic coefficients.  It is recommended all 
time histories of future tests be archived.   
 

Efficient testing 
  
A method for optimizing forced oscillation cycle time based on decay of uncertainty 

gradients and user specified threshold was presented.  Utilization of the proposed procedure 
could reduce test time required to conduct a forced oscillation test substantially in addition to 
providing the test engineer with quantitative error bound estimates for the forced oscillation test 
results for the first time.  The proposed threshold of half of the full-scale balance accuracy is 
certainly subject to the results of an uncertainty analysis of the balance, which should be 
conducted.  The same approach could potentially be used to optimize when to start acquiring 
static data to remove any transients from setting the angle-of-attack as well as when to stop.  
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Appendix A 
 
 
 
A-1  Low-pass Inverse Fast Fourier Transform (IFFT) filter 
 

This filter converts a digital signal to the time domain, nulls out energy at frequencies 
above cut-off frequency, and then converts the signal back to the time domain.  The filter was 
designed and intended for use in MATLAB.  Note the cutoff frequency must be a multiple of the 
fundamental frequency, ω0 in the signal and the sample rate must be a constant. 
 
Input: Fs  sample rate 
 x original signal in column array or column ordered matrix 
 fc cutoff frequency 
 
Parameters: X FFT of original signal  
 c index of cutoff frequency 
 f frequency array 
 m number of columns of x matrix 
 n  number of rows of x matrix 
 
Output:  y filtered signal 
 
Algorithm: 
 function  y = ifftfilter(Fs,x,fc) 
 [m, n] = size(x); 
 f = Fs*(0:m/2)/m; 
 c = find(f == fc); 
 X = fft(x); 
 y = real(ifft([X(1:(c-1),:); zeros(m-(2*c-2),n); X(m-(c-2):m,:)])); 
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