Configuration Options: Connecting Concepts to Requirements

W. H. Mason

collage from John McMasters
Huge variety of concepts at the moment

- Latest Hypersonic
- NASA Low Boom Supersonic
- Delft distributed propulsion
Technology Advances?

Designer

How to exploit technology for capability?

Requirements

A new capability someone might pay to have?

Configuration Concept

Airplane Shapes Have Changed to Exploit Advances in Technology
To Start: Define a Mission

What is the airplane supposed to do?

- What and how much does it carry?
- How far does it go? How fast?
- What are the landing and takeoff requirements?
- Are there any maneuver/accel requirements? (these are known as point performance req’ts)
- What MIL or FAR req’ts must be satisfied? -includes noise and emissions

Taken together, the answers to these questions are known as the **Mission Statement**, and also imply that you think of concepts to do the job
Configuration Concept:

- Payload
- Lifting surface arrangement
- Control surface(s) location
- Propulsion system selection
- Landing Gear

Wright Brothers:

- Innovative control concept (more important than stability)
- Light weight propulsion (relatively)
- Continual design evolution/refinement
Good Aircraft

- Aerodynamically efficient, including propulsion integration (streamlining!)
- Must balance near stability level for minimum drag
- Landing gear must be located relative to cg to allow rotation at TO
- Adequate control authority must be available throughout flight envelope
- Design to build easily (cheaply) and have low maintenance costs
- Today: quiet, nonpolluting - Green

The NASA/Grumman Research Fighter Configuration
Key Technologies

• Aerodynamics
• Propulsion
• Structures

in the late 70s:
• Flight controls

in the 80s and early 90s:
• Systems/avionics/observables & Manufacturing

Today:
• the design process - (includes MDO)

Amazingly Tricky to Integrate Advances in Each Technology
Configuration Options

• Where do you put
 – the wings?
 – the engines (in fact, what kind?)

• Where do you put the control surfaces?
 – what options are available?

• Do you have room for the landing gear?

• Possible innovative designs?

Brewster P-33A

Example of an airplane management decided was too risky to build

courtesy Dr. George Inger
We’ll look at these possibilities

- Conventional baseline
- Wing Sweep?
 - why would you sweep it forward?
- Canards?
- Flying Wings?
- Three-surfaces?
- Winglets?
- Variable Sweep?
- Slender Wings
 - Sonic Boom
- Propulsion Integration
 - Electric?
 - Powered Lift
- Hypersonics
- Recent Novel Concepts
Conventional Subsonic - A Baseline

- Payload/Fuel distributed around \(cg \) (minimize \(cg \) travel)
- Longitudinal control power from tail (with moment arm)
- Vertical Tail for directional stability, rudder for control
- \(cg/Wing/Fuselage/Landing\) Gear setup works
- Minimum trimmed drag at near neutral stability
Why Sweep the Wing?

Subsonic (*usually small*)
- Adjust wing aero center relative to *cg* (*DC-3*)
- On flying wing, get moment arm length for control

Transonic (*significant, 30°-35°*)
- Delay drag rise Mach (compressibility effect)
 - definition of the drag divergence Mach no.?

Supersonic (*large, 45°-70°*)
- Wing concept changes,
 - must distribute load longitudinally as well as laterally
- reduce cross-sectional area and area variation

Wing sweep increases wing weight for fixed span
The classic large airplane: The Boeing 747

source: www.boeing.com
Why Sweep the Wing Forward?

• For transonic maneuver, strong shock is close to trailing edge,
 – highly swept TE (shock) reduces drag.
 – forward swept wing allows highly swept TE
 – equivalent structural AR less than aft swept wing
• Synergistic with canard
• Good high angle of attack (root stall, ailerons keep working)
• But: - must be balanced at least 30% unstable
 - not stealthy
 - poor supersonic volumetric wave drag

Example: X-29

Note: some would also say for laminar flow and for less twist in wing.
Mason worked on this before it was called the X-29, one of about 3 or 4 engineers working on it.
Why Canards?

- trim surface carries positive load for positive g maneuvers
- reduces subsonic-supersonic ac shift
- drawback: downwash from canard unloads wing
 (for forward swept wing this is good)
- if balanced stable, C_L on canard is much higher than the wing
- balanced unstable, control system design very expensive
- acceptable high angle of attack lateral/directional characteristics hard to obtain
- when to use?
 - severe supersonic cruise/transonic maneuver requirement
- not stealthy
The Grumman Research Fighter
designed by Nathan Kirschbaum, Ron Hendrickson in pix
Why a Flying Wing?

- removing fuselage must improve aero efficiency
 - reduces wetted area
 - but, payload volume distribution is still an issue
- synergistic effect with relaxed static stability
- military: stealth
- commercial: distribute load spanwise, reduce weight
- but: can’t trim to a high $C_{L_{max}}$, limited cg range
 - leads to low W/S for takeoff and landing

Example: XB-35, YB-49, B-2
The B-2 Stealth Bomber
Why Three-Surfaces?

- Can trim with near minimum drag over wide cg range
- But: If you can make a design with two surfaces, why use three? - Adds cost, weight, wetted area
- Sometimes, efficient component integration leads to three-surfaces to save weight

Example: Piaggio Avanti
Piaggio Avanti

Drawing courtesy of Piaggio
Why Winglets?

- Nearly equivalent to span extension w/o increased root bending moment
- Used where span limitations are important
- Good wingtip flow crucial to low drag
- The local flowfield is extremely nonuniform, to work:

 Requires advanced computational aerodynamics methods to design

Note: Latest Boeing 777 uses folding wings, not winglets
Winglets now becoming routine

An RJ at the Roanoke Airport, Winter 2003

Abrupt corner poor - corners make drag, Should round it off – called a Blended Winglet

Now evolved to the Split Scimitar

Denver Airport, Summer 2016

And now the Tamarack Active Winglet System
Why Variable Sweep?

• Swept back: low supersonic drag,
 - good “on-the-deck” ride quality (lift curve slope decreases)
• Unswept position – larger span
 - low landing speed (carrier suit.), efficient loiter
• Optimum sweep back available over transonic speed range
• But: adds weight/complexity, currently unfashionable

Example: F-14 Tomcat
Our Current Favorite: the Strut Braced Wing

AIAA Paper 2005-4667
Journal of Aircraft, Nov.-Dec. 2010

- Werner Pfenninger’s strut-braced wing concept from 1954
 - He really wanted laminar flow, but \(\frac{L}{D_{\text{max}}} \) means \(C_{D_i} = C_{D_0} \)

- We need MDO to make it work

Compared to a conventional cantilever design:
 - 12-15% less takeoff weight
 - 20-29% less fuel

- The strut allows a thinner wing without a weight penalty
 - It also allows a higher wingspan, less induced drag
- Reduced \(t/c \) allows less sweep without a wave drag penalty
- Reduced sweep leads to *even lower* wing weight
- Reduced sweep allows for some natural laminar flow
 - reduced skin friction drag

Developed in 1990s at VT, working on it again in 2009
And it continues to be studied

Aviation Week Cover
January 27, 2014

Featured on the cover again:
March 28, 2016
And Boeing at SciTech Jan. 2019
Planform Choices: swept wings can be pitchup prone

Insert from NACA TN 109, Fig. 41

from DATCOM
The Wing Size Dilemma

- Efficient cruise implies C_L close to C_L for L/D_{max}
 (if drag rise were not an issue, C_L for max range would be much less than C_L for L/D_{max})
- Wings sized for efficient cruise require high max lift coefficient, or long runway to land.

Small wing:
No need to TO or Land!

Big Wing: Modest runway length requirement

Tomahawk Cruise Missile

Gulfstream III (AIAA Case Study)
Why Put Engines in Pods on Wing?

• load relief on wing: weight savings
• access to work on engines (maybe)
• safety
• can be low drag

Original idea by the British – in wing!

Boeing Made Wing Mounted Engines Work

The Dash-80, at the Udvar-Hazy, Dulles Airport

If the plane’s small, can’t put engines below wing

At the Tech airport
Aero-Propulsion: Especially critical for Supersonics

RF-84 – basis for F-105?

Kartveli decided to use the inlet from the XF-103 on the F-105

Proposed XF-103
Another consideration: Propulsion for lift/control

- Aero-Propulsion integration also needs to be considered
- Thrust vectoring for control.
- Powered lift for VTOL/STOL
And the X(F)-35 is now at the Smithsonian

At the Air & Space Museum, Dulles Airport, Dec. 2003
How about the Honda Jet?

Courtesy of Honda Jet
Control Surfaces
Classic Stabilizer-Elevator vs All Flying Tail

Chuck Yeager: “The key discovery of the X-1 Program”

The “normal” horizontal stabilizer-elevator

The All-Flying Tail or Stabilator Differential for roll!

Douglas A-3 at the Navy Museum
Pensacola, FL
Ocean Engineering

North America F-100 at the Air Force Museum, Dayton, OH
What about control surfaces for recent UAVs?

- Current large airplanes use mechanically actuated controls, hinge moments are not as important (usually)
- UAVs (and DBF) may have limited forces available to move the surfaces (hinge moments)
- They are slow, so:
 - Aerodynamic balance can be used to reduce the hinge moments

Figure from NACA RB 3F19, 1943, “Resume of Hinge Moment data for unshielded horn-balanced control surfaces”
See also NACA TR-927
Supersonic Flight leads to Slender Wing Concepts

The Concorde epitomized the ideal shape for supersonic cruise
BUT: Aerion keeps going (with Lockheed Boeing)

8-12 pax, $M = 1.4$, boomless at $M = 1.1$, range – 4750 nm, field length - 7500 ft, expected entry into service - 2023
What’s the *Aerion* Idea?

This *is* a case where 2D supersonic airfoil theory is interesting

2D supersonic airfoil pressures look nothing like the subsonic pressures

A favorable pressure gradient all the way to the trailing edge means that you might be able to get laminar flow!

- Small chord
- High altitudes

Implies a relatively low Re

Also observe that the upper and lower surface pressures don’t have to be equal at the TE when it’s a supersonic TE edge
Hope for Low-Sonic Boom Noise Flight

A modified F-5E demonstrated a low-noise boom on Aug. 27, 2003

So-called “boom shaping” can be used to reduce the part of the boom that hits the ground.

And from Gulfstream: The Quiet Spike

NASA F-15B #836 in flight with Quiet Spike attached.

NASA Dryden Flight Research Center Photo Collection
http://www.dfrc.nasa.gov/Gallery/Photo/index.html
NASA Photo: ED06–0184–13 Date: September 27, 2006 Photo By: Carla Thomas
Did you see the cover of the Jan 2013 Issue?

Issue: Low noise AND low drag
Even Faster: Hypersonics

The X-51A scramjet Demonstrator- 1st flight May 26, 2010

Photo courtesy of Karen Berger, a former student in this class and now working on this concept (at NASA Langley)
A Novel Concept?

- **Blended Wing-Body Concept**
 - Concept from Bob Liebeck (Douglas Aircraft)
 - Less wetted area (no fuselage)
 - Possibly more efficient structure

The concept built and flown as the X-48
- 1st flight July 20, 2007
- Last: April 9, 2013
And one I like

- **Oblique Wing Supersonic Transport**
 - concept by R.T. Jones
 - fore-aft symmetry of lift/better area distribution
 - possibly only “practical” SST
 - flying wing version also

A small plane!

NASA AD-1, 1st Flight Aug. 1982
Another Novel Concept: SpaceShipOne

Burt Rutan: Still imagineering!

The White Knight

Pictures from the Scaled Composites web site

Aerospace and Ocean Engineering
A Burt Rutan Creation: the Boomerang

To make twins safe for one engine out flight, engines closer to the centerline.
The Latest: UCAVs
This one is based on Nastasi/Kirschbaum/Burhans Patent 5,542,625

Northrop Grumman Corporation, reprinted by Aviation Week, June 16, 1997

The vertical tail is eliminated for stealth, directional control comes from specially coordinated trailing edge deflections
And finally, Micro AVs!

Black Widow
AeroVironment, Inc.

- 6-inch span fixed-wing aircraft
- Live video downlink
- Portable launch/control box
- Pneumatic launcher
- 60 gram mass
- 22-minute endurance
- Estimated 10 km range
- Electric propulsion

Achievements
- World MAV endurance record of 22 minutes
- Smallest video camera ever flown on a UAV: 2 grams
- Smallest live video downlink ever flown on a UAV
- World’s smallest, lightest multi-function, fully proportional radio control system: 3 grams
- First aircraft to be flown “heads-down” indoors

Joel Grasmeyer, MS VT 1998 - team member!
Watch for the huge variety of concepts being proposed

Upcoming X-59

Make the flow physics work for you, not against you!

Really? An Airbus Concept
And a Quad – Mainly Prop/Controls

The electric powered Volocopter
Design for Performance

Reduce minimum drag:
- minimize wetted area to reduce skin friction
- streamline to reduce flow separation (pressure drag)
- distribute area smoothly, especially supersonic a/c (area ruling)
- consider laminar flow

Reduce drag due to lift:
- maximize span (must be traded against wing weight)
- tailor spanload to get good span e, (twist)
- distribute lifting load longitudinally to reduce wave drag due to lift
 (a supersonic requirement, note R.T. Jones’ oblique wing idea)
- camber as well as twist to integrate airfoil, maintain good 2D characteristics

Key constraints:
- at cruise: buffet and overspeed constraints on the wing
- adequate high lift for field performance (simpler is cheaper)
- alpha tailscrape, $C_{L\alpha}$ goes down with sweep, AR
Design for Handling Qualities

- adequate control power is essential
- nose up for stable vehicles
- nose down for unstable vehicles
- consider full range of cg’s.
- implies: balance area around the cg properly

FAA and Military Requirements

- safety (FAR Part 25 and some Part 121 for commercial transports, MIL STD 1797 for military)
- ability to use as a stable weapons platform
- noise: community noise, FAR Part 36, no sonic booms over land (high \(L/D\) in TO config reduces thrust requirements, makes plane quieter)
To Learn More, Read These:

Design for Air Combat by Ray Whitford. Takes a deeper look at the details, again without equations and with lots of good graphics showing typical data to use deciding on design options. I continue to contend that the title suggests a much narrower focus than the book has.

Aircraft Design: A Conceptual Approach, by Daniel Raymer. Chapter 8, “Special Considerations in Configuration Layout” and Chapter 20, “Design of Unique Aircraft Concepts” is good once you’ve read the first two references.
Still Room for Dreamers

We don’t yet know what the ultimate airplane concept is.

“The scientist discovers that which exists, the engineer creates that which never was.”

Theodore von Kármán
Aerospace Pioneer

W. Mason, whmason@vt.edu
A Flying Car? Terrafugia, among others
Previously, and flown:
NASA’s Mark Moore, concept visionary

Leaves NASA to work for Uber

Wow