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(Abstract) 

 

The research presented in this thesis examines the use of an estimated “actuator work” value as a 

performance parameter for the comparison of various aerodynamic control device configurations.  

This estimated “actuator work,” or practical work as it will be referred to as in this thesis, is based 

on the aerodynamic and structural resistance to a control surface deflection.  It is meant to 

represent the actuator energy cost required to deflect a general configuration of conventional or 

unconventional control surface.  Thin airfoil theory is used to predict the aerodynamic load 

distribution required for this work calculation.  The details of applying thin airfoil theory to many 

different types of control surface arrangements are presented.  Convenient equations for the 

aerodynamic load distributions and aerodynamic coefficients are obtained.  Using the developed 

practical work equations, and considering only the aerodynamic load component, the practical 

work required for a given change in lift is compared between different control surface 

arrangements.  For single control surface cases, it is found that a quadratic (morphing) trailing 

edge flap requires less practical work than a linear flap of the same size.  As the angle of attack at 

which the change in lift occurs increases, the benefit of the quadratic flap becomes greater.  For 

multiple control surface cases, it is necessary to determine the set of control deflections that 

require the minimum practical work for a given change in lift.  For small values of the initial 

angle of attack, it is found that a two-segment quadratic trailing edge flap (MTE) requires more 

work than a two-segment linear flap (TETAB).  But, above a small value of angle of attack, the 

MTE case becomes superior to the TETAB case.  Similar results are found when a 1-DOF static 

aeroelastic model is included in the calculation.  The minimum work control deflections for the 

aeroelastic cases are shown to be strongly dependent on the dynamic pressure.   
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Nomenclature 

 
α = angle of attack 

a = flap-to-chord ratio 

An = Fourier coefficients used to represent the load distribution, defined in Eqs. (3.3 – 3.5) 

β = general control surface deflection 

c = chord length 

Cl = airfoil lift coefficient (l /q c) 

CM = airfoil pitching moment coefficient (m /q c2) 

C    = force resisting a control surface motion at a point x, defined in Eq. (2.6) 

δ = control surface deflection angle (used in Chapter 3) 

f  = ∆z /β, represents the ∆z per-unit deflection of β along the chord 

F = structural force resisting a control surface deflection 

γ     = vorticity or load distribution (∆Cp = 2γ /U) 

η = represents the cost of negative work relative to positive work, defined in Eq. (2.10) 

I     = integrand of the W equation, defined in Eq. (2.11) 

k    = x location of the flap hinge line (Figure 3.1) 
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M   = magnitude of maximum camber for a NACA camberline 
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q = dynamic pressure (1/2 ρ U2) 

Q   = defined in Eqs. (2.12 and 2.18), represents the hinge moment for a linear control surface 
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τ     = nondimensional time used to define the path between the initial and final states 

θ = defined in Eq. (3.2), represents the location x along the airfoil chord 
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Chapter 1 

 

Introduction and Overview of 

Morphing Aircraft 
 

1.1 Motivation 
 

The modern aircraft designer is faced with increasingly conflicting design requirements.  

Designing for efficient subsonic and supersonic cruise, high maneuverability, and low radar 

signature requires many trade-offs [Waaland 1991].  These trade-offs lead to an aircraft that, at a 

given flight condition, is not as good as an aircraft designed specifically for that condition.  If an 

aircraft has the ability to continuously transform into the design that is optimal for its current 

flight condition, its mission capability and superiority over hostile aircraft will be unmatched 

[Herbst 1973, 1980 and 1983].  For military applications this has become the motivating factor in 

the development of variable geometry aircraft, or as they are called today, morphing aircraft. 

 

The current military interest in unmanned air vehicles (UAVs) has been a strong motivating 

factor in the research devoted to morphing aircraft [Fulghum 2003].  The removal of the pilot 

from the system means that human limitations no longer need to be considered, and also allows 

for the removal of the volume required for the crew station.  This allows for new aircraft concepts 

with extremely high maneuverability and very long flight times. Morphing can be used to achieve 

optimal performance over this wide range of conditions.  According to Fulghum [2003], “by 2027 

UAVs may have morphing airframes that can optimize their shape for various missions and flight 
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conditions.”  He also mentions the use of shape memory alloys (SMAs) for actuating the 

morphing structure.   

 

The recent development of smart materials such as SMAs has been a driving factor in the recent 

interest in morphing aircraft.  For years aerodynamicists have recognized the benefits of a bird’s 

ability to manipulate its wings for various flight regimes [Tucker 1970].  But mimicking this 

ability with aircraft has not been successful, mainly because of the structural considerations.  It is 

possible that smart materials will finally enable the difficult combination of lightweight, 

flexibility, and strength in an aircraft structure [Wlezien et al. 1998].       

 

1.2 Overview of Morphing 
 

There are two main categories of morphing: mission morphing and flight-control morphing.  

Mission morphing is usually defined as a large change in an aircraft’s geometry to optimize itself 

for a changing flight regime.  Flight-control morphing is generally thought of as a smooth, 

unhinged change in an aircraft’s geometry for the purpose of control or maneuvering.  In many 

cases, there is not a clear distinction between mission and flight-control morphing.  For example, 

a smooth trailing-edge control surface on a wing could be used for both minimizing drag for 

various flight conditions as well as acting as an efficient aileron.  It is curious that in defining 

mission and flight-control morphing, only flight-control morphing required a smooth or unhinged 

change in geometry.   

 

The Wright Brothers were the first to use morphing, in the form of wing warping, on their early 

gliders as well as on the Wright Flyer [Culick 2003].  This was an example of flight-control 

morphing, which was used to perform roll maneuvers and allow the airplane to turn.  This method 

of control was not chosen for its performance benefits, but instead because it was the easiest to 

implement on a relatively flexible wing.  As aircraft became heavier and wings became stiffer, 

wing warping was no longer practical and it soon gave way to ailerons.          

 

An early case of mission morphing was NACA’s X-5 variable sweep aircraft, which began in 

1948.  This aircraft had the ability to change the wing sweep-angle during flight to optimize its 

transonic performance [Kress 1983].  Many variable sweep aircraft followed the X-5 program in 

both the U.S. and abroad.  The most recent U.S. variable sweep design, from the late 1970s, is the 

Rockwell B-1 Bomber.   
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1.3   Past Morphing Research 

 

As mentioned above, other than the wing warping used by the Wright Brothers, the first use of 

morphing was in variable sweep wing aircraft.  Figure 1.1 [Kress 1983] shows the reasons for the 

use of variable sweep in U.S. aircraft.   This figure shows that, excluding the X-5, all of these 

aircraft used variable sweep for low takeoff and landing speeds, delaying the transonic drag rise, 

supersonic drag, and minimum design weight.  Morphing in these cases allowed the aircraft to fly 

effectively at low speeds as well as at transonic and supersonic speeds.  Figure 1.2 shows how a 

sweep change affects the L/D and CD0.  This clearly shows the penalty resulting from being 

restricted to a single sweep angle as speeds approach the transonic regime. 

 

 X-5 XF10F-1 F-111 F-14 B-1 
Low Takeoff and Landing Speeds  X X X X 
Subsonic Cruise   X X X 
Transonic Characteristics X     
- L/D    X X 
- Drag Rise  X X X X 
- Buffet Onset and Intensity    X  
Maneuvering CLmax    X  
Supersonic Drag  X X X X 
Wing Design Load Relief    X  
Research X     
Minimum Design Weight  X X X X 

 
Figure 1.1: Reasons for Variable Sweep Applications [Kress 1983] 
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Figure 1.2:  L/DMAX and CD0 vs. Sweep [Kress 1983] 

 

The Advanced Fighter Technology Integration (AFTI) F-111 was a joint Air Force, NASA, and 

Boeing project in the early 1980s to develop a smooth variable camber aircraft.  As shown in 

Figure 1.3, this aircraft used six independent trailing edge sections and two leading edge sections 

for both control and wing shape optimization [Smith 1990].  Electro-hydraulic rotary actuators 

and a flexible composite skin were used to achieve smooth camber variation.  The variable 

camber capability was utilized through a control system consisting of four operating modes.  The 

Maneuver Camber Control (MCC) mode selected the best leading and trailing edge camber 

combinations for maximum L/D as a function of flight condition.  This system used wind-tunnel 

data stored in tables with lift coefficient, wing sweep, and Mach number as the lookup 

parameters.  Cruise Camber Control (CCC) mode was designed to maximize velocity at constant 

altitude and throttle setting.  This closed-loop mode performed an iterative process of changing 

the trailing edge camber until maximum velocity was achieved.  Maneuver Load Control (MLC) 

mode measured the wing-root bending moment and adjusted the camber on the outboard wing to 

concentrate the loading towards the root.  This allows the wing weight to be decreased for a given 

g capability.  The Maneuver Enhancement/Gust Alleviation (MEGA) mode used the variable 

leading and trailing edge camber capability to quicken aircraft response [Bonnema 1988, Smith 

1987].  The predicted benefits of these control modes were a 20% increase in range, a 15% 
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increase in maximum ceiling, and a 20% increase in subsonic sustained turn rate [Smith 1986].  

Whether these goals were ever achieved has not been published.  Smith [1990] does present a 

comparison of the F-111 with the variable camber wing and with a conventional wing.  An 8% 

reduction in drag at the design point and a 20% reduction at off-design points were shown. 

 

 
Figure 1.3: AFTI/F-111 Layout [Smith 1990] 

 

Many researchers have studied the use of variable camber, similar to that of the AFTI/F-111, on 

transport aircraft.  The main objective of this research has been to increase the L/D over a wide 

range of lift coefficients as shown in Figure 1.4 [Monner 2001].  Not only does variable camber 

have the ability to increase the range of lift coefficients over which low drag is obtained, but 

variable camber is also able to decrease the minimum drag point (drag at the design point) 

because structural load restrictions are decreased [Szodruch 1985, Renken 1985].  The structural 

load restrictions are decreased because variable camber allows for the aerodynamic loads to be 

distributed in a way that minimizes the root bending moment on the wing.      
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Figure 1.4: Influence of variable camber on L/D [Monner 2001] 

 

Greff [1990] discusses the ability of variable camber to improve the operational flexibility of an 

aircraft by delaying the buffet boundary.  He also mentions that variable camber will allow the 

same wing to be used optimally on many different aircraft.  Spillman [1992] emphasizes the use 

of independent control of camber along the span to tailor spanloads to various flight conditions.  

He discusses the importance of separating the lift due to incidence to that due to camber. This 

idea is important when considering various flight conditions where different angles of attack and 

control deflections are required.  Martins [1996, 1997, and 2000] followed the work of Greff and 

Spillman by implementing a formal optimization scheme to a variable camber transport aircraft.  

A vortex lattice method coupled with a strip boundary layer analysis was used for the 

aerodynamic predictions.  The optimization procedure used is discussed in Martins [1996].  

 

A topic of recent interest is the amount of work required to overcome the aerodynamic forces for 

control surface deflections.  Pettit et al. [2001] presented a model to compute the aerodynamic 

work for an entire aircraft configuration.  A modified lifting line combined with conformal 

mapping was used for the aerodynamic analysis.  There was a brief mention of reversible and 

irreversible work in the presentation of some of his work results.  He called the reversible work 

the work required if the work provided by the airstream is able to be captured and stored as usable 

work.  The irreversible work was the total work if the work provided by the airstream could not 

be captured.  It will be shown in this thesis that the distinction between reversible and irreversible 

work is not this simple, and it actually depends on how the wing is actuated.  
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Henderson et al. [2001] briefly discusses aerodynamic work in his study of adaptive control 

surfaces.  A comparison is presented of the work required for a wing to deflect a full-span flap 1-

degree for different planforms.  His conclusion was that high aspect ratio wings are favorable for 

low aerodynamic work.  This conclusion is not directly applicable to this study because the 

comparison was made with a constant flap deflection, and not a constant ∆Cl between the 

different cases.   

 

Prock et al. [2002] presented the first entire paper devoted to investigating aerodynamic work.  

This paper emphasized the effect of aeroelasticity on the required work.  It was shown that for a 

simple flapped-airfoil with a torsional spring, there is a dynamic pressure where the flap can be 

deflected with no required work.  This deflection results in a negative change in lift because it 

occurs at a dynamic pressure larger than the reversal dynamic pressure.  He also investigated the 

distribution of trailing edge deflections for a 3-D wing including aeroelastic effects.  This showed 

that the ability to distribute control deflections along the span reduced the required work by 

concentrating deflections in regions of greatest effectiveness.  All cases involved the work 

required to produce lift away from an initially flat wing.  This thesis will show that the work 

away from an initially flat (non-lifting) wing is significantly different than that away from an 

initially lifting wing. 

 

 Gern et al. [2002] investigated the actuation energy considering both the structural and 

aerodynamic work values.  A vortex lattice method was used for the aerodynamic work while a 

NASTRAN model calculated the structural work.  This analysis showed that camber and twist 

actuation was able to obtain larger rolling moments because of their reduced aeroelastic 

influence.  At low dynamic pressures, it was shown that the flap required significantly less 

aerodynamic work because there was no structural work component.  As the dynamic pressure 

increases though, the flap effectiveness is decreased as the aileron reversal condition is 

approached resulting in large deflections to maintain the given roll-rate.  The twist and camber 

actuation schemes are not as adversely effected by aeroelastics.  Therefore, as the dynamic 

pressure increases, the required twist and camber deflections decrease resulting in a decrease in 

the structural work.     

 

Forster et al. [2003] analyzed trailing-edge morphing and conventional flaps using thin airfoil 

theory.  Aeroelastic effects were included using a spring at the shear center of the airfoil.  It was 
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shown that a morphing trailing edge device could reduce the aerodynamic work by deflecting like 

a conventional flap-tab combination.   

 

 

1.4   Overview of Thesis 

 

This thesis investigates the actuator work required for conventional and morphing control 

devices.  A fundamental analytic study is made using incompressible, inviscid aerodynamics.  

Chapter 2 begins by discussing the force components that contribute to the required actuator work 

for a general aerodynamic control device.  A method of calculating the actuator work is derived 

considering linear structural and aerodynamic force components.  The difference between 

positive and negative actuator work is discussed and incorporated in the work derivation.  

Because of the difference between positive and negative work, it is emphasized that the structural 

and aerodynamic work must be considered together.   

 

Chapter 3 reviews and extends thin airfoil theory for use as the aerodynamic model for the work 

calculation derived in Chapter 2.  This theory is used instead of a more accurate numerical 

method because it provides an analytic representation of the aerodynamic load distribution and 

force coefficients.  The theory is applied to an airfoil with a trailing-edge flap, an NACA 

camberline, a leading edge flap, a two-segment trailing edge flap (TETAB), and a morphing 

trailing edge flap (MTE).  It is shown that the morphing flap requires less aerodynamic work than 

a standard flapped airfoil.  The addition of a trim constraint is discussed at the end of this chapter. 

 

Chapter 4 uses the work model developed in Chapter 2 to find the control deflections required for 

the minimum aerodynamic work.  An analytic solution is obtained for the minimum work control 

deflections for a two-segment trailing edge flap and a morphing flap to obtain a ∆Cl away from an 

initially flat (α = 0) configuration.  The effect of an initial Cl on the required work is investigated 

and shown to dramatically effect the minimum work control deflections.  The morphing trailing 

edge flap is shown to be superior to the two-segment trailing edge flap as the initial Cl is 

increased.  The minimum work control deflections for two ∆Cl’s are investigated and shown to be 

related to those for a single ∆Cl.  For the initially flat case, an analytic solution for these 

deflections is obtained.  Chapter 5 extends the analysis of Chapter 4 to include static aeroelastic 

effects.   



 
 

 

 

Chapter 2 

 

Actuator Work for an Aerodynamic 

Control Device 
 

2.1 Introduction 
 

This chapter examines the concept and calculation of the mechanical work required to operate an 

aerodynamic control device.  A general theory will be presented that accounts for both the 

aerodynamic and structural resistance to a change in airfoil geometry.  This theory will assume 

that both of these components are linear with respect to the parameter representing the geometry 

change.  The concept of negative actuator work will be discussed and its implications to the 

required actuator work will be included in the theory.  Results using the procedure discussed in 

this chapter will be presented and discussed in the following chapters. 

 

 

2.2 Calculating the Work Required by an Actuator to 

Operate an Aerodynamic Control Device  
 

Consider a layout of control devices on an airfoil as shown in Figure 2.1.  Here, three control 

devices are shown, a morphing flap (A) and a trailing edge flap-tab combination (B and C).  The 

figure shows that each surface is actuated by a separate actuator, a fact that will be shown to be 

important.  Note that Figure 2.1 shows only the camberline of the airfoil, and not the distribution 
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of thickness.  Thickness will be neglected in this analysis because, to the first order, it does not 

contribute to lift.   Now, it is desired to calculate the mechanical work required by the actuators to 

achieve a change in βA, βB, and βC; where the β’s represent the state of each control device (in 

these cases they represent the deflection angle).  This calculation requires knowledge of the 

forces acting on the actuator during the change from the initial β value to the final β value, and 

the details of the change in geometry implied by a change in β.   

 
Figure 2.1:  Example layout of control devices on an airfoil and the resulting ∆p distribution 

 

The forces resisting a change in β are the aerodynamic forces, internal structural forces, and 

inertial forces.  The aerodynamic forces on an airfoil consist of both a lift and drag component.  

The present analysis ignores the viscous drag component, which produces a negligible net force 

in the direction of actuation. In general though, viscous effects have a significant influence on the 

normal (pressure) force, especially when the β’s become large, so we assume that the β’s remain 

small in this analysis.  Another assumption that will be used throughout this analysis is that the 

shape change occurs slowly enough so that the unsteady component of the aerodynamic forces 
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can be ignored.  Quasi-steady aerodynamics are therefore assumed.  The assumption of a slow 

shape change process also allows us to neglect inertial forces. 

 

With these assumptions on the magnitude and rate of change of β, the aerodynamic forces may be 

calculated with classical steady thin airfoil theory.  These details will be presented in Chapter 3.  

Thus, in this analysis the pressure distribution, or more specifically the ∆p distribution, is 

assumed to be linear with respect to the β’s.  This linearity allows the ∆p distribution to be 

separated into components resulting from each of the control surfaces and the angle of attack (α).  

Therefore, linear superposition of pressures can be used, and the pressure distribution can be 

written as  

∑
=

∆+∆=∆
N

n
n xpxpxp

n
1

)()()( αβ αβ                                             (2.1) 

where and are the derivatives of 
n

pβ∆ αp∆ p∆  with respect to βn and α, with the subscript n 

representing one of the N control surfaces.  For the configuration shown in Figure 2.1, N =3 and 

control surfaces A, B, and C correspond to n = 1, 2, and 3.   

 

The internal structural forces acting on an aerodynamic control device depend on the details of 

the structure being deformed.  In many cases, such as the conventional flap-tab combination 

shown in Figure 2.1, a hinge is used so that no internal structural forces resist a change in β.  The 

focus of this study is not on the calculation of the structural force component.  This is because 

unlike the aerodynamic force, which depends only on the external shape of the airfoil (or in this 

case, the camberline), the structural force depends on the details of the internal structure.  

Nevertheless, an approximate model will be considered by assuming an elastic material and 

recalling the restriction that β remain small.  The distribution of the actuator force required to 

overcome the internal structural forces will be represented as  

(∑
=

−=
N

n
nnxKxF

n
1

0)()( ββ )                                                (2.2) 

where Kn is the distribution of internal forces per-unit βn, and β0n is the value of βn at which the 

structure is undeformed (or unstrained).  This model is simplified in that it does not account for 

the camberline deformation caused by the aerodynamic forces.  This is accepted because the 

structure aeroelastics are not the focus of this analysis. It should be mentioned that because each 

control surface has been defined to be actuated by only one actuator, the actuator must be 
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distributed or some type of mechanism must be attached to the actuator to obtain shapes such as 

the morphing flap (A) in Figure 2.1.        

 

Once all of the internal and external forces are known as a function of β (or β’s) and x, it is 

necessary to specify the distance that each actuator moves the control surface between the initial 

and final states.   Figure 2.1 labels an “area of actuation” (S) for each of the actuators.  This area 

of actuation refers to the length of the chord that is displaced or moved by the actuator.  Over this 

area of actuation, a function f(x) is defined for each actuator which represents the ∆z(x) produced 

per-unit β of that control surface.  The correct definition of f(x) is important to correctly calculate 

the aerodynamic work, especially for configurations such as the trailing edge flap-tab 

combination shown in Figure 2.1.  For this case, the area of actuation of actuator B (SB) overlaps 

that of actuator C (SC).  This means that the ∆z(x) produced per-unit βC must be taken relative to 

βB, which is implied in the definition of βC in Figure 2.1. 

 

 

2.3 The Work Required to Overcome the Aerodynamic and     

         Structural Forces 
 

The previous section discussed the assumptions resulting in a linear representation of 

aerodynamic and structural forces with respect to the control parameter β.  The deflection at each 

point along the chord is defined in f(x), where 

 ( ) ( )βxfxz =∆                                                           (2.3) 

which is zero for points not in the area of actuation and non-zero for points in the area of 

actuation.  Because the work is calculated for a change in state, it is necessary to define the path 

between the initial and final state.  This is done by relating β linearly to a nondimensional time τ 

as 

( ) ( ) 112 βτββτβ +−=                                                      (2.4) 

where 10 ≤≤τ , and β1 and β2  are the values of β at the initial and final state.   

 

The general equation for mechanical work (W ) can be written as 

drrCW
r

r
∫ ⋅=
2

1

)(                                                          (2.5) 
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where C is the force acting on a point that is being moved from location r1 to a location r2 along a 

path r.  To apply Eq. (2.5) to a point x on an airfoil, the force per-unit length C is written as (β0 

from Eq. 2.2 is assumed to be zero for brevity) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }τβτατβτ αβ xKxpxpxC +∆+∆=,                                (2.6) 

where β (τ ) is defined in Eq. (2.4) and α(τ) is represented in the same form.  The dr term at point 

x is written as 

( ) τ
τ
β d

d
dxfdr =                                                          (2.7) 

 where f(x) is defined in Eq. (2.3).  Substituting Eqs. (2.6) and (2.7) into Eq. (2.5) results in the 

following expression for the work per-unit length ( w ) at point x: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) τ
τ
βτβτατβββαα αβ d

d
dxfxKxpxpxw ∫ +∆+∆−=

1

0
2121 ,,,,        (2.8) 

where the negative sign is added so that the work is positive when the actuator is required to 

provide a force in the direction of dr.  Integrating Eq. (2.8) across the chord results in the 

following equation for the total work required by the actuator:    

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) τ
τ
βτβτατβββαα αβ dxd

d
dxfxKxpxpW

c

∫ ∫ +∆+∆−=
1

0 0
2121 ,,,         (2.9) 

Although Eq. (2.9) is mathematically correct, its practical usefulness is limited.  To understand 

this, it is necessary to discuss the meaning of the sign of the required actuator work.  As 

mentioned, a positive work value from Eq. (2.9) means that the actuator must provide a force in 

the direction of its actuation motion.  A negative value means that the actuator must provide a 

force in the direction opposite to its motion.  These two types of actuation work are 

fundamentally different.  To see this, consider a flapped airfoil at zero degrees α with the flap 

changing from -20 degrees to 20 degrees deflection (assume no structural work).  Evaluating Eq. 

(2.9) for this case results in a W  equal to zero.  This does not seem intuitively correct because it 

is known that some positive work should be required for this geometry change.  What has 

happened is the negative work required to go from -20 degrees to 0 degrees has cancelled the 

positive work required to go from 0 degrees to 20 degrees.  Allowing these terms to cancel each 

other assumes that the negative work is collected and used to produce positive work.  Although 

this is not impossible, it is a restrictive and impractical assumption.  A more practical equation 

will be developed in the next section that only calculates the positive work.  
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2.4  The Practical Work Required for an Aerodynamic Control  

       Device 
 

The previous section mentioned that the outer integral of Eq. (2.9) allows for the cancellation of 

positive and negative work, which was shown to produce work values that clearly do not 

represent the required work.  The issue that must be addressed here is the cost of the actuator 

work, because what we are really interested in is the amount of energy that must be supplied to 

the actuator.  This topic has been widely studied by biologists to determine the muscle 

efficiencies of different types of animal motion [Nieslon 1972, Blikhan 1994, Tucker 1975].  The 

cost of negative work for a muscle was investigated by Abbot et al [1952] by measuring the 

oxygen consumption of humans performing positive and negative work.  In this case, the oxygen 

consumption can be considered a measure of the work supplied to the actuator, or the cost.   It 

was found that the oxygen required for negative work is considerably less than that of positive 

work.  For the problem of determining the energy supplied to an actuator, it is conceivable that 

the cost of negative work is also small compared to the cost of positive work.  This statement is 

difficult to justify for conventional actuators, for which it is difficult to find information 

connecting the required input energy to the output force and displacement.  Most of the 

information found for conventional actuators is concerned only with the maximum available 

force, which is used to size the actuators for the maximum allowable hinge moment of the control 

surface [Raymond and Chenoweth 1993]. 

 

For this study, we will label W the practical work, which accounts for the difference in negative 

and positive work.  The practical work will be defined as 
−+ += WWW η                                                       (2.10) 

where +W and −W  are the absolute values of the positive and negative work terms.  These terms 

are obtained by separating the outer integral in Eq. (2.9) into segments that calculate only positive 

or negative work (this will be discussed in detail below).  The η term in Eq. (2.10) is a coefficient 

that represents the cost of negative work relative to positive work.  If there is no cost required for 

the actuator to perform negative work, then η = 0.  If the cost of positive and negative work are 

equal, then η = 1. 
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The remainder of this study will assume a value of η = 0, or that the cost of negative work is 

negligible so that += WW .  Applying the following development to nonzero values of η is 

straightforward, the only difference is the negative component of W  is calculated in addition to 

the positive component calculated in the following procedure.  To calculate the positive 

component of W , we first rewrite the inner integral of Eq. (2.9) as  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )[ ] ( )[ ]{ }( )12112112

0

ββατααβτββ

τ
βτβτατβτ

αβ

αβ

−+−++−+−=

+∆+∆−= ∫
QQQ

dx
d
dxfxKxpxpI

s

c

                (2.11) 

where  

( ) ( )

( ) ( )

( ) ( )dxxfxKQ

dxxfxpQ

dxxfxpQ

c

s

c

c

∫

∫

∫

=

∆=

∆=

0

0

0

αα

ββ

                                                (2.12) 

If f(x) is a linear function of x, as is the case for a conventional flap, then Q represents the hinge 

moment per-unit β or α.  To determine if I(τ) changes from positive to negative, it is evaluated at 

τ equal to zero and one.  The 4 possible variations of I(τ) are shown in Figure 2.2. Case (C) 

occurs if I(τ = 0) and I(τ = 1) are , which results in 0≥ W=W because there is no negative work.  

Case (D) occurs if I(τ = 0) and I(τ = 1) are 0≤ , then W = 0 because there is no positive work.  

For cases (A) and (B), where one of the I(τ)  values is positive and one is negative, the outer 

integral of Eq. (2.9) must be broken up into two parts.  The value of τ at which to break up the 

integral is determined by setting Eq. (2.11) equal to zero and solving for τ.    

( )
( )( ) ( )1212

11
0 ααββ

αβ
τ

αβ

αβ

−+−+

++
−=

QQQ
QQQ

s

s                                            (2.13) 

If I(τ = 0) is  and I(τ = 1) is 0≥ 0≤ , corresponding to case (A) in Figure 2.2,  the correct 

expression for the aerodynamic work is  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )( )[ ] ( )[ ]{ }( )1201
2

01201
2

012

0 0
2121

2/2/

,,,,
0

ββταταατβτββ

τ
τ
βκτβτατβββαα

αβ

τ

αβ

−+−++−+−=

+∆+∆−= ∫ ∫
QQQ

dxd
d
dxfxKxpxpW

s

c

         

(2.14) 
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where the contribution from τ equal to τ0 and one is zero.  If I(τ = 0) is 0≤  and I(τ = 1) is ≥ , 

corresponding to case (B) in Figure 2.2, the correct expression for the aerodynamic work is  

0

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )( )( ) ( )[ ] ( )( ) ( )[ ]{ }01
2

01201
2

012

1

0
2121

12/112/1

,,,
0

ταταατβτββ

τ
τ
βτβτατβββαα

αβ

τ
αβ

−+−−+−+−−+−=

+∆+∆−= ∫ ∫
QQQ

dxd
d
dxfxKxpxpW

s

c

       (2.15) 

where the contribution from τ equal to zero andτ0 is zero. 

 
Figure 2.2: The possible variations of I with τ  

 

Eq. (2.9) was derived for an airfoil that has only one control parameter changing between the 

initial and final points.  In many cases it is desired to calculate the work required to deflect 

multiple control surfaces, as shown in Figure 2.1.  For an airfoil with N control surfaces, the 

position of the nth control surface (βn) between the initial and final points is written as  

( ) ( )
112 nnnn βτββτβ +−=  

Ignoring the positive-negative work issues discussed above, the generalization of Eq. (2.9) can be 

written for the work required for the mth control surface as 

( ) ( )( ) ( ) ( ) ( ) ( ) τ
τ

β
τατβ αβ dxd

d
dxfxpxKxpW m

c

m

N

n
nnm n∫ ∫ ∑ 




















∆+







+∆−=

=

1

0 0 1

            (2.16) 

where represents the derivative of the ∆p distribution with the β
n

pβ∆ n
th control surface and Kn(x) 

is the structural force term defined in Eq. (2.2).  An expression must be obtained, as was done in 
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the single control parameter case, which only accounts for positive work.  As in the single control 

case, the inner integral of Eq. (2.16) can be written as 

( ) ( ) ( )( ) ( )[ ] ( ) ( ) ( )

( ) ( )[ ]{ } ( )[ ] ( )
12112 112,
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If Im(τ = 0) and Im(τ = 1) are , then 0≥ mm W=W .  If Im(τ = 0) and Im(τ = 1) are , then W0≤ m = 0.  

If Im(τ = 0) and Im(τ = 1) have different signs, the value of τ at which Im changes sign (τ0m) is 

found by setting Im(τ) equal to zero 
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For the case where Im(τ = 0) is  and I0≥ m(τ = 1) is 0≤ (case (A) in Figure 2.2), Wm is written as  
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For the case where Im(τ = 0) is  and I0≤ m(τ = 1) is  (case (B) in Figure 2.2), W0≥ m is written as  
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Once the work required for each control surface (Wm) is calculated, the work for the entire system 

is obtained by the following summation 

∑
=

=
N

m
mWW

1

                                                        (2.22) 

where Wm is the work required for the mth control surface.  It should be noticed that the work is 

calculated separately for each control surface, or actuator, and then added together.  This assumes 

that each control surface is actuated independently.  If this is not true and the control surfaces are 

linked, then Im and τ0 should be calculated for the combination of linked control surfaces.  This 

would mean that a single area of actuation be used that includes each control surface being linked 

together.  This is important because if they are linked, for example a linked leading and trailing 

flap, then at each value of τ the positive and negative work values can cancel.  To clarify the 

difference in the work calculated for linked actuators, consider an analogy of two weights (a and 

b) being moved vertically as shown in Figure 2.3.  If both a and b weigh the same, it is easy to 

imagine that an infinitesimal disturbance (assuming no friction in the system) will cause the two 

weights to move from their initial to final z values.  This means no work is required.  But, if the 

bar connecting the two weights is removed, work will have to be exerted to move weight a up, 

but not to move weight b down (which requires negative work).  This shows clearly the reason for 

subtracting positive and negative work if the control surfaces are linked, and not if they are 

independent. 

 
Figure 2.3: Analogy for the interaction of work for linked control surfaces 

 

To conclude, it should be mentioned that although the structural forces have been considered 

throughout this chapter, the remainder of the chapters will assume that there is no structural 

resistance or that K = 0. The reason for carrying the structural term throughout this chapter is that 

if there is a structural force, and it is desired to calculate the required actuator work, the 

aerodynamic and structural forces acting on the actuator must be considered together.  This fact is 
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a result of the assumption that negative work requires negligible actuator effort.  The main effect 

of the presence of structural work is that the negative aerodynamic work, which is ignored if there 

is no structure, becomes useful and is able to cancel some of the positive work required to deform 

the structure.  

 

 

2.5 Chapter Summary 
 

This chapter presented a method of calculating the mechanical work required from actuators to 

operate an aerodynamic control device.  It is argued that it is really desired to calculate the energy 

“cost” of actuating an aerodynamic control device, and not the required mechanical work.  This 

leads to calculation of the practical work (W), which is related to the straightforward work (W ) 

through Eq. (2.10).  The term η in Eq. (2.10), which represents the difference in the cost of 

positive and negative work, defines the relationship between W and W.  The remainder of this 

study will use a value of η = 0, which implies that energy required by an actuator to perform 

negative work is zero.  An important consequence of treating negative and positive work 

differently is that the structural and aerodynamic work calculations cannot be performed 

independently.    
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Chapter 3 

 

An Analysis of Control Surface 

Aerodynamic Characteristics Using 

Thin Airfoil Theory 
 

3.1 Introduction 
 

This chapter provides the theoretical aerodynamic loading distributions for various airfoil control 

devices using thin airfoil theory.  This theory is subject to the usual limitations of thin airfoil 

theory.  For example, it cannot predict drag or flow separation, which restricts the theory’s ability 

to compare these effects for various control devices.  But, this does not limit the theory’s ability 

to compare control devices at low to moderate deflections, whereat the change in viscous drag 

and the likelihood of flow separation should be small.  

 

We will begin by reviewing thin airfoil theory and its application to a flapped airfoil and a 4-digit 

NACA camberline (Sections 3.2 – 3.4).  With the goal of making a work comparison, other 

control devices (leading edge-trailing edge, trailing edge-tab, and morphing trailing edge 

configuration) are modeled in Sections 3.5 through 3.7.  Section 3.8 describes the addition of the 

trim requirement to connect the 2-D airfoil studies to a complete aircraft.   
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3.2 A Review of Thin Airfoil Theory 
 

Thin airfoil theory assumes that the aerodynamic properties of an airfoil are functions of its mean 

camber line, angle of attack, and thickness envelope*.  The lifting properties of an airfoil are 

modeled as a vortex sheet placed on the chord line.  The chordwise distribution of the strength for 

this vortex sheet is obtained by requiring that the velocity induced by the vortices be tangent to 

the mean camber line and that the vortex strength at the trailing edge of the airfoil is zero (Kutta 

condition).  Because the slope of the mean camber line of most airfoils is small, the flow 

tangency condition is met by projecting the slope of the mean camber line onto the chord line 

[Munk 1923].   

 

The vorticity distribution can be represented by a Fourier series as  
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By representing the vorticity distribution as a Fourier series, the aerodynamic coefficients of the 

airfoil can be written as [Glauert 1947]  

( )102 AACl += π                                                         (3.6) 
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* Note that to the first order thickness does not contribute to lift. 
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( 124
4
1

AAC
c

M −= )π                                                         (3.8) 

It is convenient to separate Eq. (3.1) into terms that are dependent and independent of angle of 

attack.   The term dependent upon angle of attack is called the additional load distribution (γa), 

and is seen to be the first term in Eq. (3.1).                     
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Eq. (3.9) will always produce a singularity at the leading edge because the airfoil is modeled as 

being infinitely thin.  Theodorsen [1931] recognized that the most efficient flow around an airfoil 

would occur when γa equaled zero, and proposed the “ideal angle of attack” (αi) as the angle of 

attack when this occurred.  From Eqs. (3.3) and (3.9) it is found that  
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The term that is independent of angle of attack, called the basic load distribution (γb), represented 

by the infinite series term in Eq. (3.1), can be shown to converge to the following integral [Allen 

1943]: 
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If dz/dx is finite, the basic load distribution will always be zero at the leading edge†. So, if the 

additional load distribution is zero, the load (vortex strength) at the leading edge will also be zero.  

Because the vortex strength at the leading edge is zero at the ideal angle of attack, the flow will 

enter the leading edge smoothly, and as Theodorsen suggested, most efficiently.  This also means 

that αi is the angle of attack at which thin airfoil theory is the most accurate because the small 

disturbance assumption is not violated at the leading edge.   

 

 

3.3   Modeling an Airfoil with a Trailing-Edge Flap 
 

The governing equations of thin airfoil theory were derived with the assumption that the slope of 

the mean camber line was small, therefore allowing the small angle approximation to be used.  

                                                           
† For NACA 6-digit series airfoils the design load at the leading edge is finite, resulting in a logarithmic 
singularity for the camberline slope dz/dx at the leading edge. 
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For the flapped-airfoil shown in Figure 3.1, the small angle approximation greatly simplifies the 

expression for the mean camber line and the subsequent analysis.     

 
Figure 3.1: Geometric representation of a flapped-airfoil 

 

From Figure 3.1, c may be written as 

akakc +≈+= δcos                                                      (3.12) 

The flap deflection causes a slope discontinuity in the mean camber line, resulting in the 

following two equations for z 

0
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Eq. (3.2) shows the transformation from x to θ, which was used in Eqs. (3.3 - 3.5) to find the 

coefficients of the Fourier series.  The location of the discontinuity transformed into its θ 

representation is  
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With the geometric parameters defined, the Fourier coefficients from Eqs. (3.3 – 3.5) are obtained 

as follows  
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Combining Eqs. (3.16 – 3.18) with Eqs. (3.6) and (3.8) results in an analytic solution for the lift 

and pitching moment coefficients of an airfoil with a given δ and a. 

 

The load distribution is obtained by evaluating Eqs. (3.9) and (3.11) with the camber line given in 

Eqs. (3.13) and (3.14).  Because a singularity (θ0 = θ) lies within the range of integration, Eq. 

(3.11) is an improper integral.  The Cauchy Principle Value is obtained by separating the integral 

into two integrals and using a limiting process, which leads to 
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With dz/dx equal to a constant, Eq. (3.11) can be evaluated in the form [Gradshteyn 1965]  
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where a = -cosθ and b = 1 for our case.  Applying Eq. (3.19) to (3.20) leads to the final 

expression for the basic load distribution due to the flap deflection (δ ). 
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Eq. (3.21) is equivalent to the solution obtained by Spence [1958] although it is not identical in 

form.  Combining Eqs. (3.9) and (3.16) results in the equation for the additional load distribution. 
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Notice that, as expected with linear theory, both γb and γa are linear with respect to δ .  Fig. 3.2 

shows an example load distribution (note that ∆Cp = 2γ /Uinf).  The singularity at k (or θB) is a 

result of the step change in the camber line slope.  It should also be observed that although the 
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airfoil is at zero incidence, there is a leading edge singularity.  As mentioned previously, this will 

be true unless the airfoil is at its ideal angle of attack, meaning A0 equals zero.  
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Figure 3.2:  Example load distribution 

 

To apply the aerodynamic work equations (Eq. (2.13-2.15) for the single control surface) 

developed in the previous chapter, we set β = δ.  The ∆pβ and ∆pα functions required for the work 

equations are obtained from Eqs. (3.21) and (3.22) as 
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where the first term in Eq. (3.23) is the basic load distribution and the second term is part of the 

additional load distribution.  Eq. (3.24) is due entirely to the additional load distribution.  The f(x) 

term required for the work equations for a flapped-airfoil is (using Eq. (3.1) to transform from x 

to θ0) 
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Figure 3.3 shows the integrands of the work due to the basic and additional load distributions.  It 

is seen that the contribution of the additional load distribution to the work is smaller than the 

contribution from the basic load at α equal to zero. 
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Figure 3.3: The work per-unit length for a flapped-airfoil 

 

 

3.4      Modeling an NACA 4-Digit Camberline 

 

For a variable-camber morphing airfoil, camber changes can be modeled as an NACA 4-digit 

camberline with a variable magnitude and location of maximum camber.  Using the NACA 

convention, an NACA MPXX airfoil has a magnitude of maximum camber M (in percent chord), 

maximum camber location P (in tenths of the chord), and maximum thickness XX (in percent 

chord).  The first two of these parameters are shown in Fig. 3.4 (ignoring thickness). 

 
Figure 3.4:  NACA camberline representation 

 26



 

The equations for the mean camber line of an NACA mpXX are as follows [Abbot and Von 

Doenhoff 1959]: 
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Eq. (3.1) is used again to transform between x to θ.  The location of the transition between Eq. 

(3.26) and (3.27) is found from Eq. (3.28) to be 
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Applying Eqs. (3.2 – 3.4) results in the following 
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Combining Eqs. (3.29 – 3.31) with Eqs. (3.5) and (3.7) results in closed form solutions for the lift 

and pitching moment coefficients for an NACA airfoil with a given M and P. 

 

The load distribution for the NACA camberline is found in a manner similar to that for the 

flapped-airfoil.  The main difference for the NACA camberline is that the camberline slope varies 

all the way along the chord. And two separate equations define the camberline.  To apply Eq. 

(3.11), the derivatives of Eqs. (3.26) and (3.27) are represented in terms of θ  through Eq. (3.1) as 
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The integral obtained by substituting Eqs. (3.32) and (2.33) into Eq. (3.11) is evaluated in the 

following form [Gradshteyn 1965] 
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Obtaining the principal value using Eq. (3.35) for both sections of the camberline leads to the 

final equation for the basic load distribution 
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The additional load distribution is found by combining Eqs. (3.9) and (3.29) to get the following 
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Note that both γb and γa are linear with respect to Μ. 

 

The load distributions represented by Eqs. (3.36) and (3.37) are compared to the results of Abbot 

and Von Doenhoff [1959] in Figure 3.5 (note that ∆Cp = 2γ /Uinf).   There is a small but noticeable 

difference near the location of maximum camber (P), likely because Abbot and Von Doenhoff 

used Pinkerton’s [1936] empirically modified conformal mapping approach to determine the 

pressure distribution.    

 
Figure 3.5:  Load distribution validation 

 

For a morphing NACA camberline, the work equations are applied with β = Μ .  The ∆pβ 

function is obtained from Eqs. (3.36) and (3.37) and is written separately for the basic and 

additional load distributions. 
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The ∆pα term, given in Eq. (3.24) is the same for all thin airfoils regardless of the type of control 

surface and so it is not repeated here.  The f(x) term for an NACA airfoil is 
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Figure 3.6 shows the work per-unit length from Eq. (2.8) for various values of P.  It is seen that 

the contribution of the basic load distribution to the work is similar for P equal to 0.3 and 0.7.  

For the additional load distribution, Figure 3.6 indicates that its contribution to the work changes 

from positive to negative as P moves past x/c equal to 0.5. 
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Figure 3.6: Work per-unit length for a variable camber NACA airfoil 

 

Figure 3.7 compares the aerodynamic work required to go from an initially flat airfoil to a 

cambered or flapped airfoil at zero angle of attack.  These are the work values (W ) obtained 

from Eq. (2.9), therefore negative work values are included.  If the practical aerodynamic work 

(W) from Eqs. (2.13 - 2.15) was shown in Figure 3.7, the work required for all of the NACA cases 

would be zero because they are negative.  If the work was calculated with an initial state equal to 

the final state used for Figure 3.7, then the required work for the NACA case would be the 
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negative of that shown in Figure 3.7.  The required work for the flapped-airfoil would then be 

zero. 
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Figure 3.7: Aerodynamic work required to go from a flat airfoil to a cambered or flapped airfoil 

 

 

3.5   Influence of a Leading-Edge Flap on a Flapped Airfoil 
 

In Section 3.3 the aerodynamic characteristics of a flapped airfoil were determined using thin 

airfoil theory.  Because thin airfoil theory is linear, superposition may be used to combine 

solutions of simple problems to handle more complex problems.  This section will combine the 

flapped airfoil solution of Section 3.3 with a leading edge flap. 

 

 
Figure 3.8: Airfoil with a leading and trailing edge flap 
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Figure 3.8 shows how the leading and trailing edge flap will be represented in this analysis.  

Following the analysis of Section 3.3, the Fourier coefficients are found to be  
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The basic and additional load distributions are found from Eqs. (3.9) and (3.11) to be  
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Figure 3.9 shows the components of Eqs. (3.43) and (3.44) due to the leading and trailing edge 

flaps.  It is seen that a positive deflection of the leading edge flap causes negative lift. 
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Figure 3.9: Load distribution comparison of a LE and TE flap 
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Section 2.4 developed the general aerodynamic work expressions for an airfoil with multiple 

control surfaces.  For this case, with a leading and trailing edge flap combination, N=2, β1=δLE 

and β2=δTE.  The f functions for the work equations are as follows  
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3.6   Modeling a Two-Segment Trailing-Edge Flap 
 

This section discusses the modeling and influence of a trailing edge surface consisting of two 

straight line segments as shown in Figure 3.10. 

 
Figure 3.10: Airfoil with a two-segment trailing-edge flap 

 

Following the analysis of Section 3.3, the Fourier coefficients for the lift and pitching moment 

coefficients (Eqs. (3.6) and (3.8)) are found to be 
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The basic and additional load distributions are found from Eqs. (3.9) and (3.11) to be  
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To apply the work equations developed in Section 2.4, N=2, β1=δA, β2=δB.  Assuming an actuator 

for each of the hinge lines, the f functions are 
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Notice that the area of actuation for flap A spans from πθθ ≤≤A , and for flap B from 

πθθ ≤≤B .  These areas overlap because the deflection of flap A moves everything behind xA, 

including flap B. 

 

Figure 3.11 shows the components of the load distribution represented by Eqs. (3.49) and (3.50) 

due to the deflection of each flap.  It is clear that this configuration is simply the combination of 

two trailing flaps.  It is seen that each flap hinge-line produces a singularity.  This is very 

undesirable from a viscous flow perspective.  
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Figure 3.11: Load distribution for a two-segment trailing edge flap 

 

 

3.7 Modeling a Morphing Trailing-Edge Device 
 

The morphing trailing edge device modeled here is similar to the two-segment trailing edge flap 

except that the slope of the camber line is continuous.  This continuous slope prevents any 

singularities from occurring in the basic load distribution.  The single flap morphing case was 

studied by Sanders et al. [2003], who used a similar thin airfoil analysis to obtain an analytic 

representation of the load distribution.  The expressions for these load distributions were not 

presented though.  The results of this section were validated with the figures presented by Sanders 

et al. [2003].  Appendix A contains a MATLAB code that applies the equations developed in this 

section.  This code shows how to apply the work equations developed in Chapter 2 and the 

aerodynamic equations developed in this section.    

 

Like the two-segment flap, the deflection of surface B is defined relative to surface A as shown in 

Figure 3.12.  A quadratic curve defines both surfaces, with the coefficients determined by 

matching the desired deflections δA and δB.  It is also required that the camberline be continuous 

and have a continuous slope.  The resulting camberline equations are written as 
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Figure 3.12:  Representation of the morphing trailing edge device 

 

The Fourier coefficients for the lift and pitching moment coefficients (Eqs. (3.6) and (3.8)) are 

found from Eqs. (3.3 – 3.5) to be  
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The basic and additional load distribution produced by each surface was found from Eq. (3.9) and 

(3.11), resulting in 
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The f functions for the work calculation are: 
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where between θB and π, the f function for flap A is linear and the f function for flap B is taken 

relative to this line.  This assumes an actuator is located at xA and xB.   

 

Figure 3.13 shows a comparison of the trailing edge shape required to achieve ∆Cl equal to 0.1 

for a conventional flap and a morphing single-degree of freedom flap (meaning δA = 0).  It is seen 

that the morphing flap requires significantly less overall deflection than the conventional flap, 

although the required δ is actually less for the conventional flap.  Figure 3.14 shows the load 

distribution over the control surfaces corresponding to the trailing edge shapes shown in Figure 

3.13.  The distribution for the morphing case is seen to be centered further from the “hinge” than 

for the conventional case.  This appears unfavorable from a work standpoint for the morphing 

case. Nevertheless, when these distributions are combined with the defections in Figure 3.13, the 

morphing case is found to require 16% less work to achieve a ∆Cl equal to 0.1.  Figure 3.15 

shows the distribution of the work per-unit length, which is obtained by combining Figures 3.13 

and 3.14. 

 

Figure 3.16 shows the effect of various flap to chord ratios and the effect of angle of attack on the 

required work.  This indicates that the lower required work for the morphing case over the 

conventional case is a general characteristic of the single degree of freedom morphing 

camberline.  Figure 3.16 also shows that α has a larger effect on the required work for the 

conventional case than for the morphing case.  This is because, as shown in Figure 3.13, the 

morphing case requires less overall deflection, and therefore the constant α-dependent load 

distribution acting during the deflection produces a smaller work component.  
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Figure 3.13:  A comparison of the trailing-edge camberline shapes required for a Cl = 0.1 
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Figure 3.14:  A comparison of the trailing-edge load distribution required for a Cl = 0.1 
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Figure 3.15:  A comparison of the work per-unit length required for a Cl = 0.1 
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Figure 3.16:  A comparison of the required work for a ∆Cl = 0.1 
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3.8   Trim Considerations  
 

The aerodynamic work equations were developed with the freedom to allow α to change between 

the initial and final state.  This freedom in α is desired because it allows an airfoil configuration 

to achieve a change in lift in a realistic manner.  For an aircraft performing longitudinal 

maneuvers, the main purpose of the control surface is to produce the pitching moments required 

to change the aircraft’s α.  It is primarily α that produces the change in lift, while the control 

surfaces allow the aircraft to achieve and maintain that particular α.   

 

For the aerodynamic work calculations, it is required that the aircraft be trimmed at the initial and 

final state.  To calculate the βn values required to achieve trimmed flight at a given Cl, the 

following equations are used 
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where the is relative to the quarter chord and any camber or twist is represented through β
nMC n.  

Solving the equation  = 0 for α and substituting this value into the C
cgMC l equation results in  
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which represents the trimmed Cl.  It is seen from Eq. (3.58) that if N is greater than one, there are 

infinitely many combinations of βn to achieve a given trimmed Cl.   

 

From Eq. (3.58) the control deflections required for flight at the initial and final Cl value can be 

calculated.  But, before these values are used in the previously developed aerodynamic work 

equations, one more issue must be discussed.  Because the quasi-steady aerodynamic assumption 

has already been made, it is assumed that the control surfaces are deflected relatively slowly.  

This allows the additional assumption that the dynamic process of the α-change is quasi static, 
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meaning CM = 0 throughout the process.  This quasi-static process is understood by considering a 

small control surface increment away from a trimmed state, which causes a small nonzero 

pitching moment.   This nonzero moment causes a small acceleration leading to a small pitch rate 

and change in α.  For a statically stable aircraft (meaning dCM/dα < 0), a restoring pitching 

moment is created as α changes which leads to a trimmed state (CM = 0) at an α different from 

the initial value.  This process is shown in Figure 3.17 for a configuration with a single control β 

initially trimmed at CL,t1, α1 and β1 and then going to CL,t2, α2 and β2.  This process is not possible 

for an unstable aircraft because the zero-lift pitching moment increment required to increase the 

trimmed CL is in the opposite direction of the pitching moment required to rotate the aircraft to 

the trimmed α.   

 

Consider a flapped-airfoil with a = 0.2c and xcg = 0.  If it is desired to trim this configuration at a 

Cl of 0.1, Eq. (3.58) must be solved for δ (= β ).  This results in δ = -2.23 degrees, which trims the 

configuration at α = 2.14 degrees.  Now, assume it is desired to change to a Cl equal to 0.3.  The 

required δ for this Cl is calculated as before, and is found to equal -6.71 degrees with an α of 6.42 

degrees.  To calculate the aerodynamic work required for this process, Eqs. (2.13-2.15) are 

applied with β1 = δ1 = -2.23 degrees, β1 = δ2 = -6.71 degrees, α1 = 2.14 degrees, and α2 = 6.42 

degrees.  As discussed previously, the assumption that α changes linearly as the flap deflects 

restricts the work calculation to a stable aircraft with a flap being deflected slowly. If, for 

example, the flap was deflected suddenly, the entire deflection would occur at the initial α, and 

therefore α2 should not be used in the work calculation. For the current example, the work is 

5.41x10-5ρU2c2 if α changes linearly from the initial to final value as the flap deflects.  If the flap 

is deflected entirely while the aircraft is at the initial α, the aerodynamic work is 8.3x10-5ρU2c2.  

The increase of aerodynamic work for the second case is a result of the reduction in the α-

dependent lift, which acts in the direction of the flap motion because the flap deflections are 

negative.     
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Figure 3.17: Effect of control deflections on the trimmed CL of a stable configuration 

 

 

3.9    Chapter Summary 
 

Chapter 3 applies thin airfoil theory to various control surface configurations to provide an 

aerodynamic model for the work calculation discussed in Chapter 2.  Along with the usual 

calculation of the aerodynamic coefficients using the first three Fourier coefficients (Eqs. (3.3 - 

3.8)), analytic solutions for the load distribution are found using Eq. (3.11).  The author is 

unaware of any previous analytic solutions to Eq. (3.11) for quadratic camberlines.  These 

solutions are presented in Eqs. (3.38) and (3.55) for the NACA camberline and the morphing 

trailing-edge flap (MTE).  Section 3.7 shows that less work is required to obtain a ∆Cl with a 

single-surface morphing flap than with a conventional flap.  Figures 3.13 – 3.15 show that this is 

true because the ∆z required for the morphing flap is less than for the conventional flap.  It is also 

shown that because the morphing flap requires less ∆z, the influence of an α-dependent load 

distribution on the work is less than that for a conventional flap. 
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Chapter 4 

 

The Minimum Aerodynamic Work for 

an Airfoil Geometry Change 
 

4.1 Introduction 
 

The term aerodynamic work is defined in this thesis to mean the actuator work required to 

overcome the aerodynamic forces acting on an airfoil.  As emphasized in Chapter 2, results 

considering just the aerodynamic component of the actuator work are meaningful only if there is 

no structural component.  It is the author’s opinion though that aerodynamic work is less intuitive 

than structural work, and therefore deserves to be studied independently of structural work.   The 

current chapter does this by examining the control surface deflections that require the least 

amount of aerodynamic work for a given ∆Cl.  The minimum work deflections will also be 

examined for multiple Cl change cases to represent a flight path.   

 

The thin airfoil theory aerodynamic models developed in Chapter 3 will be used for this 

investigation.  Because of the Cl change constraint, which is linear with the control 

parameters (βn), only cases that have more than one control surface can be used for the 

optimization problem.  This limits the investigation to the leading edge-trailing edge (LETE) flap 

airfoil, two-segment trailing edge (TETAB) flap airfoil, and the two-segment morphing trailing 

edge (MTE) airfoil.  The TETAB and MTE cases are considered first in Sections 4.2 – 4.4 

because of their similarities.  The LETE configuration, which is a somewhat special case, is 

considered in Section 4.5.  The effects of aeroelaticity will be investigated in the next chapter. 
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4.2  Minimum Work Control Deflections Required for a Single 

∆Cl Away from an Initially Flat Airfoil  
 

This section examines the control deflections for the minimum aerodynamic work required by an 

initially flat airfoil remaining at α = 0 to obtain a single ∆Cl with the TETAB or MTE control 

configuration. Cases are examined that require that α remain constant along with cases that allow 

α to vary by considering the trim constraint discussed in Section 3.8.  This simplified problem 

allows some insight to be gained into the nature of minimum work control deflections.  To begin, 

it is helpful to examine the work equations developed in Chapter 2.  In particular, the case of zero 

required work is investigated.  With
1nβ , α1, and α2 all equal to zero, the integrands of the work 

equation (Im), Eq (2.17), can be written as 
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where it is assumed that there are two control surface A and B (the letters A and B are used here 

instead of numbers 1 and 2 so that they are not confused with the states 1 and 2).  It should be 

remembered that for conventional hinged control surfaces, Qm,n can be thought of as the hinge 

moment acting on control surface m per unit deflection of control surface n.  Since it desired to 

find the work required to obtain a desired Cl, one β can be written in terms of the other through 

the Cl equation.  The Cl equation at state 2 is written as 
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From Eq. (4.1), it is seen that IA(τ = 0) and IB(τ = 0) will both be zero.  Therefore, if zero required 

work is desired, IA(τ = 1) and IB(τ = 1) must be less than or equal to zero.  If these equations 
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cannot be satisfied, then it is not possible to obtain with zero work the desired ∆Cl with this 

control surface configuration.  To examine these possibilities, Eq. (4.2) is substituted into Eq. 

(4.1) leading to 
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The value or values of 
2Aβ that make IA(τ = 1) and IB(τ = 1)  less than or equal to zero can be 

found by setting the equations in (4.3) equal to zero and solving each equation independently 

for
2Aβ .  Both equations in (4.3) are quadratic in

2Aβ , which results in four total roots when both 

equations are solved independently.  Two of these roots form the boundary of the “region of zero 

work,” if it exists.  Plotting IA(τ = 1) and IB(τ = 1) allows the roots that form this boundary to be 

obtained by finding the region where both IA(τ = 1) and IB(τ = 1)  are negative.  An example of 

this is shown in Figure 4.1 for a TETAB airfoil with aA = 0.2 and aB = 0.15 (see Section 3.6 for 

definitions, note that β = δ for this case) obtaining a ∆Cl of 0.1.  The roots for this example are 0 

and 5.24 degrees for IA(τ = 1) and 1.65 and 5.82 degrees for IB(τ = 1), where between the roots 

5.24 and 5.82 degrees, zero work is required.  It should be mentioned that this range of 

deflections is actually a region of the ratio of the deflections of the two control surfaces, which is 

constant for varying Cl values.  This is because although one is solving for
2Aβ , 

2Bβ is implied 

through the Cl constraint (Eq. (4.2)). 
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Figure 4.1:  Work integrands for a TETAB airfoil 

 

Figure 4.2 shows a plot of I(τ = 1)  for a TETAB airfoil with aA = 0.2 and aB = 0.05.  In this case, 

there is no region of zero work because at no 
2Aδ are both IA(τ = 1) and IB(τ = 1)  less than or 

equal to zero.  The value of 
2Aδ requiring the least aerodynamic work can be obtained from 

Figure 4.2 as the point where the sum of the positive IA(τ = 1) and IB(τ = 1)  values is the smallest.  

In this case, this occurs at the point IA(τ = 1) = 0, where at 
2Aδ is equal to 2.57 degrees.  The 

reason for the minimum work point being at the point IA(τ = 1) = 0 is a result of the IA(τ = 1)  line 

having a steeper positive slope than the IB(τ = 1)  line’s negative slope around the intersection of 

the two lines.  If the sum of the positive IA(τ = 1) and IB(τ = 1)  values are taken at a small change 

in
2Aδ  to the left and right of the intersection of IA(τ = 1)  and IB(τ = 1),  it is seen that this sum 

decreases until IA(τ = 1) = 0.  This result holds for most two-section control surface 

configurations, including the TETAB and MTE configurations.  The equation for IA(τ = 1) = 0 is 

found from Eq. (4.3) to equal  

BAAA

BA
A QkQ

Qk
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,1
2 −

−=β                                                      (4.4) 

which is therefore the solution for minimum work for an initially flat (Cl = 0) two-segment 

control surface airfoil.  If there is a region of zero work like in Figure 4.1, then Eq. (4.4) gives the 
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solution for the left hand border of the zero work region.  Solving IB(τ = 1) = 0 from Eq. (4.3) 

gives the right hand border of the zero work region. 
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Figure 4.2:  Work integrands for a TETAB airfoil 

 

The solution shown in Eq. (4.4) was used (along with a numerical optimization scheme to assure 

the validity of Eq. (4.4)) to compare the minimum work values required for MTE and TETAB 

configurations to obtain a single ∆Cl away from an initially flat airfoil.  The LETE configuration 

was not considered because the deflection of the leading edge flap requires no positive work, 

leading to a trivial solution of W = 0 by using the leading edge flap exclusively.  This makes the 

LETE configuration ideal for a single ∆Cl, but as will be shown in Section 4.5, a second ∆Cl 

requires more work than both the MTE and TETAB cases.  Figure 4.3 shows the work resulting 

from the minimum work deflections for the MTE and TETAB configuration with various control 

surface areas and aB/aA values.  Although the MTE configuration is shown to require significantly 

more work than the TETAB configuration, it is still much lower than the value of 12x10-6 ρU2c2 

required by a single flap spanning 30% of the chord.  Figure 4.4 shows the point from Figure 4.3 

where xA/c = 0.7.  This shows a very different trend for varying aB/aA values between the MTE 

and TETAB cases.  It is seen that beyond aB/aA equal to 0.55, the TETAB configuration requires 

no work while the MTE requires increasingly more.  
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Figure 4.3:  Minimum work values for various control surface arrangements 
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Figure 4.4:  Minimum work values for various ratios of control surface size 

 

Figure 4.5a shows the ratio of control deflections 
2Aδ /

2Bδ corresponding to the minimum work 

values shown in Figure 4.4.  Flap A is deflected positively (down) in all the cases shown.  Figure 
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4.5b shows the resulting load distribution from the minimum work case corresponding to aB/aA in 

Figures 4.4 and 4.5a.  As shown in Figure 4.4, the TETAB case requires no work. This is a result 

of the singularities present at the flap hinge lines.  The MTE case does not benefit from these 

singularities and requires work to deflect flap B.  
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Figure 4.5a: Minimum work ratio of deflections for the case shown in Figure 4.4 
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Figure 4.5b: Minimum work ratio of deflections for the case shown in Figure 4.4 
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The above analysis assumed α remained zero between the initial and final point.  Now it will be 

shown that enforcing the trim constraint discussed in Section 3.8 allows for the above analysis to 

be extended to the variable α case.  From Eq. (3.58), the trimmed control effectiveness of each 

control surface can be written as  

( )25.0/, −
−=

cx
C

C
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where the trimmed α per unit deflection of βn is  
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For the two-segment control surface cases analyzed previously, k1 and k2 from Eq. (4.2) are now 

written as 
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Adding αΑ and αΒ from Eq. (4.6) to the additional load distribution for the calculation of the Q 

terms accounts for the change in the load distribution due to the change in α.  Using these Q 

terms and the k1 and k2 terms from Eq. (4.7), the minimum work control deflections can be found 

using Eq. (4.4).   

 

Figure 4.6 shows the minimum work values for the MTE and TETAB configurations when α is 

allowed to vary using the trim constraint.  Figure 4.7 shows the ratio of control deflections 

corresponding to the cases presented in Figure 4.6.  Comparing Figure 4.6 to Figure 4.4 it is seen 

that allowing the airfoil to obtain lift from α greatly reduces the required work.  If the 

configuration is neutrally stable, meaning xcg = 0.25, Eq. 4.5 shows that the change in lift per unit 

deflection of each control surface becomes infinite.  This means that the required deflection to 

achieve a change in lift becomes infinitely small, and therefore the required work goes to zero.   
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Figure 4.6: Minimum work values for various ratios of control surface size with trim constraint 
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Figure 4.7: Minimum work deflections corresponding to Figure 4.6 
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4.3  Minimum Work Control Deflections Required for a Single 

∆Cl on an Airfoil with an Initial α  
 

The previous analysis examined cases that were initially at zero degrees α with no control 

deflections.  This meant that there was no load component, which remained constant throughout 

the deflection process, acting on the airfoil.  A more realistic analysis will now be carried out that 

considers a constant load component caused by an initial α.  The analytic treatment used above to 

find the minimum work deflections will not be pursued here.  The fact that the initial load 

distribution is not zero implies that In(τ = 0) is not equal to zero, which makes any general 

treatment of the problem difficult.  Instead, a numerical approach is used to find the minimum 

work deflections.   

 

Figure 4.8 shows the influence of a constant α on the minimum work control deflections.  This 

figure shows that past an α of about 0.5 degrees, the MTE case requires less work than the 

TETAB case.  Figure 4.9 shows the minimum work control deflections corresponding to cases 

presented in Figure 4.8.  It is seen that at an α of about 0.8 degrees, the minimum work control 

deflections consist of the deflection of just flap B.  This occurs because the load distribution due 

to α, which is constant throughout the deflection process, begins to have a greater influence on 

the control surfaces than the load distributions caused by the control surfaces.  This effect is 

beneficial for the MTE configuration because as was shown in Figure 3.15, the MTE 

configuration requires less overall deflection, or ∆z, than the TETAB configuration.  This is 

shown in Figure 4.9, where it is seen that the δ values for the two cases are similar.  Which, 

because a given δ for the MTE case produces much less ∆z than for the TETAB case, means that 

the α-load distribution will have less influence on the minimum work for the MTE case. 
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Figure 4.8:  The effect of a constant α on the minimum required work 
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Figure 4.9:  Minimum work control deflection variation with a constant α 

 

The effect of enforcing the trim constraint and allowing α to vary was shown in Section 4.2 to 

decrease the required work over the α-fixed cases an amount depending on the c.g. location.  For 

the current case where there is an initial trimmed Cl, this comparison is not as clear because it is 
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dependent on the control deflections required to obtain the initial trimmed Cl.  Figure 4.10 shows 

the minimum work values for various initial trimmed Cl’s.  The initial trimmed Cl’s were 

achieved with lift being distributed equally between the two control surfaces. Comparing the 

initial Cl = 0.1 case with the α equal 0.9 degree case of Figure 4.10 (α = 0.9 degrees produces a 

Cl of about 0.1) it is seen that variable-α case requires more work.  This is true because of the 

control deflections required for the initial Cl, which were not present in the fixed α case.  Figure 

4.10 shows, in agreement with Figure 4.8, that the larger the initial Cl is, the more beneficial the 

MTE case becomes in terms of required work.   
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Figure 4.10:  Minimum work values with an initial α and allowing α to vary 

 

4.4  Minimum Work Control Deflections for a Multiple ∆Cl’s 
 

The results of the minimum work required for a single ∆Cl in Section 4.2 and 4.3 are altered if a 

second ∆Cl of opposite sign is considered in the optimization.  Adding a second ∆Cl allows the 

work calculated to be considered the work required for a complete flight path.  Figure 4.11 shows 

an example of how a complex flight path can be represented with two Cl changes under the quasi-

steady linear assumptions that have been made.  It is desired here to investigate the influence the 

second ∆Cl has on the work comparison between the LETE, MTE, and TETAB control surface 

configurations.   
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Figure 4.11: Variation of desired lift coefficients 

 

As done in the single ∆Cl case, it is helpful to consider the simplified problem of an initially flat 

airfoil at zero-degrees α.  It can be shown that the minimum aerodynamic work required for this 

airfoil to obtain a given Cl and then return to a Cl of zero is directly related to the single ∆Cl case.  

Consider Figure 4.2, which shows for the single ∆Cl case that if there is no region of zero work, 

then the minimum work deflections are obtained from Eq. (4.4).  Eq. (4.4) solves for 
2Aδ when IA 

equals zero and IB is positive.  This positive value of IB at the end of the first ∆Cl is represented in 

Figure 4.12 as the value of IA,12 at the end of the τ12 line.  From Eq. (2.17) it is seen that at the 

beginning of the second ∆Cl the value of IB will be equal in magnitude and opposite in sign to the 

value at the end of the first ∆Cl.  This is shown in Figure 4.12 and means that the work required 

for the second ∆Cl will be zero.  The final control deflections are zero and the problem is solved 

by determining the deflections for state 2 from Eq. 4.4. 

 

If, as shown in Figure 4.1, there is a region of zero work for the first ∆Cl, then there will be work 

required for the second ∆Cl.  In this case, the second ∆Cl determines the control deflections and 

the problem is a reverse of the previous problem.  Because of this symmetry, the minimum work 

control deflections are again found from Eq. (4.4).  This means that for the minimum 

aerodynamic work for the two ∆Cl case, a region of zero work will exist for one ∆Cl and work 

will be required for the other ∆Cl.       

 
Figure 4.12:  The influence of the second ∆Cl on the minimum work 
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4.5  The Minimum Work for a LETE Configuration 
 

The LETE configuration is a special case because the two control surfaces are not connected as 

they are in the TETAB and MTE cases.  The influence of this on two ∆Cl changes will be briefly 

discussed below. 

 

Consider a leading and trailing edge flap combination with both flaps being 20% of the chord.  

Let Cl,1 = 0,  Cl,2 = 0.1, Cl,3 = 0, where the subscripts 1, 2, and 3 refer to the initial, middle, and 

final states as shown in Figure 4.11.   Assume that both control surfaces are initially undeflected, 

meaning δLE,1 and δTE,1 equal zero, and that the airfoil remains at α = 0.  It is desired to find the 

leading and trailing edge deflections for states 2 and 3 that require the minimum total work.  

Figure 4.13 shows a surface plot of the work values for different combinations of 2,LEδ and 3,LEδ .  

The deflections for minimum work were found to be 
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which result in W/2qc2 = 4.17x10-6.  This is considerably larger than the 0.3x10-6 or 2x10-6 values 

required for the TETAB and MTE cases with xA = 0.6. But it is considerably less than the 12x10-6 

required by a single flap spanning 30% of the chord.  Figures 4.14 and 4.15 show the load 

distributions produced by the minimum work deflections for this case.  It is seen in Figure 4.14 

that no work is required to deflect the leading edge flap from state 1 to 2.  If it was not required to 

go to state 3, the optimum deflection for state 2 would consist of just the leading edge flap 

deflection so that the no work was required.  But since state 3 is considered, there is a tradeoff 

between the leading and trailing edge deflections. 

 

The above discussion shows that although the LETE flap combination appears favorable from a 

work standpoint for a single ∆Cl, if two ∆Cl’s are considered, the configuration is found to require 

more work than the TETAB or MTE configurations.   
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Figure 4.13: Work required to achieve Cl,1 = 0,  Cl,2 = 0.1 and Cl,3 = 0 
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Figure 4.14 Load distributions at state 2 
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Figure 4.15: Load distributions at state 3 

 
 
 
4.6   Chapter Summary 
 

Chapter 4 presents a method for determining the control deflections that require the minimum 

aerodynamic work for a given ∆Cl.  This method is based on the work equations developed in 

Chapter 2 and the aerodynamic characteristics developed in Chapter 3.  For an initially flat airfoil 

at zero-α with two control surfaces, Eq (4.4) was derived.  This equation represents the minimum 

work control deflections for a given ∆Cl.  Figures 4.3 and 4.4 show that the TETAB configuration 

requires less work than the MTE configuration for cases where α remains zero.  Section 4.3 

shows that there is certain α past which the MTE case requires less work than the TETAB case.  

This is true because a given δ for the MTE case produces much less ∆z than for the TETAB case, 

which means that the α-load distribution has a smaller influence on the minimum work for the 

MTE case.  Section 4.4 discusses the minimum work for multiple ∆Cl’s and shows that it is 

closely related to the minimum work for a single ∆Cl.  Section 4.5 investigates the leading-edge 

trailing-edge flap, which is shown to be considerably different than the two-segment trailing-edge 

devices. 
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Chapter 5 

 

The Effect of Aeroelasticity on the 

Required Aerodynamic Work 
 

5.1 Introduction 
 

An important issue in the analysis of an aerodynamic control device is the influence of 

aeroelasticity on the effectiveness of the control device.  This chapter will study this issue by 

examining the effect of aeroelasticity on the required aerodynamic work for a given change in lift.  

Section 5.2 will discuss the addition of static aeroelastic effects to the airfoil models developed in 

Chapter 3 as well as review the basic concepts of the active aeroelastic wing concept.  Section 5.3 

will compare the work required for single control surface morphing and conventional flaps.  

Section 5.4 will compare the work required for two-segment morphing (MTE) and conventional 

(TETAB) flaps.  The benefits of the active aeroelastic wing concept will be shown to become 

clear upon studying the influence of dynamic pressure on the minimum work control deflections.  

 

5.2    Aeroelastic Considerations  

 

This section will review the modeling of a 1-DOF static aeroelastic airfoil, which will be used to 

extend the airfoil model of Chapter 3.  The notation and technique will follow that of Forster et 

al. [2003], who conducted a similar study as discussed in Chapter 1. 
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Figure 5.1: Flexible airfoil representation 

 

Figure 5.1 shows the representation of an airfoil that is free to twist around a shear center (xs) 

with a spring constant Kφ.  The initial angle of attack is α0, which can be thought of as the 

equilibrium α when no aerodynamic forces are applied.  When aerodynamic forces are applied, 

the equilibrium α is found by summing the pitching moments acting about xs.  This results in: 
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where e = xs /c- 0.25.  Solving Eq. (5.1) for ∆φ leads to  
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where the equilibrium α is now ∆φ + α0.  The effect of aeroelasticity in the current 1-DOF static 

airfoil model is represented entirely by ∆φ in Eq (5.2).  

 

Figure 5.2 shows, using an example presented by Forster et al. [2003], the effect of aeroelasticity 

on the initial (corresponding to δA,1 and δB,1) and final (corresponding to δA,2 and δB,2) load 

distributions.  The difference between the initial state with aeroelastics and the initial state 

without aeroelastics is the additional load distribution due to ∆φ1. It is seen that only the final 

state with aeroelastics is shown in Figure 5.2.  The final state without aeroelastics is not shown 

because, as a result of ∆φ2 being very near zero, it is nearly the same as the final state with 

aeroelastics.   
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Figure 5.2: Example load distributions including aeroelastic effects 

 

It is convention to define the dynamic pressure when the denominator of ∆φ becomes zero as the 

divergence dynamic pressure (qD).  This is written as: 

α

φ

l
D Cec

K
q 2=                                                             (5.3) 

where it should be noted that this is independent of the control surfaces on the airfoil.  The 

dynamic pressure of interest for control surfaces is the reversal dynamic pressure (qR), which is 

the dynamic pressure at which the flexible control effectiveness of a control surface is zero.  The 

flexible control effectiveness ( C
βl

~ ) can be written as  

  C
βαβ βφ lll CC +∆=

~                                                       (5.4) 

where C is the rigid control effectiveness and 
βl βφ∆ is the φ∆ per unit deflection β.  Combining 

Eqs. (5.2) and (5.4) and solving for the q that makes C
βl

~ = 0 results in 
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q 2−=                                                          (5.5) 

where it should be noted that on a multiple control surface configuration, there is a separate qR for 

each control surface.  If the deflection of a control surface is intended to produce a rolling 

maneuver, the reversal dynamic pressure can be interpreted as the roll reversal dynamic pressure 

for the current 2-D airfoil model.  Figures 5.3 and 5.4, taken from Anderson, et al. [1997], show 
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the loss in roll performance and the increase in the required aileron deflection as qR is 

approached.  It should be understood that although Figure 5.4 shows that the required aileron 

deflection becomes infinite at qR, this dynamic pressure does not represent a boundary that cannot 

be passed.  This is shown in Figure 5.5, where it is seen that the required aileron deflection is 

opposite in sign of that required before qR for the single control surface case.  As long as 

maneuvers are not attempted at qR and the control system is programmed to account for the 

aileron reversal, it should be possible to perform maneuvers at dynamic pressures around and past 

qR with a single control surface.  The main problem with this, though, is that the increase in the 

required deflections causes an increase in the drag and required actuator work.   

 

The loss in maneuverability mentioned above as qR is approached has led to the development of 

the active aeroelastic wing (AAW), which uses multiple control surfaces to reduce the required 

control deflections at dynamic pressures around qR [Miller 1994].  This is shown in Figure 5.5, 

which indicates the reduction in the required deflections for a leading edge – trailing edge flap 

combination over that required for a trailing edge flap only.  If more than one control surface is 

being used to achieve a desired roll rate, then there must be some type of cost function to 

uniquely choose the deflections.  In the case of Figure 5.5, Anderson used a “minimum control 

energy criteria” which is said to “minimize the overall control surface actuator command 

signals.” This is similar to minimizing Eq. (2.5) when η = 1, which implies an equal cost for 

positive and negative work.  Minimizing Eq. (2.5) with η = 0, which is used throughout this 

paper, will in most cases lead to the trivial solution of deflecting just the leading edge flap. 

 

It makes sense that in Figure 5.5 the trailing edge deflection goes to zero at the trailing edge qR, 

because at this point its effectiveness is zero.  Notice that there is no reversal dynamic pressure 

for the leading edge flap.  This is verified by substituting the leading edge flap characteristics 

shown in Figure 3.9 into Eq. (5.5), which results in a negative qR, meaning the velocity is 

imaginary.  Section 5.4 will study cases with two-segment trailing edge flaps in which case both 

control surfaces have a reversal dynamic pressure. 
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Figure 5.3:  Roll rate achieved for a constant aileron deflection [Anderson, et al. 1997] 

 

 
Figure 5.4:  Aileron deflection required for a constant roll rate [Anderson, et al. 1997] 
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Figure 5.5:  Control surface deflections required for a constant roll rate [Anderson, et al. 1997] 

 

 

5.3 Required Work for Single Control Surface Cases 
 

In Section 3.7 of Chapter 3, it was shown that a single-segment MTE device requires less work to 

achieve a ∆Cl than a conventional flap.  It is now desired to study the influence of aeroelasticity 

on this conclusion.  Some aeroelastic differences between morphing and conventional cases are 

suspected because, as is seen in Figure 3.14, the lift is centered further back for the morphing case 

than for the conventional case therefore increasing the moment acting on the shear center.   

 

The first case that will be examined is the work required for a single-surface morphing or 

conventional flap to achieve a lift (∆Cl q c) of 0.5 lbs away from an initially flat airfoil at zero 

angle of attack.   Notice that now we are comparing the work for a given change in lift, and not Cl 

as was done in Chapter 4.  This is done because it is desired to compare the required work for 

different dynamic pressures, in which case the lift force corresponding to a given Cl is different.  

It should also be mentioned that a change in lift is used instead of a roll rate because it is a more 

basic quantity.  For the current 2-D airfoil model, a change in lift can be transformed into a steady 

upward motion, which is the 2-D equivalent to a rolling motion, through the following equation 

[Weisshaar 2000]: 
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where v represents the steady upward motion and ∆l is the change in lift on the airfoil.  Figure 5.6 

shows the work required for the given change in lift for dynamic pressures less than qR (the airfoil 

size and shape parameters are listed in the figure).  It is shown that for low dynamic pressures, the 

conclusion reached in Section 3.7 that a morphing flap requires less work than a conventional flap 

still holds.  But, for q/qD > 0.085, the work required for the conventional flap becomes less than 

that required for the morphing flap.  Figures 5.7 and 5.8 show the required control deflections and 

the resulting wing twist deformation for this case.  As expected, the control deflections for the 

morphing and conventional cases follow the same trends.  Comparing the magnitudes of the 

morphing and conventional deflections in Figure 5.7 is not very meaningful because it is 

dependent on how the deflection angles are defined.  The magnitude of the wing deformation 

angle (∆φ) in Figure 5.8 is meaningful, though, and succeeds in showing why the morphing flap 

requires more work as q/qD becomes large.  The morphing flap produces larger negative ∆φ 

values, which means that more negative lift is created that must be compensated for with more 

control deflection, therefore increasing the required work.  Figure 5.9 shows the same comparison 

as Figure 5.6 except that in this case α0 is one degree instead of zero.  This is shown to increase 

the range of dynamic pressures over which the morphing flap requires less work than the 

conventional flap.  This influence of α on the comparison between the work required for 

morphing and conventional flaps was also observed in Section 3.7.     
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Figure 5.6: The effect of dynamic pressure on the required aerodynamic work for a given ∆Cl q c 
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Figure 5.7: The effect of dynamic pressure on the deflection angle for a given ∆Cl q c 
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Figure 5.8: The effect of dynamic pressure on the wing deformation angle for a given ∆Cl q c 
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Figure 5.9: The effect of dynamic pressure on the work for a given ∆Cl qc at α0 = 1 degree 

 

 

5.4 Required Work for Multiple Control Surface Cases 
 

This section compares the minimum work control deflections for two-segment morphing and 

conventional flaps.  This was studied in Sections 4.2 and 4.3 for rigid airfoils.  Figure 5.10 shows 

the resulting minimum work values for the case where α0 is one degree.  This shows that unlike 

the single control surface case, where the morphing flap began to require more work than the 

conventional case as qR was approached, the morphing flap continues to require less work past qR.  

Figure 5.11 shows the change in the wing deformation angle as q/qD varies.  It is seen that past 

the qR of the dominant control surface (flap A for the morphing and conventional case), the wing 

deformation angle becomes positive indicating the airfoil is generating lift by twisting the wing 

with control surface deflections.  Figures 5.12 and 5.13 confirm this by showing negative control 

deflections past the qR of control surface A (qR,A).  Because the airfoil has a nonzero α0, the 

negative control deflections can be achieved with no work.  Notice that in Figures 5.12 and 5.13 

that δA goes to zero at qR,A but δB does not go to zero at qR,B.  Why would a nonzero deflection be 

found for a control surface that creates no change in lift if it desired to minimize the work?  The 

answer to this is that although at qR,B control surface B is not capable of creating lift, it is useful 

for reducing the work required for control surface A.  Figures 5.12 and 5.13 show that this is 
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exactly what is being done here, with the negative value of δB, which requires no work because of 

the α0, reducing the work required for flap A. 
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Figure 5.10:  The effect of dynamic pressure on the required work with multiple control surfaces  
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Figure 5.11:  The effect of dynamic pressure on the deformation with multiple control surfaces 
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Figure 5.12:  The effect of dynamic pressure on the minimum work control deflections 
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Figure 5.13:  The effect of dynamic pressure on the minimum work control deflections 
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5.5 Chapter Summary 
 

Chapter 5 presents the effect of a 1-DOF static aeroelastic model on the actuator work 

requirements for morphing and conventional flap airfoils.  It is shown in Figures 5.6 and 5.9 that 

the work becomes very large as the reversal dynamic pressure (qR) is approached.  At low 

dynamic pressures the morphing flap requires less work than the conventional flap.  The dynamic 

pressure past which the conventional flap requires lower work is shown to depend on the initial 

lift acting on the airfoil.   

 

A comparison of the minimum work required for two-segment morphing and conventional flaps 

is presented in Figure 5.10.  This plot presents work values for dynamic pressures above and 

below qR.  The minimum work control deflections shown in Figures 5.12 and 5.13 indicate that 

around qR, both control surfaces are used like with the leading and trailing edge configuration of 

the AAW.  



 
 

 

 

Chapter 6 

 

Conclusions 
 

6.1 Brief Summary of Thesis 
 

The first chapter provides an introduction to the concept of morphing aircraft.  Past morphing 

concepts such as variable wing sweep and the AFTI/F-111 are discussed.  It is emphasized that 

morphing allows for both the minimization of drag at multiple flight conditions as well improved 

maneuverability.  A review of literature on the topic of aerodynamic work is presented.  It is 

concluded that if aerodynamic work is to be used as a performance parameter for aerodynamic 

control devices, then a general theory must be developed that considers issues such as negative 

work and actuator placement.  This task is the focus of Chapter 2. 

 

Chapter 2 presents a method of calculating the mechanical work required from actuators to 

operate an aerodynamic control device.  It is argued that it is really desired to calculate the energy 

“cost” of actuating an aerodynamic control device, and not the required mechanical work.  This 

leads to calculation of the practical work (W), which is related to the straightforward work (W ) 

through Eq. (2.10).  The term η in Eq. (2.10), which represents the difference in the cost of 

positive and negative work, defines the relationship between W and W.  The remainder of this 

study uses a value of η = 0, which implies that energy required by an actuator to perform negative 

work is zero.  This is true because negative work means that the forces from the airstream and 

structure act in the same direction, therefore the forces required for initiating motion are supplied 

from the air-stream or the structure and not the actuator.  An important consequence of treating 

negative and positive work as different quantities is that the structural and aerodynamic work 
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calculations cannot be performed independently.  This is because the interaction of these two 

components determine when the work changes from positive to negative.  The remainder of this 

thesis considered only the aerodynamic work component. 

 

Chapter 3 applies thin airfoil theory to various control surface configurations to provide an 

aerodynamic model for the work calculation discussed in Chapter 2.  Along with the usual 

calculation of the aerodynamic coefficients using the first three Fourier coefficients (Eqs. (3.3 - 

3.8)), analytic solutions for the aerodynamic load distribution are found using Eq. (3.11).  The 

determination of analytic equations for the aerodynamic load distribution is convenient for the 

application of the work equations developed in Chapter 2.  These equations also provide insight 

into the effect of various control surface parameters on aerodynamic load distribution.  Section 

3.7 shows that less work is required to obtain a ∆Cl with a single-surface morphing flap than with 

a conventional flap.  Figures 3.13 – 3.15 show that this is true because the ∆z required for the 

morphing flap is less than for the conventional flap.  It is also shown that because the morphing 

flap requires less ∆z, the influence of an α-dependent load distribution on the work is less than 

that for a conventional flap. 

 

Chapter 4 presents a method for determining the control deflections that require the minimum 

aerodynamic work for a given ∆Cl.  This method is based on the work equations developed in 

Chapter 2 and the aerodynamic characteristics developed in Chapter 3.  For an initially flat airfoil 

at zero-α with two control surfaces, Eq (4.4) was derived.  This equation represents the minimum 

work control deflections for a given ∆Cl.  Figures 4.3 and 4.4 show that the TETAB configuration 

requires less work than the MTE configuration for cases where α remains zero.  Section 4.3 

shows that there is certain α past which the MTE case requires less work than the TETAB case.  

This is true because a given δ for the MTE case produces much less ∆z than for the TETAB case, 

which means that the α-load distribution has a smaller influence on the minimum work for the 

MTE case.  Section 4.4 discusses the minimum work for multiple ∆Cl’s and shows that it is 

closely related to the minimum work for a single ∆Cl.  

 

Chapter 5 presents the effect of a 1-DOF static aeroelastic model on the aerodynamic work 

requirements for morphing and conventional flap airfoils.  It is shown in Figures 5.6 and 5.9, that 

for single-segment morphing and conventional flaps, the work becomes very large as the reversal 

dynamic pressure (qR) is approached.  At low dynamic pressures the morphing flap requires less 
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work than the conventional flap.  The dynamic pressure past which the conventional flap requires 

lower work is shown to depend on the initial lift acting on the airfoil.  A comparison of the 

minimum work required for two-segment morphing and conventional flaps is presented in Figure 

5.10.  This plot presents work values for dynamic pressures above and below qR.  At nearly every 

value of q, the morphing flap required less work than the conventional flap.  The minimum work 

control deflections shown in Figures 5.12 and 5.13 indicate that around qR, both control surfaces 

are used in the same manner as the leading and trailing edge configuration of the active 

aeroelastic wing. 

 

 

6.2 Contributions  
 

This thesis provides a method for calculating the work to overcome aerodynamic forces required 

to deflect a general configuration of aerodynamic control devices.  Past research in this area, as 

discussed in Section 1.3, has not confronted many of the issues required to compare the work 

required for general control surface configurations.  The method developed here relates the 

aerodynamic and structural forces acting on the control surface as it is deflecting to the energy 

cost required for the actuator to perform the deflection.  A contribution of this thesis is that it 

provides a clarification of what is really desired from a work analysis on an airfoil control 

surface.  It is not the mechanical work required for a control surface deflection that is of interest, 

but really the energy cost of the actuator operating the control surface.  Without getting into the 

details of the actuators, the calculation of the energy cost of an actuator is achieved through Eq. 

(2.10).  The significance of this equation is that it accounts for a difference between the energy 

cost required by an actuator to perform negative work from that required to perform positive 

work.  By turning to physiologists [Abbott, et al, 1952], who have studied the cost of negative 

work for animal muscles (which can be considered very advanced actuators), a value of η = 0 was 

found to accurately represent most actuators.  An important contribution of this work was 

recognizing that positive and negative work values should be treated differently in the calculation 

of the work required by a control surface.  With the assumption of a linear aerodynamic and 

structural model, the details of calculating the energy cost for a general control surface 

configuration are presented.  This is new in that it accounts for the difference between positive 

and negative work values, which allows for a simple and general method of calculating the 

actuator energy cost. 
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It appears that the equations obtained in Chapter 3 from thin airfoil theory for the load 

distributions for quadratic camberlines (including NACA camberlines) are absent from the 

literature.   This may be because thin airfoil theory has been mainly used for the lift and pitching 

moment coefficients, which can be obtained from the simple calculation of the first three Fourier 

coefficients defined in Eqs. (3.3 – 3.5).  And, it seems that the load distribution calculation is 

usually represented by the infinite series of Eq. (3.1) instead of the integral of Eq. (3.11).  In any 

case, these analytic equations for the load distribution are valuable for the application of the work 

equations developed in Chapter 2, as well as many other aerodynamic analyses.          

 

 

6.3 Future Work 

 

There are four main extensions to this work that would make it a more accurate representation of 

reality.  The first of these is the use of unsteady thin airfoil theory to model the aerodynamic load 

distribution during the control surface motion.  There does not seem to be a large amount of 

literature investigating the unsteady forces on an airfoil during the control surface motion.  For 

example, what is the time-history of the hinge moment on a flap as it is deflecting from 0 to 5 

degrees?  The second extension of this work is the addition of a boundary layer calculation.  This 

would allow for both viscous drag and flow separation to be predicted.  The influence of different 

control surface configurations on the viscous drag and location of flow separation would be very 

interesting and useful.  The addition of unsteady aerodynamics and viscous effects will likely 

result in load distributions that are no longer linear with respect to the control surface motion.  

This would require the work equations developed in Sections 2.3 and 2.4 to be generalized.  The 

third extension of this work is the addition of a structural model.  Although structural work terms 

are included in Chapter 2, the analysis of Chapters 4 and 5 consider only the aerodynamic work 

term.  Extending this analysis to three-dimensional wings would allow for spanwise distributions 

of control surface deflections to be investigated.  The aerodynamics would have to be modeled 

with a numerical method such as the vortex-lattice method instead of thin airfoil theory.  
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Appendix A 
 

MATLAB code to calculate the aerodynamic work and aerodynamic properties of the MTE 

airfoil defined in Section 3.7. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%    Input 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%   Considers the change from state 1 to state 2 and then to state 3.  If only 

%   one change is of interest, make Cl3=Cl2, A_delta3=A_delta2, and 

%   alpha3=alpha2.  Cl1 is implied through A_delta1, B_delta1, and alpha1. 

 

% lift coefficient at state 2 

Cl2=0.1; 

% lift coefficient at state 3 

Cl3=0.1; 

 

% intial deflection of flap A (radians) 

A_delta1=0*pi/180; 

 

% intial deflection of flap B (radians) 

B_delta1=0; 

 

% deflection of flap A at state 2 (radians) 

A_delta2=0; 

 

% deflection of flap A at state 3 (radians) 

A_delta3=0; 
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% angle of attack at state 1 (radians) 

alpha1=0;  

 

% angle of attack at state 2 (radians) 

alpha2=0; 

 

% angle of attack at state 3 (radians) 

alpha3=0; 

 

% start of flap A (x/c), see Figure 3.12 

xA=.6; 

 

% start of flap B (x/c), see Figure 3.12 

xB=.8; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

thetab1=acos(1-2*xA); 

thetab2=acos(1-2*xB); 

 

% Eq. (3.53) - per-radian of flap deflection A and B 

a1_A = -1/(-2*xA + 2*xB); 

a2_B = -(-1)/(-2 + 2*xB);  

b1_A = -(1*xA)/(xA - xB); 

b2_A = -(-1+ (1)*xB)/(-1 + xB);  

b2_B = -((1)*xB)/(-1 + xB); 

c1_A = -(1*xA^2)/(-2*xA + 2*xB);  

c2_A = -(-((1)*xB^2) + 1*(xA + xB - xA*xB))/(2*(-1 + xB)); 

c2_B = -(-((1)*xB^2))/(2*(-1 + xB)) ; 

 

% Eq. (3.54) - per-radian of flap deflection A and B 

A0_A=-1/pi*((a1_A+b1_A)*(thetab2-thetab1)-a1_A*(sin(thetab2)-sin(thetab1))... 

    +b2_A*(pi-thetab2)); 

A1_A=2/pi*((a1_A+b1_A)*(sin(thetab2)-sin(thetab1))-a1_A/2*((thetab2-thetab1)... 
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    +1/2*(sin(2*thetab2)-sin(2*thetab1)))+(b2_A)*(-sin(thetab2))); 

A2_A=2/pi*(.5*(a1_A+b1_A)*(sin(2*thetab2)-sin(2*thetab1))-a1_A*((sin(thetab2)... 

    -sin(thetab1))/2+(sin(3*thetab2)-sin(3*thetab1))/6)-.5*(b2_A)*sin(2*thetab2)); 

 

A0_B=-1/pi*(a2_B*(pi-thetab2)+b2_B*(pi-thetab2)+a2_B*sin(thetab2)); 

A1_B=2/pi*((a2_B+b2_B)*(-sin(thetab2))-a2_B/2*((pi-thetab2)-.5*sin(2*thetab2))); 

A2_B=2/pi*(-.5*(a2_B+b2_B)*sin(2*thetab2)+a2_B*(sin(thetab2)/2+sin(3*thetab2)/6)); 

 

% Eq. (3.6 - 3.8) - per-radian of flap deflection A and B 

Cm_B=pi/4*(A2_B-A1_B); 

Cl_B=pi*(2*A0_B+A1_B); 

 

Cm_A=pi/4*(A2_A-A1_A); 

Cl_A=pi*(2*A0_A+A1_A); 

 

% Defined in Eq. (3.55)  

SA=-(0.5-xA)/(xB-xA); 

SB=-(xB-0.5)/(xB-1); 

TA=0.5/(xB-xA); 

TB=-0.5/(xB-1); 

RA=-1;  

RB=(0.5-xB)/(xB-1);  

 

 

% Calculates the gamma distribution per-radian of flap deflection A and B 

% (Eq. 3.55) 

 

x=.001:.001:1-.001; 

theta=acos(1-2*x); 

 

gammaAb=2/pi*(TA*(thetab2-thetab1)*sin(theta)... 

    +(SA+TA*cos(theta)).*(log((sin(theta)*tan(thetab2/2)... 

    -cos(theta)+1)./(sin(theta)*tan(thetab2/2)+cos(theta)-1))... 

    -log((sin(theta)*tan(thetab1/2)-cos(theta)+1)./(sin(theta)*tan(thetab1/2)... 
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    +cos(theta)-1)))+log((sin(theta)*tan(thetab2/2)-cos(theta)... 

    +1)./(sin(theta)*tan(thetab2/2)+cos(theta)-1))); 

 

gammaAa=-2/pi*(SA*(thetab2-thetab1)+TA*(sin(thetab2)-sin(thetab1))... 

    +RA*(pi-thetab2))*((1+cos(theta))./sin(theta)); 

 

gammaBb=2/pi*(TB*(pi-thetab2)*sin(theta)-(SB+... 

    TB*cos(theta)).*log((sin(theta)*tan(thetab2/2)-cos(theta)+... 

    1)./(sin(theta)*tan(thetab2/2)+cos(theta)-1))); 

 

gammaBa=-2/pi*(-TB*(sin(thetab2))+RB*(pi-thetab2))*((1+... 

    cos(theta))./sin(theta)); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculates the Q-terms defined in Eq. (2.18) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x01=xA+.001:.001:xB-.001; 

theta01=acos(1-2*x01); 

 

fA1=-1/8*(1-cos(theta01)).^2./(xB-xA)-1/2*(1-cos(theta01))*xA/(xA-xB)-... 

    .5*xA^2/(xB-xA); % from Eq. (3.56) 

 

% Integrals performed numerically 

Q_A_A_a1=trapz(theta01,-2/pi*(SA*(thetab2-thetab1)+TA*(sin(thetab2)-sin(thetab1))... 

    +RA*(pi-thetab2))*((1+cos(theta01))./sin(theta01)).*(-1/8*(1-... 

    cos(theta01)).^2./(xB-xA)-1/2*(1-cos(theta01))*xA/(xA-xB)... 

    -.5*xA^2/(xB-xA))*0.5.*sin(theta01) ); 

     

Q_A_B_a1=trapz(theta01, -2/pi*(-TB*(sin(thetab2))+RB*(pi-thetab2))*((1+... 

    cos(theta01))./sin(theta01)).*(-1/8*(1-cos(theta01)).^2./(xB-xA)-1/2*(1-... 

    cos(theta01))*xA/(xA-xB)-.5*xA^2/(xB-xA))*0.5.*sin(theta01) ); 

 

Q_A_alpha1=trapz(theta01,2*(1)*((1+cos(theta01))./sin(theta01)).*(-1/8*(1-... 

    cos(theta01)).^2./(xB-xA)-1/2*(1-cos(theta01))*xA/(xA-xB)-... 
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    .5*xA^2/(xB-xA))*0.5.*sin(theta01) ); 

 

Q_A_A_b1=trapz(theta01, 2/pi*(TA*(thetab2-thetab1)*sin(theta01)+... 

    (SA+TA*cos(theta01)).*(log((sin(theta01)*tan(thetab2/2)-cos(theta01)+... 

    1)./(sin(theta01)*tan(thetab2/2)+cos(theta01)-1))-... 

    log((sin(theta01)*tan(thetab1/2)-cos(theta01)+... 

    1)./(sin(theta01)*tan(thetab1/2)+cos(theta01)-1)))+... 

    log((sin(theta01)*tan(thetab2/2)-cos(theta01)+... 

    1)./(sin(theta01)*tan(thetab2/2)+cos(theta01)-... 

    1))).*(-1/8*(1-cos(theta01)).^2./(xB-xA)-1/2*(1-... 

    cos(theta01))*xA/(xA-xB)-.5*xA^2/(xB-xA))*0.5.*sin(theta01)); 

 

Q_A_B_b1=trapz(theta01, 2/pi*(TB*(pi-thetab2)*sin(theta01)-... 

    (SB+TB*cos(theta01)).*log((sin(theta01)*tan(thetab2/2)-... 

    cos(theta01)+1)./(sin(theta01)*tan(thetab2/2)+cos(theta01)-... 

    1))).*(-1/8*(1-cos(theta01)).^2./(xB-xA)-1/2*(1-... 

    cos(theta01))*xA/(xA-xB)-.5*xA^2/(xB-xA))*0.5.*sin(theta01)); 

 

 

x02=xB+.001:.001:1-.001; 

theta02=acos(1-2*x02); 

fA2=-.5*(1-cos(theta02))+.5*(xB+xA); % from Eq. (3.56) 

fB=1/8*(1-cos(theta02)).^2./(xB-1)-1/2*(1-cos(theta02))*xB/(xB-1)+... 

    .5*xB^2/(xB-1); % from Eq. (3.56) 

Q_A_A_a2=trapz(theta02,-2/pi*(SA*(thetab2-thetab1)+TA*(sin(thetab2)... 

    -sin(thetab1))+RA*(pi-thetab2))*((1+cos(theta02))./sin(theta02)).*(-... 

    .5*(1-cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02) ); 

 

Q_A_B_a2=trapz(theta02, -2/pi*(-TB*(sin(thetab2))+RB*(pi-thetab2))*((1+... 

    cos(theta02))./sin(theta02)).*(-.5*(1-cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02)); 

 

Q_A_alpha2=trapz(theta02,2*(1)*((1+cos(theta02))./sin(theta02)).*(-.5*(1-... 

    cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02) ); 
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Q_A_A_b2=trapz(theta02, 2/pi*(TA*(thetab2-thetab1)*sin(theta02)+... 

    (SA+TA*cos(theta02)).*(log((sin(theta02)*tan(thetab2/2)-cos(theta02)+... 

    1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-1))-log((sin(theta02)*tan(thetab1/2)-... 

    cos(theta02)+1)./(sin(theta02)*tan(thetab1/2)+cos(theta02)-1)))+... 

    log((sin(theta02)*tan(thetab2/2)-cos(theta02)+1)./(sin(theta02)*tan(thetab2/2)+... 

    cos(theta02)-1))).*(-.5*(1-cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02) ); 

 

Q_A_B_b2=trapz(theta02, 2/pi*(TB*(pi-thetab2)*sin(theta02)-(SB+... 

    TB*cos(theta02)).*log((sin(theta02)*tan(thetab2/2)-cos(theta02)+... 

    1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-1))).*(-.5*(1-... 

    cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02)); 

 

 

Q_B_A_a=trapz(theta02,-2/pi*(SA*(thetab2-thetab1)+TA*(sin(thetab2)-... 

    sin(thetab1))+RA*(pi-thetab2))*((1+cos(theta02))./sin(theta02)).*(1/8*(1-... 

    cos(theta02)).^2./(xB-1)-1/2*(1-cos(theta02))*xB/(xB-1)+.5*xB^2/(xB-... 

    1)).*0.5.*sin(theta02) ); 

 

Q_B_B_a=trapz(theta02, -2/pi*(-TB*(sin(thetab2))+RB*(pi-thetab2))*((1+... 

    cos(theta02))./sin(theta02)).*(1/8*(1-cos(theta02)).^2./(xB-1)-... 

    1/2*(1-cos(theta02))*xB/(xB-1)+.5*xB^2/(xB-1))*0.5.*sin(theta02) ); 

 

Q_B_alpha=trapz(theta02,2*(1)*((1+cos(theta02))./sin(theta02)).*(1/8*(1-... 

    cos(theta02)).^2./(xB-1)-1/2*(1-cos(theta02))*xB/(xB-1)+.5*xB^2/(xB-... 

    1)).*0.5.*sin(theta02) ); 

 

Q_B_A_b=trapz(theta02, 2/pi*(TA*(thetab2-thetab1)*sin(theta02)+... 

    (SA+TA*cos(theta02)).*(log((sin(theta02)*tan(thetab2/2)-cos(theta02)+... 

    1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-1))-... 

    log((sin(theta02)*tan(thetab1/2)-cos(theta02)+... 

    1)./(sin(theta02)*tan(thetab1/2)+cos(theta02)-1)))+... 

    log((sin(theta02)*tan(thetab2/2)-cos(theta02)+... 

    1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-... 

    1))).*(1/8*(1-cos(theta02)).^2./(xB-1)-1/2*(1-... 
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    cos(theta02))*xB/(xB-1)+.5*xB^2/(xB-1))*0.5.*sin(theta02) ); 

 

Q_B_B_b=trapz(theta02, 2/pi*(TB*(pi-thetab2)*sin(theta02)-(SB+... 

    TB*cos(theta02)).*log((sin(theta02)*tan(thetab2/2)-cos(theta02)+... 

    1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-1))).*(1/8*(1-... 

    cos(theta02)).^2./(xB-1)-1/2*(1-cos(theta02))*xB/(xB-1)+.5*xB^2/(xB-... 

    1))*0.5.*sin(theta02)); 

 

Q_A_A=real(Q_A_A_a1+Q_A_A_b1+Q_A_A_a2+Q_A_A_b2); 

Q_A_B=real(Q_A_B_a1+Q_A_B_b1+Q_A_B_a2+Q_A_B_b2); 

Q_B_A=real(Q_B_A_a+Q_B_A_b); 

Q_B_B=real(Q_B_B_a+Q_B_B_b); 

Q_A_alpha=Q_A_alpha1+Q_A_alpha2; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

    B_delta2=(Cl2-Cl_A*A_delta2-2*pi*alpha2)/Cl_B; 

    B_delta3=(Cl3-Cl_A*A_delta3-2*pi*alpha3)/Cl_B; 

     

% Applies Eq. (2.19) for each control surface for both Cl changes 12 and 23 

tau0_A12=-(Q_A_A*A_delta1+Q_A_B*B_delta1+Q_A_alpha*alpha1)/(Q_A_A*(A_delta2-... 

    A_delta1)+Q_A_B*(B_delta2-B_delta1)+Q_A_alpha*(alpha2-alpha1)); 

 

tau0_B12=-(Q_B_A*A_delta1+Q_B_B*B_delta1+Q_B_alpha*alpha1)/(Q_B_A*(A_delta2-... 

    A_delta1)+Q_B_B*(B_delta2-B_delta1)+Q_B_alpha*(alpha2-alpha1)); 

 

tau0_A23=-(Q_A_A*A_delta2+Q_A_B*B_delta2+Q_A_alpha*alpha2)/(Q_A_A*(A_delta3-... 

    A_delta2)+Q_A_B*(B_delta3-B_delta2)+Q_A_alpha*(alpha3-alpha2)); 

 

tau0_B23=-(Q_B_A*A_delta2+Q_B_B*B_delta2+Q_B_alpha*alpha2)/(Q_B_A*(A_delta3-... 

    A_delta2)+Q_B_B*(B_delta3-B_delta2)+Q_B_alpha*(alpha3-alpha2)); 
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I_A_0_12=(Q_A_A*A_delta1+Q_A_B*B_delta1+Q_A_alpha*alpha1)*(A_delta2-A_delta1); 

I_B_0_12=(Q_B_A*A_delta1+Q_B_B*B_delta1+Q_B_alpha*alpha1)*(B_delta2-B_delta1); 

I_A_1_12=(Q_A_A*A_delta2+Q_A_B*B_delta2+Q_A_alpha*alpha2)*(A_delta2-A_delta1); 

I_B_1_12=(Q_B_A*A_delta2+Q_B_B*B_delta2+Q_B_alpha*alpha2)*(B_delta2-B_delta1); 

 

I_A_0_23=(Q_A_A*A_delta2+Q_A_B*B_delta2+Q_A_alpha*alpha2)*(A_delta3-A_delta2); 

I_B_0_23=(Q_B_A*A_delta2+Q_B_B*B_delta2+Q_B_alpha*alpha2)*(B_delta3-B_delta2); 

I_A_1_23=(Q_A_A*A_delta3+Q_A_B*B_delta3+Q_A_alpha*alpha3)*(A_delta3-A_delta2); 

I_B_1_23=(Q_B_A*A_delta3+Q_B_B*B_delta3+Q_B_alpha*alpha3)*(B_delta3-B_delta2); 

 

% Applies Eq. (2.20) and (2.21) 

if I_A_0_12<=0 & I_A_1_12 <=0 

    

W_A_12=(Q_A_A*(A_delta2+A_delta1)+Q_A_B*(B_delta2+B_delta1)+Q_A_alpha*(alpha2+..

. 

        alpha1))*(A_delta2-A_delta1)/2; 

     

elseif I_A_0_12>=0 & I_A_1_12 >=0 

    W_A_12=0; 

elseif I_A_0_12<=0 & I_A_1_12 >=0 

     

    W_A_12=(Q_A_A*((A_delta2-A_delta1)*tau0_A12^2/2+A_delta1*tau0_A12)+... 

        Q_A_B*((B_delta2-B_delta1)*tau0_A12^2/2+B_delta1*tau0_A12)+... 

        Q_A_alpha*((alpha2-alpha1)*tau0_A12^2/2+alpha1*tau0_A12))*(A_delta2-A_delta1);   

else  

     W_A_12=(Q_A_A*((A_delta2-A_delta1)*(1-tau0_A12^2)/2+A_delta1*(1-tau0_A12))... 

         +Q_A_B*((B_delta2-B_delta1)*(1-tau0_A12^2)/2+B_delta1*(1-tau0_A12))+... 

         Q_A_alpha*((alpha2-alpha1)*(1-tau0_A12^2)/2+... 

         alpha1*(1-tau0_A12)))*(A_delta2-A_delta1);   

 end 

  

 if I_B_0_12<=0 & I_B_1_12 <=0 

    W_B_12=(Q_B_A*(A_delta2+A_delta1)+Q_B_B*(B_delta2+B_delta1)+... 

        Q_B_alpha*(alpha2+alpha1))*(B_delta2-B_delta1)/2; 
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elseif I_B_0_12>=0 & I_B_1_12 >=0 

    W_B_12=0; 

elseif I_B_0_12<=0 & I_B_1_12 >=0 

    W_B_12=(Q_B_A*((A_delta2-A_delta1)*tau0_B12^2/2+A_delta1*tau0_B12)+... 

        Q_B_B*((B_delta2-B_delta1)*tau0_B12^2/2+B_delta1*tau0_B12)+... 

        Q_B_alpha*((alpha2-alpha1)*tau0_B12^2/2+alpha1*tau0_B12))*(B_delta2-B_delta1);   

else  

     W_B_12=(Q_B_A*((A_delta2-A_delta1)*(1-tau0_B12^2)/2+A_delta1*(1-tau0_B12))+... 

         Q_B_B*((B_delta2-B_delta1)*(1-tau0_B12^2)/2+B_delta1*(1-tau0_B12))+... 

         Q_B_alpha*((alpha2-alpha1)*(1-tau0_B12^2)/2+alpha1*(1-... 

         tau0_B12)))*(B_delta2-B_delta1);   

 end 

  

 if I_A_0_23<=0 & I_A_1_23 <=0 

    W_A_23=(Q_A_A*(A_delta3+A_delta2)+Q_A_B*(B_delta3+B_delta2)+... 

        Q_A_alpha*(alpha3+alpha2))*(A_delta3-A_delta2)/2; 

elseif I_A_0_23>=0 & I_A_1_23 >=0 

    W_A_23=0; 

elseif I_A_0_23<0 & I_A_1_23 >=0 

    W_A_23=(Q_A_A*((A_delta3-A_delta2)*tau0_A23^2/2+A_delta2*tau0_A23)+... 

        Q_A_B*((B_delta3-B_delta2)*tau0_A23^2/2+B_delta2*tau0_A23)+... 

        Q_A_alpha*((alpha3-alpha2)*tau0_A23^2/2+alpha2*tau0_A23))*(A_delta3-A_delta2);   

else  

     W_A_23=(Q_A_A*((A_delta3-A_delta2)*(1-tau0_A23^2)/2+... 

         A_delta2*(1-tau0_A23))+Q_A_B*((B_delta3-B_delta2)*(1-... 

         tau0_A23^2)/2+B_delta2*(1-tau0_A23))+Q_A_alpha*((alpha3-alpha2)*(1-... 

         tau0_A23^2)/2+alpha2*(1-tau0_A23)))*(A_delta3-A_delta2);   

 end 

  

  if I_B_0_23<=0 & I_B_1_23 <=0 

    W_B_23=(Q_B_A*(A_delta3+A_delta2)+Q_B_B*(B_delta3+B_delta2)+... 

        Q_B_alpha*(alpha3+alpha2))*(B_delta3-B_delta2)/2; 

elseif I_B_0_23>=0 & I_B_1_23 >=0 

    W_B_23=0; 
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elseif I_B_0_23<=0 & I_B_1_23 >=0 

    W_B_23=(Q_B_A*((A_delta3-A_delta2)*tau0_B23^2/2+A_delta2*tau0_B23)+... 

        Q_B_B*((B_delta3-B_delta2)*tau0_B23^2/2+B_delta2*tau0_B23)+... 

        Q_B_alpha*((alpha3-alpha2)*tau0_B23^2/2+alpha2*tau0_B23))*(B_delta3-B_delta2);   

else  

     W_B_23=(Q_B_A*((A_delta3-A_delta2)*(1-tau0_B23^2)/2+A_delta2*(1-... 

         tau0_B23))+Q_B_B*((B_delta3-B_delta2)*(1-tau0_B23^2)/2+B_delta2*(1-... 

         tau0_B23))+Q_B_alpha*((alpha3-alpha2)*(1-tau0_B23^2)/2+alpha2*(1-... 

         tau0_B23)))*(B_delta3-B_delta2);      

 end 

 

% The total practical work is: 

 W=(W_A_12+W_A_23+W_B_12+W_B_23); 
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