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(Abstract)

The research presented in this thesis examines the use of an estimated “actuator work” value as a
performance parameter for the comparison of various aerodynamic control device configurations.
This estimated “actuator work,” or practical work as it will be referred to as in this thesis, is based
on the aerodynamic and structural resistance to a control surface deflection. It is meant to
represent the actuator energy cost required to deflect a general configuration of conventional or
unconventional control surface. Thin airfoil theory is used to predict the aerodynamic load
distribution required for this work calculation. The details of applying thin airfoil theory to many
different types of control surface arrangements are presented. Convenient equations for the
aerodynamic load distributions and aerodynamic coefficients are obtained. Using the developed
practical work equations, and considering only the aerodynamic load component, the practical
work required for a given change in lift is compared between different control surface
arrangements. For single control surface cases, it is found that a quadratic (morphing) trailing
edge flap requires less practical work than a linear flap of the same size. As the angle of attack at
which the change in lift occurs increases, the benefit of the quadratic flap becomes greater. For
multiple control surface cases, it is necessary to determine the set of control deflections that
require the minimum practical work for a given change in lift. For small values of the initial
angle of attack, it is found that a two-segment quadratic trailing edge flap (MTE) requires more
work than a two-segment linear flap (TETAB). But, above a small value of angle of attack, the
MTE case becomes superior to the TETAB case. Similar results are found when a 1-DOF static
aeroelastic model is included in the calculation. The minimum work control deflections for the

aeroelastic cases are shown to be strongly dependent on the dynamic pressure.
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Nomenclature

o = angle of attack
a = flap-to-chord ratio
A, = Fourier coefficients used to represent the load distribution, defined in Egs. (3.3 —3.5)
f = general control surface deflection
¢ =chord length
C; = airfoil lift coefficient (/ /q ¢)
Cys = airfoil pitching moment coefficient (m /g ¢’
C = force resisting a control surface motion at a point x, defined in Eq. (2.6)
0 = control surface deflection angle (used in Chapter 3)
= Az / B, represents the Az per-unit deflection of £ along the chord

= structural force resisting a control surface deflection

A

F

y = vorticity or load distribution (AC, =2y /U)

n = represents the cost of negative work relative to positive work, defined in Eq. (2.10)
I =integrand of the W equation, defined in Eq. (2.11)

k =x location of the flap hinge line (Figure 3.1)

K =distribution of internal structural forces per-unit S

[ =total airfoil lift

m = pitching moment about the % chord point

M = magnitude of maximum camber for a NACA camberline

Ap = difference between the pressure on the upper and lower airfoil surface

P =location of maximum camber for a NACA camberline

g = dynamic pressure (1/2 p U°)

Q =defined in Egs. (2.12 and 2.18), represents the hinge moment for a linear control surface
p = density of air

7 =nondimensional time used to define the path between the initial and final states

6 =defined in Eq. (3.2), represents the location x along the airfoil chord

viii



U = free-stream velocity

W = practical actuator work, defined in Eq. (2.10)

W = basic actuator work, defined in Eq. (2.9)
w = basic work per-unit length, defined in Eq. (2.8)
Superscripts

+ = positive component

- =absolute value of the negative component
Subscripts

a = additional load distribution
b = basic load distribution

A = control surface 4

B = control surface B

D = divergence

LE = leading edge

R =reversal

TE = trailing edge

X



Chapter 1

Introduction and Overview of

Morphing Aircraft

1.1 Motivation

The modern aircraft designer is faced with increasingly conflicting design requirements.
Designing for efficient subsonic and supersonic cruise, high maneuverability, and low radar
signature requires many trade-offs [Waaland 1991]. These trade-offs lead to an aircraft that, at a
given flight condition, is not as good as an aircraft designed specifically for that condition. If an
aircraft has the ability to continuously transform into the design that is optimal for its current
flight condition, its mission capability and superiority over hostile aircraft will be unmatched
[Herbst 1973, 1980 and 1983]. For military applications this has become the motivating factor in

the development of variable geometry aircraft, or as they are called today, morphing aircraft.

The current military interest in unmanned air vehicles (UAVs) has been a strong motivating
factor in the research devoted to morphing aircraft [Fulghum 2003]. The removal of the pilot
from the system means that human limitations no longer need to be considered, and also allows
for the removal of the volume required for the crew station. This allows for new aircraft concepts
with extremely high maneuverability and very long flight times. Morphing can be used to achieve
optimal performance over this wide range of conditions. According to Fulghum [2003], “by 2027

UAVs may have morphing airframes that can optimize their shape for various missions and flight



conditions.” He also mentions the use of shape memory alloys (SMAs) for actuating the

morphing structure.

The recent development of smart materials such as SMAs has been a driving factor in the recent
interest in morphing aircraft. For years aerodynamicists have recognized the benefits of a bird’s
ability to manipulate its wings for various flight regimes [Tucker 1970]. But mimicking this
ability with aircraft has not been successful, mainly because of the structural considerations. It is
possible that smart materials will finally enable the difficult combination of lightweight,

flexibility, and strength in an aircraft structure [Wlezien et al. 1998].
1.2 Overview of Morphing

There are two main categories of morphing: mission morphing and flight-control morphing.
Mission morphing is usually defined as a large change in an aircraft’s geometry to optimize itself
for a changing flight regime. Flight-control morphing is generally thought of as a smooth,
unhinged change in an aircraft’s geometry for the purpose of control or maneuvering. In many
cases, there is not a clear distinction between mission and flight-control morphing. For example,
a smooth trailing-edge control surface on a wing could be used for both minimizing drag for
various flight conditions as well as acting as an efficient aileron. It is curious that in defining
mission and flight-control morphing, only flight-control morphing required a smooth or unhinged

change in geometry.

The Wright Brothers were the first to use morphing, in the form of wing warping, on their early
gliders as well as on the Wright Flyer [Culick 2003]. This was an example of flight-control
morphing, which was used to perform roll maneuvers and allow the airplane to turn. This method
of control was not chosen for its performance benefits, but instead because it was the easiest to
implement on a relatively flexible wing. As aircraft became heavier and wings became stiffer,

wing warping was no longer practical and it soon gave way to ailerons.

An early case of mission morphing was NACA’s X-5 variable sweep aircraft, which began in
1948. This aircraft had the ability to change the wing sweep-angle during flight to optimize its
transonic performance [Kress 1983]. Many variable sweep aircraft followed the X-5 program in
both the U.S. and abroad. The most recent U.S. variable sweep design, from the late 1970s, is the
Rockwell B-1 Bomber.



1.3 Past Morphing Research

As mentioned above, other than the wing warping used by the Wright Brothers, the first use of
morphing was in variable sweep wing aircraft. Figure 1.1 [Kress 1983] shows the reasons for the
use of variable sweep in U.S. aircraft. This figure shows that, excluding the X-5, all of these
aircraft used variable sweep for low takeoff and landing speeds, delaying the transonic drag rise,
supersonic drag, and minimum design weight. Morphing in these cases allowed the aircraft to fly
effectively at low speeds as well as at transonic and supersonic speeds. Figure 1.2 shows how a
sweep change affects the L/D and Cpy. This clearly shows the penalty resulting from being

restricted to a single sweep angle as speeds approach the transonic regime.

X-5 XF10F-1 | F-111 F-14 B-1
Low Takeoff and Landing Speeds X X X X
Subsonic Cruise X X X
Transonic Characteristics X
-L/D X X
- Drag Rise X X X X
- Buffet Onset and Intensity X
Maneuvering CLmax X
Supersonic Drag X X X X
Wing Design Load Relief X
Research X
Minimum Design Weight X X X X

Figure 1.1: Reasons for Variable Sweep Applications [Kress 1983]
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Figure 1.2: L/Dyyxand Cpy vs. Sweep [Kress 1983 ]

The Advanced Fighter Technology Integration (AFTI) F-111 was a joint Air Force, NASA, and
Boeing project in the early 1980s to develop a smooth variable camber aircraft. As shown in
Figure 1.3, this aircraft used six independent trailing edge sections and two leading edge sections
for both control and wing shape optimization [Smith 1990]. Electro-hydraulic rotary actuators
and a flexible composite skin were used to achieve smooth camber variation. The variable
camber capability was utilized through a control system consisting of four operating modes. The
Maneuver Camber Control (MCC) mode selected the best leading and trailing edge camber
combinations for maximum L/D as a function of flight condition. This system used wind-tunnel
data stored in tables with lift coefficient, wing sweep, and Mach number as the lookup
parameters. Cruise Camber Control (CCC) mode was designed to maximize velocity at constant
altitude and throttle setting. This closed-loop mode performed an iterative process of changing
the trailing edge camber until maximum velocity was achieved. Maneuver Load Control (MLC)
mode measured the wing-root bending moment and adjusted the camber on the outboard wing to
concentrate the loading towards the root. This allows the wing weight to be decreased for a given
g capability. The Maneuver Enhancement/Gust Alleviation (MEGA) mode used the variable
leading and trailing edge camber capability to quicken aircraft response [Bonnema 1988, Smith

1987]. The predicted benefits of these control modes were a 20% increase in range, a 15%



increase in maximum ceiling, and a 20% increase in subsonic sustained turn rate [Smith 1986].
Whether these goals were ever achieved has not been published. Smith [1990] does present a
comparison of the F-111 with the variable camber wing and with a conventional wing. An 8%

reduction in drag at the design point and a 20% reduction at off-design points were shown.

WING SWEEP POSITIONS

REMOVEABLE VARIABLE CAMBER
REMOVEABLE VARIABLE CAMBER TRAILING EDGE FLAP SEGMENTS

LEADING EDGE

MOVEABLE RUDDER

WING PRESSURE
PORT LOCATIONS
(240)

Figure 1.3: AFTI/F-111 Layout [Smith 1990]

Many researchers have studied the use of variable camber, similar to that of the AFTI/F-111, on
transport aircraft. The main objective of this research has been to increase the L/D over a wide
range of lift coefficients as shown in Figure 1.4 [Monner 2001]. Not only does variable camber
have the ability to increase the range of lift coefficients over which low drag is obtained, but
variable camber is also able to decrease the minimum drag point (drag at the design point)
because structural load restrictions are decreased [Szodruch 1985, Renken 1985]. The structural
load restrictions are decreased because variable camber allows for the aerodynamic loads to be

distributed in a way that minimizes the root bending moment on the wing.
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Figure 1.4: Influence of variable camber on L/D [Monner 2001]

Greff [1990] discusses the ability of variable camber to improve the operational flexibility of an
aircraft by delaying the buffet boundary. He also mentions that variable camber will allow the
same wing to be used optimally on many different aircraft. Spillman [1992] emphasizes the use
of independent control of camber along the span to tailor spanloads to various flight conditions.
He discusses the importance of separating the lift due to incidence to that due to camber. This
idea is important when considering various flight conditions where different angles of attack and
control deflections are required. Martins [1996, 1997, and 2000] followed the work of Greff and
Spillman by implementing a formal optimization scheme to a variable camber transport aircraft.
A vortex lattice method coupled with a strip boundary layer analysis was used for the

aerodynamic predictions. The optimization procedure used is discussed in Martins [1996].

A topic of recent interest is the amount of work required to overcome the aerodynamic forces for
control surface deflections. Pettit et al. [2001] presented a model to compute the aecrodynamic
work for an entire aircraft configuration. A modified lifting line combined with conformal
mapping was used for the aerodynamic analysis. There was a brief mention of reversible and
irreversible work in the presentation of some of his work results. He called the reversible work
the work required if the work provided by the airstream is able to be captured and stored as usable
work. The irreversible work was the total work if the work provided by the airstream could not
be captured. It will be shown in this thesis that the distinction between reversible and irreversible

work is not this simple, and it actually depends on how the wing is actuated.



Henderson et al. [2001] briefly discusses aerodynamic work in his study of adaptive control
surfaces. A comparison is presented of the work required for a wing to deflect a full-span flap 1-
degree for different planforms. His conclusion was that high aspect ratio wings are favorable for
low aerodynamic work. This conclusion is not directly applicable to this study because the
comparison was made with a constant flap deflection, and not a constant AC; between the

different cases.

Prock et al. [2002] presented the first entire paper devoted to investigating aerodynamic work.
This paper emphasized the effect of aeroelasticity on the required work. It was shown that for a
simple flapped-airfoil with a torsional spring, there is a dynamic pressure where the flap can be
deflected with no required work. This deflection results in a negative change in lift because it
occurs at a dynamic pressure larger than the reversal dynamic pressure. He also investigated the
distribution of trailing edge deflections for a 3-D wing including aeroelastic effects. This showed
that the ability to distribute control deflections along the span reduced the required work by
concentrating deflections in regions of greatest effectiveness. All cases involved the work
required to produce lift away from an initially flat wing. This thesis will show that the work
away from an initially flat (non-lifting) wing is significantly different than that away from an

initially lifting wing.

Gern et al. [2002] investigated the actuation energy considering both the structural and
aerodynamic work values. A vortex lattice method was used for the aerodynamic work while a
NASTRAN model calculated the structural work. This analysis showed that camber and twist
actuation was able to obtain larger rolling moments because of their reduced aeroelastic
influence. At low dynamic pressures, it was shown that the flap required significantly less
aerodynamic work because there was no structural work component. As the dynamic pressure
increases though, the flap effectiveness is decreased as the aileron reversal condition is
approached resulting in large deflections to maintain the given roll-rate. The twist and camber
actuation schemes are not as adversely effected by aeroeclastics. Therefore, as the dynamic
pressure increases, the required twist and camber deflections decrease resulting in a decrease in

the structural work.

Forster et al. [2003] analyzed trailing-edge morphing and conventional flaps using thin airfoil

theory. Aeroelastic effects were included using a spring at the shear center of the airfoil. It was



shown that a morphing trailing edge device could reduce the aerodynamic work by deflecting like

a conventional flap-tab combination.

1.4 Overview of Thesis

This thesis investigates the actuator work required for conventional and morphing control
devices. A fundamental analytic study is made using incompressible, inviscid aerodynamics.
Chapter 2 begins by discussing the force components that contribute to the required actuator work
for a general aerodynamic control device. A method of calculating the actuator work is derived
considering linear structural and aerodynamic force components. The difference between
positive and negative actuator work is discussed and incorporated in the work derivation.
Because of the difference between positive and negative work, it is emphasized that the structural

and aerodynamic work must be considered together.

Chapter 3 reviews and extends thin airfoil theory for use as the aerodynamic model for the work
calculation derived in Chapter 2. This theory is used instead of a more accurate numerical
method because it provides an analytic representation of the aerodynamic load distribution and
force coefficients. The theory is applied to an airfoil with a trailing-edge flap, an NACA
camberline, a leading edge flap, a two-segment trailing edge flap (TETAB), and a morphing
trailing edge flap (MTE). It is shown that the morphing flap requires less aecrodynamic work than

a standard flapped airfoil. The addition of a trim constraint is discussed at the end of this chapter.

Chapter 4 uses the work model developed in Chapter 2 to find the control deflections required for
the minimum aerodynamic work. An analytic solution is obtained for the minimum work control
deflections for a two-segment trailing edge flap and a morphing flap to obtain a AC; away from an
initially flat (o = 0) configuration. The effect of an initial C; on the required work is investigated
and shown to dramatically effect the minimum work control deflections. The morphing trailing
edge flap is shown to be superior to the two-segment trailing edge flap as the initial C; is
increased. The minimum work control deflections for two AC;’s are investigated and shown to be
related to those for a single AC,. For the initially flat case, an analytic solution for these
deflections is obtained. Chapter 5 extends the analysis of Chapter 4 to include static aeroelastic

effects.



Chapter 2

Actuator Work for an Aerodynamic

Control Device

2.1 Introduction

This chapter examines the concept and calculation of the mechanical work required to operate an
aerodynamic control device. A general theory will be presented that accounts for both the
aerodynamic and structural resistance to a change in airfoil geometry. This theory will assume
that both of these components are linear with respect to the parameter representing the geometry
change. The concept of negative actuator work will be discussed and its implications to the
required actuator work will be included in the theory. Results using the procedure discussed in

this chapter will be presented and discussed in the following chapters.

2.2 Calculating the Work Required by an Actuator to

Operate an Aerodynamic Control Device

Consider a layout of control devices on an airfoil as shown in Figure 2.1. Here, three control
devices are shown, a morphing flap (A) and a trailing edge flap-tab combination (B and C). The
figure shows that each surface is actuated by a separate actuator, a fact that will be shown to be

important. Note that Figure 2.1 shows only the camberline of the airfoil, and not the distribution



of thickness. Thickness will be neglected in this analysis because, to the first order, it does not
contribute to lift. Now, it is desired to calculate the mechanical work required by the actuators to
achieve a change in S, S, and fc; where the s represent the state of each control device (in
these cases they represent the deflection angle). This calculation requires knowledge of the
forces acting on the actuator during the change from the initial £ value to the final S value, and

the details of the change in geometry implied by a change in £.

Area of actuation '
for actuator A (§ ) 55

«— ; 4
actuator A actuator B (S

' actuator C ¢

. Ap(x. BpBg B o)

i - aerodynamic forces

i it

WF (x, B ,) - internal structural forces

Figure 2.1: Example layout of control devices on an airfoil and the resulting Ap distribution

The forces resisting a change in £ are the aerodynamic forces, internal structural forces, and
inertial forces. The aerodynamic forces on an airfoil consist of both a lift and drag component.
The present analysis ignores the viscous drag component, which produces a negligible net force
in the direction of actuation. In general though, viscous effects have a significant influence on the
normal (pressure) force, especially when the f’s become large, so we assume that the £'s remain
small in this analysis. Another assumption that will be used throughout this analysis is that the

shape change occurs slowly enough so that the unsteady component of the aerodynamic forces

10



can be ignored. Quasi-steady aerodynamics are therefore assumed. The assumption of a slow

shape change process also allows us to neglect inertial forces.

With these assumptions on the magnitude and rate of change of £, the aerodynamic forces may be
calculated with classical steady thin airfoil theory. These details will be presented in Chapter 3.
Thus, in this analysis the pressure distribution, or more specifically the Ap distribution, is
assumed to be linear with respect to the #'s. This linearity allows the Ap distribution to be
separated into components resulting from each of the control surfaces and the angle of attack ().
Therefore, linear superposition of pressures can be used, and the pressure distribution can be
written as
N
Ap(x) =D Ap, (0B, + Ap, (V) 2.1)
n=1

where Ap, and Ap,are the derivatives of Ap with respect to 4, and «, with the subscript n

representing one of the N control surfaces. For the configuration shown in Figure 2.1, N =3 and

control surfaces A, B, and C correspond to n =1, 2, and 3.

The internal structural forces acting on an aerodynamic control device depend on the details of
the structure being deformed. In many cases, such as the conventional flap-tab combination
shown in Figure 2.1, a hinge is used so that no internal structural forces resist a change in . The
focus of this study is not on the calculation of the structural force component. This is because
unlike the aerodynamic force, which depends only on the external shape of the airfoil (or in this
case, the camberline), the structural force depends on the details of the internal structure.
Nevertheless, an approximate model will be considered by assuming an elastic material and
recalling the restriction that # remain small. The distribution of the actuator force required to

overcome the internal structural forces will be represented as
N
F@)=2 K (3B, =) 22)
n=l1

where K, is the distribution of internal forces per-unit 5,, and £, is the value of S, at which the
structure is undeformed (or unstrained). This model is simplified in that it does not account for
the camberline deformation caused by the aerodynamic forces. This is accepted because the
structure aeroelastics are not the focus of this analysis. It should be mentioned that because each

control surface has been defined to be actuated by only one actuator, the actuator must be

11



distributed or some type of mechanism must be attached to the actuator to obtain shapes such as

the morphing flap (A) in Figure 2.1.

Once all of the internal and external forces are known as a function of £ (or £’s) and x, it is
necessary to specify the distance that each actuator moves the control surface between the initial
and final states. Figure 2.1 labels an “area of actuation” (S) for each of the actuators. This area
of actuation refers to the length of the chord that is displaced or moved by the actuator. Over this
area of actuation, a function f{x) is defined for each actuator which represents the Az(x) produced
per-unit S of that control surface. The correct definition of f{x) is important to correctly calculate
the aerodynamic work, especially for configurations such as the trailing edge flap-tab
combination shown in Figure 2.1. For this case, the area of actuation of actuator B (Sp) overlaps
that of actuator C (S¢). This means that the Az(x) produced per-unit f- must be taken relative to

s, which is implied in the definition of f¢ in Figure 2.1.

2.3 The Work Required to Overcome the Aerodynamic and

Structural Forces

The previous section discussed the assumptions resulting in a linear representation of
aerodynamic and structural forces with respect to the control parameter . The deflection at each
point along the chord is defined in f{x), where
Az(x)= £ (x)p 2.3)
which is zero for points not in the area of actuation and non-zero for points in the area of
actuation. Because the work is calculated for a change in state, it is necessary to define the path
between the initial and final state. This is done by relating £ linearly to a nondimensional time ¢
as
Be)=(, =B+ A, 24)

where 0 <7 <1, and f; and f, are the values of fat the initial and final state.

The general equation for mechanical work (% ) can be written as

W= _fC(r) -dr (2.5)

N
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where C is the force acting on a point that is being moved from location 7; to a location 7, along a
path ». To apply Eq. (2.5) to a point x on an airfoil, the force per-unit length C is written as (£,

from Eq. 2.2 is assumed to be zero for brevity)
C(x, z’) = {Apﬁ (x)ﬂ(r)Jr Ap, (x)a(r)+ K(x)ﬂ(z’)} (2.6)
where £ (7) is defined in Eq. (2.4) and o(7) is represented in the same form. The dr term at point

X 18 written as

d
dr= f(x)— pe 2.7)
dr
where f{x) is defined in Eq. (2.3). Substituting Egs. (2.6) and (2.7) into Eq. (2.5) results in the

following expression for the work per-unit length (w ) at point x:

W(x,al,az,ﬁl,ﬂz) {Apﬂ( )ﬂ(r)+ Apa(x)a(r)+ K(x)ﬂ(r)}f(x)j—fdr (2.8)

o'-—.—‘

where the negative sign is added so that the work is positive when the actuator is required to
provide a force in the direction of dr. Integrating Eq. (2.8) across the chord results in the

following equation for the total work required by the actuator:

7 (o0, B 0) =~ [ 140, (x)B0) + p, (e (r)+K(x)ﬂ(r)}f(x)%dxdr 2.9)

O'—.n

Although Eq. (2.9) is mathematically correct, its practical usefulness is limited. To understand
this, it is necessary to discuss the meaning of the sign of the required actuator work. As
mentioned, a positive work value from Eq. (2.9) means that the actuator must provide a force in
the direction of its actuation motion. A negative value means that the actuator must provide a
force in the direction opposite to its motion. These two types of actuation work are
fundamentally different. To see this, consider a flapped airfoil at zero degrees « with the flap
changing from -20 degrees to 20 degrees deflection (assume no structural work). Evaluating Eq.
(2.9) for this case results in a W equal to zero. This does not seem intuitively correct because it
is known that some positive work should be required for this geometry change. What has
happened is the negative work required to go from -20 degrees to 0 degrees has cancelled the
positive work required to go from 0 degrees to 20 degrees. Allowing these terms to cancel each
other assumes that the negative work is collected and used to produce positive work. Although
this is not impossible, it is a restrictive and impractical assumption. A more practical equation

will be developed in the next section that only calculates the positive work.
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2.4 The Practical Work Required for an Aerodynamic Control

Device

The previous section mentioned that the outer integral of Eq. (2.9) allows for the cancellation of
positive and negative work, which was shown to produce work values that clearly do not
represent the required work. The issue that must be addressed here is the cost of the actuator
work, because what we are really interested in is the amount of energy that must be supplied to
the actuator. This topic has been widely studied by biologists to determine the muscle
efficiencies of different types of animal motion [Nieslon 1972, Blikhan 1994, Tucker 1975]. The
cost of negative work for a muscle was investigated by Abbot er al [1952] by measuring the
oxygen consumption of humans performing positive and negative work. In this case, the oxygen
consumption can be considered a measure of the work supplied to the actuator, or the cost. It
was found that the oxygen required for negative work is considerably less than that of positive
work. For the problem of determining the energy supplied to an actuator, it is conceivable that
the cost of negative work is also small compared to the cost of positive work. This statement is
difficult to justify for conventional actuators, for which it is difficult to find information
connecting the required input energy to the output force and displacement. Most of the
information found for conventional actuators is concerned only with the maximum available
force, which is used to size the actuators for the maximum allowable hinge moment of the control

surface [Raymond and Chenoweth 1993].

For this study, we will label W the practical work, which accounts for the difference in negative

and positive work. The practical work will be defined as
W=W"+nW" (2.10)

where 7 *and W ~ are the absolute values of the positive and negative work terms. These terms
are obtained by separating the outer integral in Eq. (2.9) into segments that calculate only positive
or negative work (this will be discussed in detail below). The 77 term in Eq. (2.10) is a coefficient
that represents the cost of negative work relative to positive work. If there is no cost required for
the actuator to perform negative work, then 77 = 0. If the cost of positive and negative work are

equal, then = 1.
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The remainder of this study will assume a value of 77 = 0, or that the cost of negative work is
negligible so that W =W *. Applying the following development to nonzero values of 7 is

straightforward, the only difference is the negative component of W is calculated in addition to
the positive component calculated in the following procedure. To calculate the positive

component of W , we first rewrite the inner integral of Eq. (2.9) as

1e)=~J{an, 8 2, e KIS 0 L

@.11)
{( +Q1ﬂz ﬂl)T+lBl]+Q[(a2 a1)1+a1 }(ﬁz ﬂl
where
Qﬁ IApﬁ x)dx
0, IApa £ (o 2.12)

0, [K()f (<)

If f{x) is a linear function of x, as is the case for a conventional flap, then O represents the hinge
moment per-unit Sor a. To determine if /(7) changes from positive to negative, it is evaluated at
requal to zero and one. The 4 possible variations of /(z7) are shown in Figure 2.2. Case (C)
occurs if I(z=0) and /(= 1) are > 0, which results in W =¥ because there is no negative work.
Case (D) occurs if I(7=0) and /(z= 1) are <0, then W = 0 because there is no positive work.
For cases (A) and (B), where one of the /(7) values is positive and one is negative, the outer
integral of Eq. (2.9) must be broken up into two parts. The value of 7 at which to break up the

integral is determined by setting Eq. (2.11) equal to zero and solving for 7.

ry=— (Qﬁ +0, )/Bl +0,2 2.13)

(05 +0, )8, - B)+ 0, (e, )

If (r=0) is 20 and /(z= 1) is <0, corresponding to case (A) in Figure 2.2, the correct

expression for the aerodynamic work is

Ty C

(al’azfﬂl’ﬁZ J.I Apﬂ +Apa( ) (r)+K(x)ﬂ(r))f(x,K)%dxdr

{Qﬁ +Q)[ ﬂ1 Ty /2+ﬂ170]+Q [ a1)102/2+a170]}(ﬂ2—ﬂ1)
(2.14)
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where the contribution from requal to 7) and one is zero. If [(z=0)is <0 and /(r=1) is>0,
corresponding to case (B) in Figure 2.2, the correct expression for the acrodynamic work is

a0 (00, (B0 8, (k) K580 ()L

To

—{(Qﬂ+Qs[ﬂ ﬂl)(l 7 )/2+ﬁ1(1 z,) ]+Q[ —a,) (1 7 )/2+a1(1 10)]}
(2.15)

where the contribution from 7 equal to zero and 7 is zero.

(4) (B)

Figure 2.2: The possible variations of / with 7

Eq. (2.9) was derived for an airfoil that has only one control parameter changing between the
initial and final points. In many cases it is desired to calculate the work required to deflect
multiple control surfaces, as shown in Figure 2.1. For an airfoil with N control surfaces, the

position of the n™ control surface (/,) between the initial and final points is written as
.(0)=B,, -, )+ 5,

Ignoring the positive-negative work issues discussed above, the generalization of Eq. (2.9) can be
written for the work required for the m™ control surface as

_— i{{ ) (Aps, (¥)+ K, (x))B, (= ):|+Apa } , )( ]dxdz' (2.16)

where Ap; represents the derivative of the Ap distribution with the B." control surface and K, (x)

is the structural force term defined in Eq. (2.2). An expression must be obtained, as was done in
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the single control parameter case, which only accounts for positive work. As in the single control
case, the inner integral of Eq. (2.16) can be written as

1,(e)=- (i[(Apﬂ,, <x)+K,,(x))ﬂn(r)hApa<x)a<f)me<x)%dx

dr

o 2.17)
= _{z {(an + Sm,n (ﬂnz - 'Bnl )T + ﬂnl ]}+ Qm,a [(az - al )T + al ]}(ﬂmz - ﬂml )

where

0, = [ A0y, ()1, (xkis

0
j 7 (oM (2.18)
0
] 7 ()i

0

If I,(z=0) and L,(r= 1) are >0, then W, =W,

- £ 1,(r=0)and [,(r= 1) are <0, then W,,=0.
If I,(r= 0) and [,(r= 1) have different signs, the value of 7 at which /,, changes sign (7y,) is
found by setting 7,(7) equal to zero

N
Z(Qm,n + Sm,n )ﬂnl + Qm,aal
Top =2 (2.19)
> O+ Suu NBo, = B )+ Oz — )

For the case where /,,(7=0) is 20 and /,,(z=1) is <0(case (A) in Figure 2.2), WV, is written as

=] [ S0 616 oo 2

= _{Z {(an + 8, )[(ﬁnz -5, )TOm2 12+ B, Tom ]}+ O [(az - )TOmZ 12+ a7y, ]}(ﬂmz - B, )

(2.20)
For the case where /,,(7=0)is <0 and /,,(z=1) is>0 (case (B) in Figure 2.2), W,, is written as

e D A e

- {(an mn)[ﬁnz - B, Xl Tom )/2+/3 (1- Tom)ﬂ( (2.21)

B, =B,
O [(a2 - )(1 - z'0m2 )/ 2+ (1 “Tom )]
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Once the work required for each control surface (W,,) is calculated, the work for the entire system

is obtained by the following summation

w=Sw, (2.22)

N
m=1
where W, is the work required for the m™ control surface. It should be noticed that the work is
calculated separately for each control surface, or actuator, and then added together. This assumes
that each control surface is actuated independently. If this is not true and the control surfaces are
linked, then 7, and 7, should be calculated for the combination of linked control surfaces. This
would mean that a single area of actuation be used that includes each control surface being linked
together. This is important because if they are linked, for example a linked leading and trailing
flap, then at each value of 7 the positive and negative work values can cancel. To clarify the
difference in the work calculated for linked actuators, consider an analogy of two weights (¢ and
b) being moved vertically as shown in Figure 2.3. If both @ and b weigh the same, it is easy to
imagine that an infinitesimal disturbance (assuming no friction in the system) will cause the two
weights to move from their initial to final z values. This means no work is required. But, if the
bar connecting the two weights is removed, work will have to be exerted to move weight a up,
but not to move weight b down (which requires negative work). This shows clearly the reason for
subtracting positive and negative work if the control surfaces are linked, and not if they are

independent.

i 777777

Figure 2.3: Analogy for the interaction of work for linked control surfaces

To conclude, it should be mentioned that although the structural forces have been considered
throughout this chapter, the remainder of the chapters will assume that there is no structural
resistance or that K = 0. The reason for carrying the structural term throughout this chapter is that
if there is a structural force, and it is desired to calculate the required actuator work, the

aerodynamic and structural forces acting on the actuator must be considered together. This fact is
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a result of the assumption that negative work requires negligible actuator effort. The main effect
of the presence of structural work is that the negative aerodynamic work, which is ignored if there
is no structure, becomes useful and is able to cancel some of the positive work required to deform

the structure.

2.5 Chapter Summary

This chapter presented a method of calculating the mechanical work required from actuators to
operate an aerodynamic control device. It is argued that it is really desired to calculate the energy
“cost” of actuating an aerodynamic control device, and not the required mechanical work. This
leads to calculation of the practical work (W), which is related to the straightforward work (7 )
through Eq. (2.10). The term 7 in Eq. (2.10), which represents the difference in the cost of
positive and negative work, defines the relationship between # and W. The remainder of this
study will use a value of 7 = 0, which implies that energy required by an actuator to perform
negative work is zero. An important consequence of treating negative and positive work
differently is that the structural and aerodynamic work calculations cannot be performed

independently.
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Chapter 3

An Analysis of Control Surface
Aerodynamic Characteristics Using

Thin Airfoil Theory

3.1 Introduction

This chapter provides the theoretical aerodynamic loading distributions for various airfoil control
devices using thin airfoil theory. This theory is subject to the usual limitations of thin airfoil
theory. For example, it cannot predict drag or flow separation, which restricts the theory’s ability
to compare these effects for various control devices. But, this does not limit the theory’s ability
to compare control devices at low to moderate deflections, whereat the change in viscous drag

and the likelihood of flow separation should be small.

We will begin by reviewing thin airfoil theory and its application to a flapped airfoil and a 4-digit
NACA camberline (Sections 3.2 — 3.4). With the goal of making a work comparison, other
control devices (leading edge-trailing edge, trailing edge-tab, and morphing trailing edge
configuration) are modeled in Sections 3.5 through 3.7. Section 3.8 describes the addition of the

trim requirement to connect the 2-D airfoil studies to a complete aircraft.
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3.2 A Review of Thin Airfoil Theory

Thin airfoil theory assumes that the aecrodynamic properties of an airfoil are functions of its mean
camber line, angle of attack, and thickness envelope”. The lifting properties of an airfoil are
modeled as a vortex sheet placed on the chord line. The chordwise distribution of the strength for
this vortex sheet is obtained by requiring that the velocity induced by the vortices be tangent to
the mean camber line and that the vortex strength at the trailing edge of the airfoil is zero (Kutta
condition). Because the slope of the mean camber line of most airfoils is small, the flow
tangency condition is met by projecting the slope of the mean camber line onto the chord line

[Munk 1923].

The vorticity distribution can be represented by a Fourier series as

1+ cos® -
H=2U_| A)| ———— |+ > A, sinn@ 3.1
}/() oo( OI: sinH :| HZ:; n J ( )
where
0<@<r
C
x:z(l—cosa) (3.2)
4, =a—lj@d9 (3.3)
7y dx
AI:E @cos(e)de (3.4)
Ty dx
A4, _2 £cos(zev)cza (3.5)
7T dx

By representing the vorticity distribution as a Fourier series, the aerodynamic coefficients of the

airfoil can be written as [Glauert 1947]

C,=n(24, + 4,) (3.6)

C, =-

0

N

A
Ay + A4, - TZJ (3.7)

* Note that to the first order thickness does not contribute to lift.
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Cy, = (4 - 4) (3.8)

It is convenient to separate Eq. (3.1) into terms that are dependent and independent of angle of
attack. The term dependent upon angle of attack is called the additional load distribution (),
and is seen to be the first term in Eq. (3.1).

1+cos«9} (3.9)

7a(0)= 2UOOA0{ nd
Eq. (3.9) will always produce a singularity at the leading edge because the airfoil is modeled as
being infinitely thin. Theodorsen [1931] recognized that the most efficient flow around an airfoil
would occur when y, equaled zero, and proposed the “ideal angle of attack” («;) as the angle of

attack when this occurred. From Egs. (3.3) and (3.9) it is found that

0{1:l %dﬁ (3.10)
7Z'0dx

The term that is independent of angle of attack, called the basic load distribution (3,), represented

by the infinite series term in Eq. (3.1), can be shown to converge to the following integral [Allen

1943]:

d :
x d—Z (6,)sin6

> 2U
0)=2U_Y A sinnf=""=|-9X do, 3.11
75(0) oozl: n ST jn ’[COS@O—COSQ 0 (3.11)

If dz/dx is finite, the basic load distribution will always be zero at the leading edge’. So, if the
additional load distribution is zero, the load (vortex strength) at the leading edge will also be zero.
Because the vortex strength at the leading edge is zero at the ideal angle of attack, the flow will
enter the leading edge smoothly, and as Theodorsen suggested, most efficiently. This also means
that ¢; is the angle of attack at which thin airfoil theory is the most accurate because the small

disturbance assumption is not violated at the leading edge.

3.3 Modeling an Airfoil with a Trailing-Edge Flap

The governing equations of thin airfoil theory were derived with the assumption that the slope of

the mean camber line was small, therefore allowing the small angle approximation to be used.

" For NACA 6-digit series airfoils the design load at the leading edge is finite, resulting in a logarithmic
singularity for the camberline slope dz/dx at the leading edge.
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For the flapped-airfoil shown in Figure 3.1, the small angle approximation greatly simplifies the

expression for the mean camber line and the subsequent analysis.

¢ |
z
K |
_______ X
o
Um‘
Figure 3.1: Geometric representation of a flapped-airfoil
From Figure 3.1, ¢ may be written as
c=k+acosd=k+a (3.12)

The flap deflection causes a slope discontinuity in the mean camber line, resulting in the

following two equations for z

0<x<k (3.13)
z=
and
k<x<c
z=—(x—k)tan§ (3.14)
~—~(x—k)5

Eq. (3.2) shows the transformation from x to &, which was used in Egs. (3.3 - 3.5) to find the
coefficients of the Fourier series. The location of the discontinuity transformed into its &

representation is

[ =cos_1(1—%j (3.15)

[

With the geometric parameters defined, the Fourier coefficients from Egs. (3.3 — 3.5) are obtained

as follows

A4, =a—%]££d8=a—l[]€(—5)d6}

dx v (3.16)

—a+Ls(r-0,)
T
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:—J—cos@d@ = { J.[5cos9]d¢9}

O (3.17)
_20 sin(@;)
7
A4, = %” %cos(%’)d& o [— ]5[5 cos(2¢9)]d€}
0 Os (3.18)
_9 sin(26, )

T
Combining Egs. (3.16 — 3.18) with Egs. (3.6) and (3.8) results in an analytic solution for the lift

and pitching moment coefficients of an airfoil with a given dand a.

The load distribution is obtained by evaluating Egs. (3.9) and (3.11) with the camber line given in
Egs. (3.13) and (3.14). Because a singularity (6, = 6) lies within the range of integration, Eq.
(3.11) is an improper integral. The Cauchy Principle Value is obtained by separating the integral

into two integrals and using a limiting process, which leads to

U - ﬁ(ﬁo)sinﬁ 7 ﬂ(ﬁo)siné’
70(0)===1im,_,| [ - ——ag,+ [ -E—ag, (3.19)
T v cosf, —cosd g, €086y —cosd

With dz/dx equal to a constant, Eq. (3.11) can be evaluated in the form [Gradshteyn 1965]

[d6__ 1 1n[\/b2—a2tan(¢9/2)+a+bJ

a+bcos® \p?_ > (b —a? tan(0/2)-a—b

(3.20)

where a = -cos@ and b = 1 for our case. Applying Eq. (3.19) to (3.20) leads to the final

expression for the basic load distribution due to the flap deflection (&).

717(9):

2Uw51n[sm¢9tan(03/2)—cos0+1j (3.21)

T sin@tan(6, /2)+cosd—1

Eq. (3.21) is equivalent to the solution obtained by Spence [1958] although it is not identical in
form. Combining Egs. (3.9) and (3.16) results in the equation for the additional load distribution.

7.(0)=2U, (a + 5(1 —H—BDF +.C°Sﬂ (3.22)

T sin @

Notice that, as expected with linear theory, both j, and y, are linear with respect to . Fig. 3.2
shows an example load distribution (note that AC, = 2y/U,,). The singularity at k (or &s) is a

result of the step change in the camber line slope. It should also be observed that although the
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airfoil is at zero incidence, there is a leading edge singularity. As mentioned previously, this will

be true unless the airfoil is at its ideal angle of attack, meaning 4, equals zero.

25
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Figure 3.2: Example load distribution

To apply the aerodynamic work equations (Eq. (2.13-2.15) for the single control surface)
developed in the previous chapter, we set f= 0. The Apzand 4p, functions required for the work

equations are obtained from Eqgs. (3.21) and (3.22) as

2 .
Ap,s(6)= 2pU, {ln£s1n0tan(93 /2)—cos0+1J+(ﬂ_‘93{1+cos0}} (3.23)

7 sin@tan(6, /2)+cos@—1 sind
Ap,(0)=2pU wz{l +.C°Sﬂ (3.24)
sin@

where the first term in Eq. (3.23) is the basic load distribution and the second term is part of the
additional load distribution. Eq. (3.24) is due entirely to the additional load distribution. The f{(x)
term required for the work equations for a flapped-airfoil is (using Eq. (3.1) to transform from x
to &)

0<0<0,

f(@)=0

0,<0<r
f(0)=-0.5(cos8, —cos )

(3.25)
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Figure 3.3 shows the integrands of the work due to the basic and additional load distributions. It
1s seen that the contribution of the additional load distribution to the work is smaller than the

contribution from the basic load at « equal to zero.

x 10
2.5 ‘
a=0
a=03
ol 0= 0 deg. i
0, = 10 deg.
Work per-unit length due to the
basic load distributon —
1.5+
o
N
D
Q
2 1L
Work per-unit length due to the
addtional load distribution
0.5-
0 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 04 05 06 07 0.8 0.9 1

Figure 3.3: The work per-unit length for a flapped-airfoil

3.4 Modeling an NACA 4-Digit Camberline

For a variable-camber morphing airfoil, camber changes can be modeled as an NACA 4-digit
camberline with a variable magnitude and location of maximum camber. Using the NACA
convention, an NACA MPXX airfoil has a magnitude of maximum camber M (in percent chord),
maximum camber location P (in tenths of the chord), and maximum thickness XX (in percent
chord). The first two of these parameters are shown in Fig. 3.4 (ignoring thickness).

mean camber line

z

3
V- v‘\‘\ \\-
|
. | | g
location of r_’nagnltude of chord line
maximurm camber (P maximum camber (1)

[ I
|'-| -

Figure 3.4: NACA camberline representation
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The equations for the mean camber line of an NACA mpXX are as follows [Abbot and Von
Doenhoff 1959]:

0
2 (3.26)
(]
) (3.27)
f:ﬁ{l—zmw(g—(g }

Eq. (3.1) is used again to transform between x to €. The location of the transition between Eq.

(3.26) and (3.27) is found from Eq. (3.28) to be

cosd, —1—2—P (3.28)

c

Applying Egs. (3.2 — 3.4) results in the following

V4 HB z
Ao_a_lj‘dzde_a_l [%]I(P—l+cosgjd9+ 2M J[P_l+c0s€jd9
7y dx P? 2 2 (1- Py ) ST T, (3.29)
2M o sin @ oM 1 sin@
~a- 2 pg, -G S0 ( 2{13(”_.93)_5(”_93)_[ ﬂ

V4 —P) 2
T 9 T
Alzg % Hdﬁ—— [2Afjj(P—l+cosajcos¢9dt9+ 2M2 J.(P—l+cosejcosed6’
7Z'de P 2 2 (1_P) 5 2 2
3.30
2M [(P—ljsme +—0,; +lsm(263)} ( )
2 P? 2 8
T

N R T

T Oy
4,=2% (ze)de_— (”f}j(za—lﬁ"sgj 0s(26)d6 +
7y dx P )3 2 2

2m [[p_ljlsin(wg)g(meusln(w]}
2| P 2)2 2 2 6

2N (12_1\;)2 H_;sin(zeﬂ)(P—;D—;(mf+Sin(6368)ﬂ

- JJ(P— "OSej 0s(2c9)d6’}

(3.31)
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Combining Egs. (3.29 — 3.31) with Egs. (3.5) and (3.7) results in closed form solutions for the lift

and pitching moment coefficients for an NACA airfoil with a given M and P.

The load distribution for the NACA camberline is found in a manner similar to that for the
flapped-airfoil. The main difference for the NACA camberline is that the camberline slope varies
all the way along the chord. And two separate equations define the camberline. To apply Eq.
(3.11), the derivatives of Egs. (3.26) and (3.27) are represented in terms of € through Eq. (3.1) as

0<0<6,
3.32
f(e)zM(Tl +5, cosb) (3.32)
dx
0,<0<r
3.33
%(H):M(Tz +S5,cosf) 3.33)
where
T, =—=(P-0.5)
1
" (3.34)
5 :
T, = P-0.5
2 (I_P)z( )
1
S =—
©(-py

The integral obtained by substituting Eqs. (3.32) and (2.33) into Eq. (3.11) is evaluated in the
following form [Gradshteyn 1965]

J’_
a+bcosd b b b g

_ 2_ 2
IT+Scos9d9_§9 To-aS 1 Vb* —a* tan(0/2)+a+b (3.35)
Vb? —a” tan(0/2)-a—b
Obtaining the principal value using Eq. (3.35) for both sections of the camberline leads to the

final equation for the basic load distribution

2U M . . in@tan(@,/2)—cosf +1
yb(ﬁ)z ; {SIHB sm6?+Sz(7r—t93 )sm9+ [T1 -1, +(S1 -5, )cosH]ln(Zzatzzggj?Z;_’_2229_J}

(3.36)

The additional load distribution is found by combining Egs. (3.9) and (3.29) to get the following
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2M 0, sind 2M 1 sin @ 1+ cos@
0)=2U -\ PO, —L+ B |- Plz-6,)-—\r-0,)- B
7.(0) w{a ﬂpz[ 22 } ﬂ(l—}ﬁz{ (7=0,) 2(ﬂ' 2 [ 2 j}}{ sin 6 }

(3.37)
Note that both y;, and j, are linear with respect to M.

The load distributions represented by Egs. (3.36) and (3.37) are compared to the results of Abbot
and Von Doenhoff [1959] in Figure 3.5 (note that AC, =2y /U,,). There is a small but noticeable
difference near the location of maximum camber (P), likely because Abbot and Von Doenhoff
used Pinkerton’s [1936] empirically modified conformal mapping approach to determine the

pressure distribution.

1 M=0.06 ' ' '
) +Pinkerton
12| C=078 -Eqgs.3.36and 337

alpha=0.74 deq.

Delta ':F'

0.6}

0.4

0.2

0

0 0.1 02 03 04 05 08 07 03 05 1
e

Figure 3.5: Load distribution validation

For a morphing NACA camberline, the work equations are applied with f = M. The Apy
function is obtained from Egs. (3.36) and (3.37) and is written separately for the basic and

additional load distributions.

7 sin@tan (6, /2)+cos -1

2 0 in @ 2 1 in @ 1 0
Apa’M(H,P):Zprz{ 2 {PHB -2 +Sm B}_ > {P(”_QB)__(”_QB)_(SIH Bﬂ}[ oos }
P ( 2

2 2 1-P) 2 sin@

2 .
APy v (0,P)= 2pU,, {SIHB sin@+ S, (7 — 0, )sin 6 + [T1 ~T, +(S, _Sz)cose]ln(smHtan(HB/Z)—cose+1]}

(3.38)
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The 4p, term, given in Eq. (3.24) is the same for all thin airfoils regardless of the type of control
surface and so it is not repeated here. The f{(x) term for an NACA airfoil is
0<0<0,

f(0)= %[P(l —c0s0)-0.25(1-cosO) ]

0,<0<r (3-39)

§10) :;[1—P—Pcose—o.zs(l—cose)z]
(1-Py
Figure 3.6 shows the work per-unit length from Eq. (2.8) for various values of P. It is seen that
the contribution of the basic load distribution to the work is similar for P equal to 0.3 and 0.7.
For the additional load distribution, Figure 3.6 indicates that its contribution to the work changes

from positive to negative as P moves past x/c equal to 0.5.

Solid Lines - work per-unit length due to the basic load.
Dasher Lines‘ - work ‘per-unit‘ length yvork dqe to thg additiqnal Ioaq

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/c

-10

Figure 3.6: Work per-unit length for a variable camber NACA airfoil

Figure 3.7 compares the aerodynamic work required to go from an initially flat airfoil to a
cambered or flapped airfoil at zero angle of attack. These are the work values (7 ) obtained
from Eq. (2.9), therefore negative work values are included. If the practical aerodynamic work
(W) from Egs. (2.13 - 2.15) was shown in Figure 3.7, the work required for all of the NACA cases
would be zero because they are negative. If the work was calculated with an initial state equal to

the final state used for Figure 3.7, then the required work for the NACA case would be the
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negative of that shown in Figure 3.7. The required work for the flapped-airfoil would then be

Z€ro.

No |
[\]
2 ‘ NACA Camberline
- Cases, max camber
2 ‘ (P) located at x/c = 0.2 ’
=0.3
=04
| S0
=0.6
5 a=0 ‘
Airfoils initially flat at C/ =0
_6 1 1 1 1 ‘ 1 1 1 1
05 04 -03 -02 -01 0 0.1 0.2 03 04 0.5

C

Figure 3.7: Aerodynamic work required to go from a flat airfoil to a cambered or flapped airfoil

3.5 Influence of a Leading-Edge Flap on a Flapped Airfoil

In Section 3.3 the aerodynamic characteristics of a flapped airfoil were determined using thin
airfoil theory. Because thin airfoil theory is linear, superposition may be used to combine
solutions of simple problems to handle more complex problems. This section will combine the

flapped airfoil solution of Section 3.3 with a leading edge flap.

- ____| -

Figure 3.8: Airfoil with a leading and trailing edge flap
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Figure 3.8 shows how the leading and trailing edge flap will be represented in this analysis.

Following the analysis of Section 3.3, the Fourier coefficients are found to be

1 1
Ay=a——56,,0,, +— S, (7 —0,) (3.40)

7 7
A4 = 201 sind, ; + 2015 sin @, (3.41)

7 7
Op . Orp .
A, = ZLE 5in(26,, )+ % sin (26, ) (3.42)
p/a /s

where
0, = cos™ (1 - 2aLE)
Oy =cos™ (2a,, —1)

The basic and additional load distributions are found from Egs. (3.9) and (3.11) to be

(0)= 2,0 sin@tan(6,, /2)—cosd +1 L 20,8y sin Otan(6,, /2)—cosf +1 (3.43)
7 T sin@tan(6, /2)+cos6 -1 T sin@tan(6,, /2)+cosf -1 '
1 1 1+cosd
7.(0)=2U,, {a ~—68,40,p +— S (7= Oy, )}[—} (3.44)
T T sin@

Figure 3.9 shows the components of Egs. (3.43) and (3.44) due to the leading and trailing edge

flaps. It is seen that a positive deflection of the leading edge flap causes negative lift.

0.15

Basic load distribution
\ LE flap

0.1} TE flap .
0.05 \

0OF
S
3 Additional load distribution
™ .0.05F LE flap 1
TE flap
0.1F C, g =-0.0085 :
C, g =0.0750
045, O™ 1degree C_,=-00048
= 1 degree =
O1E g C,, 1g=-0.0112
a=0

_0_2 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

Figure 3.9: Load distribution comparison of a LE and TE flap
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Section 2.4 developed the general aerodynamic work expressions for an airfoil with multiple
control surfaces. For this case, with a leading and trailing edge flap combination, N=2, /=0

and f=0ore. The ffunctions for the work equations are as follows

0<6<6,;
f15(6)=0.5(cos 8, —cos )
Jre(@)=0

0,, <O<0,

3.45
f1e(@) = f1:(0)=0 (3.45)

O <0<

fLE @)=0
J7(0)=-0.5(cos O —cos )

3.6 Modeling a Two-Segment Trailing-Edge Flap

This section discusses the modeling and influence of a trailing edge surface consisting of two

straight line segments as shown in Figure 3.10.

X4

Figure 3.10: Airfoil with a two-segment trailing-edge flap

Following the analysis of Section 3.3, the Fourier coefficients for the lift and pitching moment

coefficients (Egs. (3.6) and (3.8)) are found to be
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A0=a+i5A(;z—0A)+i5B(;z—03) (3.46)
T T

4 =&sin 0, +ﬁsin O (3.47)
T T

4, = 5—Asin(2¢9A )+ 5—Bsin(2¢93) (3.48)
T T

where
0, =cos'(2a,-1)
0, =cos™'(2a, —1)
The basic and additional load distributions are found from Egs. (3.9) and (3.11) to be

7b(0)= 2U,.0, I s%nﬁtan(HA /2)-cosO+1 N 2U 0, In s%nHtan(HB /2)-cosd+1 (3.49)
T sin@tan(6,/2)+cos@—1 T sin@tan(6, /2)+cos@—1
7u(¢9)=2Uw{a+15A(7r—¢9A)+l5B(ﬂ—QB)}[IJF.COSQ} (3.50)
V2 T sin@

To apply the work equations developed in Section 2.4, N=2, =04, [>—=0p. Assuming an actuator
for each of the hinge lines, the f functions are
0<60<80,
fa(0:a,)=fp(0,a5)=0

0,<60<06,
f4(0,a,)=-0.5(cos@, —cosO)

Sf3(0,a53)=0 G-2D)

0, <0<rm
f4(68,a,)=-0.5(cos8, —cos )
f3(0,a,)=-0.5(cos@; —cosO)

Notice that the area of actuation for flap A spans fromé&, <6<z, and for flap B from
0, <0< 7. These areas overlap because the deflection of flap A moves everything behind x,,

including flap B.

Figure 3.11 shows the components of the load distribution represented by Egs. (3.49) and (3.50)
due to the deflection of each flap. It is clear that this configuration is simply the combination of
two trailing flaps. It is seen that each flap hinge-line produces a singularity. This is very

undesirable from a viscous flow perspective.
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\‘i a,= 0.2 Basic load distribution
4 I ag=01 flap A _ h
\\ flap B
35H =0 | R
(
3 J‘\ \ i n
| I
S o5l \ Additional load distribution 1
AN ‘ flap A [
NS /|
4 |
oL \ %ﬂap B J \\ |
15 1
~
1r \\ T~ i
S~ ~—
—— T
0.5+ - - S
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 03 04 05 06 07 08 09 1
x/c

Figure 3.11: Load distribution for a two-segment trailing edge flap

3.7 Modeling a Morphing Trailing-Edge Device

The morphing trailing edge device modeled here is similar to the two-segment trailing edge flap
except that the slope of the camber line is continuous. This continuous slope prevents any
singularities from occurring in the basic load distribution. The single flap morphing case was
studied by Sanders et al. [2003], who used a similar thin airfoil analysis to obtain an analytic
representation of the load distribution. The expressions for these load distributions were not
presented though. The results of this section were validated with the figures presented by Sanders
et al. [2003]. Appendix A contains a MATLAB code that applies the equations developed in this
section. This code shows how to apply the work equations developed in Chapter 2 and the

aerodynamic equations developed in this section.

Like the two-segment flap, the deflection of surface B is defined relative to surface A as shown in
Figure 3.12. A quadratic curve defines both surfaces, with the coefficients determined by
matching the desired deflections oy and Jp. It is also required that the camberline be continuous

and have a continuous slope. The resulting camberline equations are written as
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z(x) =ax’+bx+c

xp<x<l1
_ 2
z(x)— ax”" +byx+c,
with
-5,

“s 2(xB _xA)

2
— 04Xy

o 2(x3 - xA)

—-dy (xA +Xp _xAxB)+(5A +0p )xé

C, =

2(x, —1)

Figure 3.12: Representation of the morphing trailing edge device

(3.52)

(3.53)

The Fourier coefficients for the lift and pitching moment coefficients (Egs. (3.6) and (3.8)) are

found from Eqgs. (3.3 — 3.5) to be
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1[(a, +b, )0, -6,)-a,(sin@, —sind,)
Ay=0—— .
Vs +(a2 +b2)(7r—03)+ a, sin G,
2 (a, + b, Nsin@, —sin@,)—0.54,[(6, — 6, )+ 0.5(sin 26, —sin 26, (354)
' 7 |~ (ay +b, )sin 8, —0.5a,[(7 — 6, ) - 0.5sin26,] '
0.5(a, + b, )sin 26, —sin 26, )- a{sm Os ;Sin 01, sin30 ;Smwf!]
4, =— . .
g 0.5(a, +b, )sin 26, + a{sm Os + %j

The basic and additional load distribution produced by each surface was found from Eq. (3.9) and
(3.11), resulting in

TA(QB —HA)SiHH—[SA +T, Cosg]ln(smgtan(ef‘/2)_0059+1J

sin@tan(6,/2)+cos@—1

sin@tan (6, /2)—cos @ +1
sin@tan(8, /2)+ cos6 -1

20U, °
Apb,A(e): P

+[SA +T, cosH+1]ln(

20U 7 . .
Apa,A(H):_ pﬂ_w [SA(gB_HA)"_TA(SIHQB_SlnaA)+RA(7z-_gB):1:

1+cos€} (3.55)

sin @

2
ApbjB(H)z 2p7(r]°° {Tg(ﬂ'—HB)sinH— [S, + T, cosH]ln(

sin@tan(6, /2)—cos 0 +1
sin@tan (6, /2)+cos@ -1

20U, ° (. . 1
ApaB(g)z_ PYe [TBSIHHB"_RB(”_gB){ +.C089}
’ T sin @
where

SA_—05+xA

Xp =Xy
SB_—xB+05

xp—1

T, 0.5

Xp =Xy

T, = 0.5

xp—1

R,=-1

RB:O.S—xB

xp—1

The f functions for the work calculation are:
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0<0<0,
f4(0)=715(0)=0

0,<0<0,
1 > 1 x, x5
f(0)=— (1-cos@) —= (1-cosf)——
Xg—X, X, —Xg 2x5—x,
f3(0)=0 (3.56)
0,<0<r
Fi®) == 1=c050)+ (v, +x,)
2
720 =1L (1= cosof — L5 _(1-cosg)+ 2%
8x,—1 2x,-1 xp—1

where between 63 and 7, the f function for flap A is linear and the f function for flap B is taken

relative to this line. This assumes an actuator is located at x4 and x3.

Figure 3.13 shows a comparison of the trailing edge shape required to achieve AC; equal to 0.1
for a conventional flap and a morphing single-degree of freedom flap (meaning &, = 0). It is seen
that the morphing flap requires significantly less overall deflection than the conventional flap,
although the required 0 is actually less for the conventional flap. Figure 3.14 shows the load
distribution over the control surfaces corresponding to the trailing edge shapes shown in Figure
3.13. The distribution for the morphing case is seen to be centered further from the “hinge” than
for the conventional case. This appears unfavorable from a work standpoint for the morphing
case. Nevertheless, when these distributions are combined with the defections in Figure 3.13, the
morphing case is found to require 16% less work to achieve a AC; equal to 0.1. Figure 3.15
shows the distribution of the work per-unit length, which is obtained by combining Figures 3.13

and 3.14.

Figure 3.16 shows the effect of various flap to chord ratios and the effect of angle of attack on the
required work. This indicates that the lower required work for the morphing case over the
conventional case is a general characteristic of the single degree of freedom morphing
camberline. Figure 3.16 also shows that « has a larger effect on the required work for the
conventional case than for the morphing case. This is because, as shown in Figure 3.13, the
morphing case requires less overall deflection, and therefore the constant a-dependent load

distribution acting during the deflection produces a smaller work component.
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Figure 3.13: A comparison of the trailing-edge camberline shapes required for a C; = 0.1
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Figure 3.14: A comparison of the trailing-edge load distribution required for a C;= 0.1
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Figure 3.15: A comparison of the work per-unit length required for a C;= 0.1
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Figure 3.16: A comparison of the required work for a AC; = 0.1
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3.8 Trim Considerations

The aerodynamic work equations were developed with the freedom to allow « to change between
the initial and final state. This freedom in « is desired because it allows an airfoil configuration
to achieve a change in lift in a realistic manner. For an aircraft performing longitudinal
maneuvers, the main purpose of the control surface is to produce the pitching moments required
to change the aircraft’s a. It is primarily « that produces the change in lift, while the control

surfaces allow the aircraft to achieve and maintain that particular c.

For the aerodynamic work calculations, it is required that the aircraft be trimmed at the initial and
final state. To calculate the £, values required to achieve trimmed flight at a given C,, the

following equations are used

N
C,=C a+)C B,
! (3.57)

Cy. =G, [y /=025 + i lc, (v, /e=0.25)+C,, I3,

n=1

where the C,, is relative to the quarter chord and any camber or twist is represented through £,

Solving the equation C,, =0 for « and substituting this value into the C; equation results in
cg

ﬁ lc, (v, /e=0.25)+C,, Ip,

N
_ | n=1
€= (x., /c—0.25) ! Z::‘ b

(3.58)
iCM" B,

_ n=1
ixcg /c—0.25)

which represents the trimmed C;. It is seen from Eq. (3.58) that if N is greater than one, there are

infinitely many combinations of S, to achieve a given trimmed C,.

From Eq. (3.58) the control deflections required for flight at the initial and final C; value can be
calculated. But, before these values are used in the previously developed aerodynamic work
equations, one more issue must be discussed. Because the quasi-steady aerodynamic assumption
has already been made, it is assumed that the control surfaces are deflected relatively slowly.

This allows the additional assumption that the dynamic process of the a-change is quasi static,
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meaning C), = 0 throughout the process. This quasi-static process is understood by considering a
small control surface increment away from a trimmed state, which causes a small nonzero
pitching moment. This nonzero moment causes a small acceleration leading to a small pitch rate
and change in . For a statically stable aircraft (meaning dCy/da < 0), a restoring pitching
moment is created as a changes which leads to a trimmed state (Cy,; = 0) at an « different from
the initial value. This process is shown in Figure 3.17 for a configuration with a single control £
initially trimmed at C;,;, &; and f; and then going to C; ,;, a; and f,. This process is not possible
for an unstable aircraft because the zero-lift pitching moment increment required to increase the
trimmed C; is in the opposite direction of the pitching moment required to rotate the aircraft to

the trimmed ¢.

Consider a flapped-airfoil with a = 0.2c and x., = 0. If'it is desired to trim this configuration at a
C;0f 0.1, Eq. (3.58) must be solved for (= £#). This results in 6= -2.23 degrees, which trims the
configuration at & = 2.14 degrees. Now, assume it is desired to change to a C; equal to 0.3. The
required ¢ for this C; is calculated as before, and is found to equal -6.71 degrees with an o of 6.42
degrees. To calculate the aerodynamic work required for this process, Eqgs. (2.13-2.15) are
applied with g = ¢; = -2.23 degrees, £ = J, = -6.71 degrees, «; = 2.14 degrees, and a, = 6.42
degrees. As discussed previously, the assumption that « changes linearly as the flap deflects
restricts the work calculation to a stable aircraft with a flap being deflected slowly. If, for
example, the flap was deflected suddenly, the entire deflection would occur at the initial ¢, and
therefore o, should not be used in the work calculation. For the current example, the work is
5.41x10°pU’c? if o changes linearly from the initial to final value as the flap deflects. If the flap
is deflected entirely while the aircraft is at the initial ¢, the aerodynamic work is 8.3x10°pU"c”.
The increase of aerodynamic work for the second case is a result of the reduction in the a-
dependent lift, which acts in the direction of the flap motion because the flap deflections are

negative.
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Figure 3.17: Effect of control deflections on the trimmed C, of a stable configuration

3.9 Chapter Summary

Chapter 3 applies thin airfoil theory to various control surface configurations to provide an
aerodynamic model for the work calculation discussed in Chapter 2. Along with the usual
calculation of the aerodynamic coefficients using the first three Fourier coefficients (Egs. (3.3 -
3.8)), analytic solutions for the load distribution are found using Eq. (3.11). The author is
unaware of any previous analytic solutions to Eq. (3.11) for quadratic camberlines. These
solutions are presented in Egs. (3.38) and (3.55) for the NACA camberline and the morphing
trailing-edge flap (MTE). Section 3.7 shows that less work is required to obtain a AC; with a
single-surface morphing flap than with a conventional flap. Figures 3.13 — 3.15 show that this is
true because the Az required for the morphing flap is less than for the conventional flap. It is also
shown that because the morphing flap requires less Az, the influence of an a-dependent load

distribution on the work is less than that for a conventional flap.
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Chapter 4

The Minimum Aerodynamic Work for

an Airfoil Geometry Change

4.1 Introduction

The term aerodynamic work is defined in this thesis to mean the actuator work required to
overcome the aerodynamic forces acting on an airfoil. As emphasized in Chapter 2, results
considering just the aerodynamic component of the actuator work are meaningful only if there is
no structural component. It is the author’s opinion though that aerodynamic work is less intuitive
than structural work, and therefore deserves to be studied independently of structural work. The
current chapter does this by examining the control surface deflections that require the least
amount of aerodynamic work for a given AC;, The minimum work deflections will also be

examined for multiple C; change cases to represent a flight path.

The thin airfoil theory aerodynamic models developed in Chapter 3 will be used for this
investigation.  Because of the C; change constraint, which is linear with the control
parameters (/3,), only cases that have more than one control surface can be used for the
optimization problem. This limits the investigation to the leading edge-trailing edge (LETE) flap
airfoil, two-segment trailing edge (TETAB) flap airfoil, and the two-segment morphing trailing
edge (MTE) airfoil. The TETAB and MTE cases are considered first in Sections 4.2 — 4.4
because of their similarities. The LETE configuration, which is a somewhat special case, is

considered in Section 4.5. The effects of acroelaticity will be investigated in the next chapter.
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4.2 Minimum Work Control Deflections Required for a Single
AC; Away from an Initially Flat Airfoil

This section examines the control deflections for the minimum aerodynamic work required by an
initially flat airfoil remaining at = 0 to obtain a single AC; with the TETAB or MTE control
configuration. Cases are examined that require that & remain constant along with cases that allow
o to vary by considering the trim constraint discussed in Section 3.8. This simplified problem
allows some insight to be gained into the nature of minimum work control deflections. To begin,
it is helpful to examine the work equations developed in Chapter 2. In particular, the case of zero

required work is investigated. With 5, , a;, and a; all equal to zero, the integrands of the work

equation (Z,), Eq (2.17), can be written as

I, (T) = _{QA,AﬂAZ +0, 585, }ﬂAz T
Iy (T) = _{QB,AﬂAZ + 05 585, }ﬂ/};2 T

where it is assumed that there are two control surface 4 and B (the letters 4 and B are used here

4.1

instead of numbers 1 and 2 so that they are not confused with the states 1 and 2). It should be
remembered that for conventional hinged control surfaces, Q,,, can be thought of as the hinge
moment acting on control surface m per unit deflection of control surface n. Since it desired to
find the work required to obtain a desired C;, one £ can be written in terms of the other through

the C; equation. The C; equation at state 2 is written as
C,=C, By +C, s,
S0

B, = C - CIA ﬂAz
" C, (4.2)

=k, - kzﬁA2

where

From Eq. (4.1), it is seen that I,(7= 0) and Iz(7= 0) will both be zero. Therefore, if zero required

work is desired, /,(z= 1) and Iz(z= 1) must be less than or equal to zero. If these equations
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cannot be satisfied, then it is not possible to obtain with zero work the desired AC; with this
control surface configuration. To examine these possibilities, Eq. (4.2) is substituted into Eq.
(4.1) leading to
1, (T = 1) = _QA,A/BAzz —Ous (kl —kB., )ﬂAz
=015 =011 )BL = Quskif
I (T = 1) =—0p 4 (kl - kzﬂA2 )ﬂAZ —0Op 5 (kl - kzﬂA2 )2
(0.~ 0ushs? B, + (205 bk — 0 B, — Ok

The value or values of S, that make /,(7= 1) and I5(z= 1) less than or equal to zero can be

(4.3)

found by setting the equations in (4.3) equal to zero and solving each equation independently

for 5, . Both equations in (4.3) are quadratic in £, , which results in four total roots when both

equations are solved independently. Two of these roots form the boundary of the “region of zero
work,” if it exists. Plotting /,(z= 1) and Iz(7= 1) allows the roots that form this boundary to be
obtained by finding the region where both I,(z= 1) and Iz(r= 1) are negative. An example of
this is shown in Figure 4.1 for a TETAB airfoil with a4 = 0.2 and ap = 0.15 (see Section 3.6 for
definitions, note that f= ¢ for this case) obtaining a AC; of 0.1. The roots for this example are 0
and 5.24 degrees for I,(z= 1) and 1.65 and 5.82 degrees for /z(7= 1), where between the roots
5.24 and 5.82 degrees, zero work is required. It should be mentioned that this range of
deflections is actually a region of the ratio of the deflections of the two control surfaces, which is

constant for varying C; values. This is because although one is solving for 8, , S, is implied

through the C; constraint (Eq. (4.2)).
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Figure 4.1: Work integrands for a TETAB airfoil

Figure 4.2 shows a plot of /(7= 1) for a TETAB airfoil with a, = 0.2 and az = 0.05. In this case,

there is no region of zero work because at no 6, are both 7,(z= 1) and I(z= 1) less than or
equal to zero. The value of &, requiring the least acrodynamic work can be obtained from

Figure 4.2 as the point where the sum of the positive /,(z=1) and /(7= 1) values is the smallest.

In this case, this occurs at the point ,(z= 1) = 0, where at J, is equal to 2.57 degrees. The

reason for the minimum work point being at the point /,(7= 1) = 0 is a result of the I,(z=1) line
having a steeper positive slope than the /(7= 1) line’s negative slope around the intersection of
the two lines. If the sum of the positive I,(z=1) and /(7= 1) values are taken at a small change

ind, to the left and right of the intersection of Z,(z=1) and I(7= 1), it is seen that this sum

decreases until I,(z= 1) = 0. This result holds for most two-section control surface
configurations, including the TETAB and MTE configurations. The equation for /,(7=1) =0 is
found from Eq. (4.3) to equal

ﬂ _ leA,B (4 4)
* QA,A _kZQA,B '

which is therefore the solution for minimum work for an initially flat (C; = 0) two-segment

control surface airfoil. If there is a region of zero work like in Figure 4.1, then Eq. (4.4) gives the
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solution for the left hand border of the zero work region. Solving /(7= 1) = 0 from Eq. (4.3)

gives the right hand border of the zero work region.

x 10
2
1.5F B
/ /A
1+ 4
0.5 ] IB b
T S / { B "
Lo i —
0.5 /4 i
Minimum work deflection
ML i
TETAB airfoil
a,=02
1.5 A 8
aB—O. 05
-2 | | | L | | |
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
Opr (degrees)

Figure 4.2: Work integrands for a TETAB airfoil

The solution shown in Eq. (4.4) was used (along with a numerical optimization scheme to assure
the validity of Eq. (4.4)) to compare the minimum work values required for MTE and TETAB
configurations to obtain a single AC; away from an initially flat airfoil. The LETE configuration
was not considered because the deflection of the leading edge flap requires no positive work,
leading to a trivial solution of W = 0 by using the leading edge flap exclusively. This makes the
LETE configuration ideal for a single AC;, but as will be shown in Section 4.5, a second 4C,
requires more work than both the MTE and TETAB cases. Figure 4.3 shows the work resulting
from the minimum work deflections for the MTE and TETAB configuration with various control
surface areas and ap/a, values. Although the MTE configuration is shown to require significantly
more work than the TETAB configuration, it is still much lower than the value of 12x10° pU’¢’
required by a single flap spanning 30% of the chord. Figure 4.4 shows the point from Figure 4.3
where x,/c = 0.7. This shows a very different trend for varying az/a, values between the MTE
and TETAB cases. It is seen that beyond ap/a, equal to 0.55, the TETAB configuration requires

no work while the MTE requires increasingly more.
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Figure 4.3: Minimum work values for various control surface arrangements
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Figure 4.4: Minimum work values for various ratios of control surface size

Figure 4.5a shows the ratio of control deflections 6, /&, corresponding to the minimum work

values shown in Figure 4.4. Flap A is deflected positively (down) in all the cases shown. Figure
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4.5b shows the resulting load distribution from the minimum work case corresponding to ag/a, in
Figures 4.4 and 4.5a. As shown in Figure 4.4, the TETAB case requires no work. This is a result
of the singularities present at the flap hinge lines. The MTE case does not benefit from these

singularities and requires work to deflect flap B.
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Figure 4.5a: Minimum work ratio of deflections for the case shown in Figure 4.4
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Figure 4.5b: Minimum work ratio of deflections for the case shown in Figure 4.4
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The above analysis assumed « remained zero between the initial and final point. Now it will be
shown that enforcing the trim constraint discussed in Section 3.8 allows for the above analysis to
be extended to the variable & case. From Eq. (3.58), the trimmed control effectiveness of each
control surface can be written as
Cy
Cl,trim,, == - (45)
ixcg /c—0.25)
where the trimmed « per unit deflection of £, is
C, (x, /c—025)+Cy
a - _ n n
" 27z(xcg /c—0.25)

(4.6)

For the two-segment control surface cases analyzed previously, k; and &, from Eq. (4.2) are now

written as
i C, (xcg /c —O.25)C,
1 = = —
C rim C
Loy Mo (4.7)

& Cy

k2 —_ta _ 4

C I C M,

Adding a4 and a5 from Eq. (4.6) to the additional load distribution for the calculation of the O
terms accounts for the change in the load distribution due to the change in & Using these O

terms and the k; and £ terms from Eq. (4.7), the minimum work control deflections can be found

using Eq. (4.4).

Figure 4.6 shows the minimum work values for the MTE and TETAB configurations when « is
allowed to vary using the trim constraint. Figure 4.7 shows the ratio of control deflections
corresponding to the cases presented in Figure 4.6. Comparing Figure 4.6 to Figure 4.4 it is seen
that allowing the airfoil to obtain lift from o« greatly reduces the required work. If the
configuration is neutrally stable, meaning x., = 0.25, Eq. 4.5 shows that the change in lift per unit
deflection of each control surface becomes infinite. This means that the required deflection to

achieve a change in lift becomes infinitely small, and therefore the required work goes to zero.
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Figure 4.6: Minimum work values for various ratios of control surface size with trim constraint
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Figure 4.7: Minimum work deflections corresponding to Figure 4.6
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4.3 Minimum Work Control Deflections Required for a Single

AC; on an Airfoil with an Initial o

The previous analysis examined cases that were initially at zero degrees « with no control
deflections. This meant that there was no load component, which remained constant throughout
the deflection process, acting on the airfoil. A more realistic analysis will now be carried out that
considers a constant load component caused by an initial . The analytic treatment used above to
find the minimum work deflections will not be pursued here. The fact that the initial load
distribution is not zero implies that /,(z= 0) is not equal to zero, which makes any general
treatment of the problem difficult. Instead, a numerical approach is used to find the minimum

work deflections.

Figure 4.8 shows the influence of a constant & on the minimum work control deflections. This
figure shows that past an « of about 0.5 degrees, the MTE case requires less work than the
TETAB case. Figure 4.9 shows the minimum work control deflections corresponding to cases
presented in Figure 4.8. It is seen that at an « of about 0.8 degrees, the minimum work control
deflections consist of the deflection of just flap B. This occurs because the load distribution due
to o, which is constant throughout the deflection process, begins to have a greater influence on
the control surfaces than the load distributions caused by the control surfaces. This effect is
beneficial for the MTE configuration because as was shown in Figure 3.15, the MTE
configuration requires less overall deflection, or Az, than the TETAB configuration. This is
shown in Figure 4.9, where it is seen that the o values for the two cases are similar. Which,
because a given ¢ for the MTE case produces much less Az than for the TETAB case, means that

the a-load distribution will have less influence on the minimum work for the MTE case.
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Figure 4.8: The effect of a constant o on the minimum required work
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Figure 4.9: Minimum work control deflection variation with a constant &
The effect of enforcing the trim constraint and allowing « to vary was shown in Section 4.2 to

decrease the required work over the o~fixed cases an amount depending on the c.g. location. For

the current case where there is an initial trimmed C,, this comparison is not as clear because it is
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dependent on the control deflections required to obtain the initial trimmed C;. Figure 4.10 shows
the minimum work values for various initial trimmed C;s. The initial trimmed C;’s were
achieved with lift being distributed equally between the two control surfaces. Comparing the
initial C; = 0.1 case with the « equal 0.9 degree case of Figure 4.10 ( = 0.9 degrees produces a
C; of about 0.1) it is seen that variable-a case requires more work. This is true because of the
control deflections required for the initial C;, which were not present in the fixed « case. Figure
4.10 shows, in agreement with Figure 4.8, that the larger the initial C; is, the more beneficial the

MTE case becomes in terms of required work.
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Figure 4.10: Minimum work values with an initial « and allowing « to vary

4.4 Minimum Work Control Deflections for a Multiple AC;’s

The results of the minimum work required for a single AC; in Section 4.2 and 4.3 are altered if a
second AC; of opposite sign is considered in the optimization. Adding a second AC; allows the
work calculated to be considered the work required for a complete flight path. Figure 4.11 shows
an example of how a complex flight path can be represented with two C; changes under the quasi-
steady linear assumptions that have been made. It is desired here to investigate the influence the
second AC; has on the work comparison between the LETE, MTE, and TETAB control surface

configurations.
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Figure 4.11: Variation of desired lift coefficients

As done in the single AC; case, it is helpful to consider the simplified problem of an initially flat
airfoil at zero-degrees . It can be shown that the minimum aerodynamic work required for this
airfoil to obtain a given C; and then return to a C; of zero is directly related to the single AC; case.
Consider Figure 4.2, which shows for the single AC; case that if there is no region of zero work,

then the minimum work deflections are obtained from Eq. (4.4). Eq. (4.4) solves for 6, when I,

equals zero and [ is positive. This positive value of I at the end of the first AC; is represented in
Figure 4.12 as the value of I, ;, at the end of the 7, line. From Eq. (2.17) it is seen that at the
beginning of the second AC; the value of /; will be equal in magnitude and opposite in sign to the
value at the end of the first AC,. This is shown in Figure 4.12 and means that the work required
for the second AC; will be zero. The final control deflections are zero and the problem is solved

by determining the deflections for state 2 from Eq. 4.4.

If, as shown in Figure 4.1, there is a region of zero work for the first AC}, then there will be work
required for the second AC;. In this case, the second AC; determines the control deflections and
the problem is a reverse of the previous problem. Because of this symmetry, the minimum work
control deflections are again found from Eq. (4.4). This means that for the minimum
aerodynamic work for the two AC, case, a region of zero work will exist for one AC; and work

will be required for the other AC;.

Figure 4.12: The influence of the second AC; on the minimum work
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4.5 The Minimum Work for a LETE Configuration

The LETE configuration is a special case because the two control surfaces are not connected as
they are in the TETAB and MTE cases. The influence of this on two AC; changes will be briefly

discussed below.

Consider a leading and trailing edge flap combination with both flaps being 20% of the chord.
Let C;; =0, C;>=0.1, C;3 =0, where the subscripts 1, 2, and 3 refer to the initial, middle, and
final states as shown in Figure 4.11. Assume that both control surfaces are initially undeflected,
meaning g ; and Org; equal zero, and that the airfoil remains at & = 0. It is desired to find the
leading and trailing edge deflections for states 2 and 3 that require the minimum total work.

Figure 4.13 shows a surface plot of the work values for different combinations of 6, ,and 6, ;.

The deflections for minimum work were found to be

Sr=—9.5°
Sppr =0.95°
Sy =—9.5°
Sy ==0.70°

which result in W/2gc* = 4.17x10°°. This is considerably larger than the 0.3x10°° or 2x107 values
required for the TETAB and MTE cases with x, = 0.6. But it is considerably less than the 12x10°
required by a single flap spanning 30% of the chord. Figures 4.14 and 4.15 show the load
distributions produced by the minimum work deflections for this case. It is seen in Figure 4.14
that no work is required to deflect the leading edge flap from state 1 to 2. If it was not required to
go to state 3, the optimum deflection for state 2 would consist of just the leading edge flap
deflection so that the no work was required. But since state 3 is considered, there is a tradeoff

between the leading and trailing edge deflections.
The above discussion shows that although the LETE flap combination appears favorable from a

work standpoint for a single AC,, if two AC;’s are considered, the configuration is found to require

more work than the TETAB or MTE configurations.
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Figure 4.15: Load distributions at state 3

4.6 Chapter Summary

Chapter 4 presents a method for determining the control deflections that require the minimum
aerodynamic work for a given AC;. This method is based on the work equations developed in
Chapter 2 and the aerodynamic characteristics developed in Chapter 3. For an initially flat airfoil
at zero-a with two control surfaces, Eq (4.4) was derived. This equation represents the minimum
work control deflections for a given AC,. Figures 4.3 and 4.4 show that the TETAB configuration
requires less work than the MTE configuration for cases where « remains zero. Section 4.3
shows that there is certain « past which the MTE case requires less work than the TETAB case.
This is true because a given o for the MTE case produces much less Az than for the TETAB case,
which means that the o-load distribution has a smaller influence on the minimum work for the
MTE case. Section 4.4 discusses the minimum work for multiple AC;’s and shows that it is
closely related to the minimum work for a single AC;. Section 4.5 investigates the leading-edge
trailing-edge flap, which is shown to be considerably different than the two-segment trailing-edge

devices.
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Chapter 5

The Effect of Aeroelasticity on the
Required Aerodynamic Work

5.1 Introduction

An important issue in the analysis of an aerodynamic control device is the influence of
aeroelasticity on the effectiveness of the control device. This chapter will study this issue by
examining the effect of aeroelasticity on the required acrodynamic work for a given change in lift.
Section 5.2 will discuss the addition of static aeroelastic effects to the airfoil models developed in
Chapter 3 as well as review the basic concepts of the active aeroelastic wing concept. Section 5.3
will compare the work required for single control surface morphing and conventional flaps.
Section 5.4 will compare the work required for two-segment morphing (MTE) and conventional
(TETAB) flaps. The benefits of the active aeroelastic wing concept will be shown to become

clear upon studying the influence of dynamic pressure on the minimum work control deflections.

5.2 Aeceroelastic Considerations

This section will review the modeling of a 1-DOF static aeroelastic airfoil, which will be used to
extend the airfoil model of Chapter 3. The notation and technique will follow that of Forster et

al. [2003], who conducted a similar study as discussed in Chapter 1.
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Figure 5.1: Flexible airfoil representation

Figure 5.1 shows the representation of an airfoil that is free to twist around a shear center (x,)
with a spring constant K, The initial angle of attack is ¢y, which can be thought of as the
equilibrium o when no aerodynamic forces are applied. When aerodynamic forces are applied,
the equilibrium « is found by summing the pitching moments acting about x,. This results in:
N
gc* {eC,a (cry +Ag)+ Z‘ ec, B, +Cy B, )} = K,Af (5.1)

where e = x, /c- 0.25. Solving Eq. (5.1) for A¢leads to

n=1

Agp= 5.2
? K¢—eC,uqc2 >2)

) N
qc eCla(ZO + Z(eclnﬂn + CMnﬂn)

where the equilibrium « is now A¢ + ay. The effect of aeroelasticity in the current 1-DOF static

airfoil model is represented entirely by A¢in Eq (5.2).

Figure 5.2 shows, using an example presented by Forster ef al. [2003], the effect of aeroelasticity
on the initial (corresponding to oy; and ;) and final (corresponding to dy, and o) load
distributions. The difference between the initial state with aeroelastics and the initial state
without aeroelastics is the additional load distribution due to Ag;. It is seen that only the final
state with aeroelastics is shown in Figure 5.2. The final state without aeroelastics is not shown
because, as a result of A¢, being very near zero, it is nearly the same as the final state with

aeroelastics.
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Figure 5.2: Example load distributions including aeroelastic effects

It is convention to define the dynamic pressure when the denominator of A¢ becomes zero as the

divergence dynamic pressure (¢p). This is written as:

S (5.3)
ec’C, '

dp =

a

where it should be noted that this is independent of the control surfaces on the airfoil. The
dynamic pressure of interest for control surfaces is the reversal dynamic pressure (gr), which is

the dynamic pressure at which the flexible control effectiveness of a control surface is zero. The

flexible control effectiveness (5 1, ) can be written as

Czﬂ =C1aA¢p+Czﬂ (5.4
where C 1, is the rigid control effectiveness and Agj is the Ag per unit deflection . Combining
Egs. (5.2) and (5.4) and solving for the ¢ that makes C L, = 0 results in

K,C,

-t 5.5
¢’C, Cy, 5:3)

qr =

where it should be noted that on a multiple control surface configuration, there is a separate g for
each control surface. If the deflection of a control surface is intended to produce a rolling
maneuver, the reversal dynamic pressure can be interpreted as the roll reversal dynamic pressure

for the current 2-D airfoil model. Figures 5.3 and 5.4, taken from Anderson, et al. [1997], show
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the loss in roll performance and the increase in the required aileron deflection as gj is
approached. It should be understood that although Figure 5.4 shows that the required aileron
deflection becomes infinite at g, this dynamic pressure does not represent a boundary that cannot
be passed. This is shown in Figure 5.5, where it is seen that the required aileron deflection is
opposite in sign of that required before g for the single control surface case. As long as
maneuvers are not attempted at gz and the control system is programmed to account for the
aileron reversal, it should be possible to perform maneuvers at dynamic pressures around and past
qr with a single control surface. The main problem with this, though, is that the increase in the

required deflections causes an increase in the drag and required actuator work.

The loss in maneuverability mentioned above as gy is approached has led to the development of
the active aeroelastic wing (AAW), which uses multiple control surfaces to reduce the required
control deflections at dynamic pressures around g [Miller 1994]. This is shown in Figure 5.5,
which indicates the reduction in the required deflections for a leading edge — trailing edge flap
combination over that required for a trailing edge flap only. If more than one control surface is
being used to achieve a desired roll rate, then there must be some type of cost function to
uniquely choose the deflections. In the case of Figure 5.5, Anderson used a “minimum control
energy criteria” which is said to “minimize the overall control surface actuator command
signals.” This is similar to minimizing Eq. (2.5) when n = 1, which implies an equal cost for
positive and negative work. Minimizing Eq. (2.5) with 7 = 0, which is used throughout this

paper, will in most cases lead to the trivial solution of deflecting just the leading edge flap.

It makes sense that in Figure 5.5 the trailing edge deflection goes to zero at the trailing edge gz,
because at this point its effectiveness is zero. Notice that there is no reversal dynamic pressure
for the leading edge flap. This is verified by substituting the leading edge flap characteristics
shown in Figure 3.9 into Eq. (5.5), which results in a negative gz, meaning the velocity is
imaginary. Section 5.4 will study cases with two-segment trailing edge flaps in which case both

control surfaces have a reversal dynamic pressure.
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Figure 5.3: Roll rate achieved for a constant aileron deflection [Anderson, et al. 1997]
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Figure 5.4: Aileron deflection required for a constant roll rate [Anderson, et al. 1997]
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Figure 5.5: Control surface deflections required for a constant roll rate [Anderson, et al. 1997]

5.3 Required Work for Single Control Surface Cases

In Section 3.7 of Chapter 3, it was shown that a single-segment MTE device requires less work to
achieve a AC; than a conventional flap. It is now desired to study the influence of aeroelasticity
on this conclusion. Some aeroelastic differences between morphing and conventional cases are
suspected because, as is seen in Figure 3.14, the lift is centered further back for the morphing case

than for the conventional case therefore increasing the moment acting on the shear center.

The first case that will be examined is the work required for a single-surface morphing or
conventional flap to achieve a lift (4C; g ¢) of 0.5 lbs away from an initially flat airfoil at zero
angle of attack. Notice that now we are comparing the work for a given change in lift, and not C;
as was done in Chapter 4. This is done because it is desired to compare the required work for
different dynamic pressures, in which case the lift force corresponding to a given C; is different.
It should also be mentioned that a change in lift is used instead of a roll rate because it is a more
basic quantity. For the current 2-D airfoil model, a change in lift can be transformed into a steady
upward motion, which is the 2-D equivalent to a rolling motion, through the following equation

[Weisshaar 2000]:
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v Al

U

= 5.5
chla (5-5)

o0

where v represents the steady upward motion and A/ is the change in lift on the airfoil. Figure 5.6
shows the work required for the given change in lift for dynamic pressures less than gy (the airfoil
size and shape parameters are listed in the figure). It is shown that for low dynamic pressures, the
conclusion reached in Section 3.7 that a morphing flap requires less work than a conventional flap
still holds. But, for g/qp > 0.085, the work required for the conventional flap becomes less than
that required for the morphing flap. Figures 5.7 and 5.8 show the required control deflections and
the resulting wing twist deformation for this case. As expected, the control deflections for the
morphing and conventional cases follow the same trends. Comparing the magnitudes of the
morphing and conventional deflections in Figure 5.7 is not very meaningful because it is
dependent on how the deflection angles are defined. The magnitude of the wing deformation
angle (4¢) in Figure 5.8 is meaningful, though, and succeeds in showing why the morphing flap
requires more work as g/qp becomes large. The morphing flap produces larger negative A¢
values, which means that more negative lift is created that must be compensated for with more
control deflection, therefore increasing the required work. Figure 5.9 shows the same comparison
as Figure 5.6 except that in this case ay is one degree instead of zero. This is shown to increase
the range of dynamic pressures over which the morphing flap requires less work than the
conventional flap. This influence of & on the comparison between the work required for

morphing and conventional flaps was also observed in Section 3.7.
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Figure 5.6: The effect of dynamic pressure on the required aerodynamic work for a given AC,q ¢
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5.4 Required Work for Multiple Control Surface Cases

This section compares the minimum work control deflections for two-segment morphing and
conventional flaps. This was studied in Sections 4.2 and 4.3 for rigid airfoils. Figure 5.10 shows
the resulting minimum work values for the case where ¢ is one degree. This shows that unlike
the single control surface case, where the morphing flap began to require more work than the
conventional case as g was approached, the morphing flap continues to require less work past gx.
Figure 5.11 shows the change in the wing deformation angle as g/gp varies. It is seen that past
the g of the dominant control surface (flap A for the morphing and conventional case), the wing
deformation angle becomes positive indicating the airfoil is generating lift by twisting the wing
with control surface deflections. Figures 5.12 and 5.13 confirm this by showing negative control
deflections past the gr of control surface A (gqr4). Because the airfoil has a nonzero «y, the
negative control deflections can be achieved with no work. Notice that in Figures 5.12 and 5.13
that J; goes to zero at gg 4 but 03 does not go to zero at gz 3. Why would a nonzero deflection be
found for a control surface that creates no change in lift if it desired to minimize the work? The
answer to this is that although at gz 3 control surface B is not capable of creating lift, it is useful

for reducing the work required for control surface A. Figures 5.12 and 5.13 show that this is
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exactly what is being done here, with the negative value of 3, which requires no work because of

the «, reducing the work required for flap A.
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5.5 Chapter Summary

Chapter 5 presents the effect of a 1-DOF static aeroelastic model on the actuator work
requirements for morphing and conventional flap airfoils. It is shown in Figures 5.6 and 5.9 that
the work becomes very large as the reversal dynamic pressure (qr) is approached. At low
dynamic pressures the morphing flap requires less work than the conventional flap. The dynamic
pressure past which the conventional flap requires lower work is shown to depend on the initial

lift acting on the airfoil.

A comparison of the minimum work required for two-segment morphing and conventional flaps
is presented in Figure 5.10. This plot presents work values for dynamic pressures above and
below gz. The minimum work control deflections shown in Figures 5.12 and 5.13 indicate that
around g, both control surfaces are used like with the leading and trailing edge configuration of

the AAW.
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Chapter 6

Conclusions

6.1 Brief Summary of Thesis

The first chapter provides an introduction to the concept of morphing aircraft. Past morphing
concepts such as variable wing sweep and the AFTI/F-111 are discussed. It is emphasized that
morphing allows for both the minimization of drag at multiple flight conditions as well improved
maneuverability. A review of literature on the topic of aerodynamic work is presented. It is
concluded that if aerodynamic work is to be used as a performance parameter for aerodynamic
control devices, then a general theory must be developed that considers issues such as negative

work and actuator placement. This task is the focus of Chapter 2.

Chapter 2 presents a method of calculating the mechanical work required from actuators to
operate an aerodynamic control device. It is argued that it is really desired to calculate the energy
“cost” of actuating an aerodynamic control device, and not the required mechanical work. This
leads to calculation of the practical work (W), which is related to the straightforward work (7 )
through Eq. (2.10). The term 7 in Eq. (2.10), which represents the difference in the cost of
positive and negative work, defines the relationship between W and W. The remainder of this
study uses a value of 7= 0, which implies that energy required by an actuator to perform negative
work is zero. This is true because negative work means that the forces from the airstream and
structure act in the same direction, therefore the forces required for initiating motion are supplied
from the air-stream or the structure and not the actuator. An important consequence of treating

negative and positive work as different quantities is that the structural and aerodynamic work
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calculations cannot be performed independently. This is because the interaction of these two
components determine when the work changes from positive to negative. The remainder of this

thesis considered only the aerodynamic work component.

Chapter 3 applies thin airfoil theory to various control surface configurations to provide an
aerodynamic model for the work calculation discussed in Chapter 2. Along with the usual
calculation of the aerodynamic coefficients using the first three Fourier coefficients (Egs. (3.3 -
3.8)), analytic solutions for the aerodynamic load distribution are found using Eq. (3.11). The
determination of analytic equations for the aerodynamic load distribution is convenient for the
application of the work equations developed in Chapter 2. These equations also provide insight
into the effect of various control surface parameters on aerodynamic load distribution. Section
3.7 shows that less work is required to obtain a AC; with a single-surface morphing flap than with
a conventional flap. Figures 3.13 — 3.15 show that this is true because the Az required for the
morphing flap is less than for the conventional flap. It is also shown that because the morphing
flap requires less Az, the influence of an a~dependent load distribution on the work is less than

that for a conventional flap.

Chapter 4 presents a method for determining the control deflections that require the minimum
aerodynamic work for a given AC,. This method is based on the work equations developed in
Chapter 2 and the aerodynamic characteristics developed in Chapter 3. For an initially flat airfoil
at zero-a with two control surfaces, Eq (4.4) was derived. This equation represents the minimum
work control deflections for a given AC,. Figures 4.3 and 4.4 show that the TETAB configuration
requires less work than the MTE configuration for cases where « remains zero. Section 4.3
shows that there is certain « past which the MTE case requires less work than the TETAB case.
This is true because a given O for the MTE case produces much less Az than for the TETAB case,
which means that the a-load distribution has a smaller influence on the minimum work for the
MTE case. Section 4.4 discusses the minimum work for multiple AC;’s and shows that it is

closely related to the minimum work for a single AC,.

Chapter 5 presents the effect of a 1-DOF static aeroelastic model on the aerodynamic work
requirements for morphing and conventional flap airfoils. It is shown in Figures 5.6 and 5.9, that
for single-segment morphing and conventional flaps, the work becomes very large as the reversal

dynamic pressure (gz) is approached. At low dynamic pressures the morphing flap requires less
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work than the conventional flap. The dynamic pressure past which the conventional flap requires
lower work is shown to depend on the initial lift acting on the airfoil. A comparison of the
minimum work required for two-segment morphing and conventional flaps is presented in Figure
5.10. This plot presents work values for dynamic pressures above and below gz. At nearly every
value of ¢, the morphing flap required less work than the conventional flap. The minimum work
control deflections shown in Figures 5.12 and 5.13 indicate that around g, both control surfaces
are used in the same manner as the leading and trailing edge configuration of the active

aeroelastic wing.

6.2 Contributions

This thesis provides a method for calculating the work to overcome aerodynamic forces required
to deflect a general configuration of aerodynamic control devices. Past research in this area, as
discussed in Section 1.3, has not confronted many of the issues required to compare the work
required for general control surface configurations. The method developed here relates the
aerodynamic and structural forces acting on the control surface as it is deflecting to the energy
cost required for the actuator to perform the deflection. A contribution of this thesis is that it
provides a clarification of what is really desired from a work analysis on an airfoil control
surface. It is not the mechanical work required for a control surface deflection that is of interest,
but really the energy cost of the actuator operating the control surface. Without getting into the
details of the actuators, the calculation of the energy cost of an actuator is achieved through Eq.
(2.10). The significance of this equation is that it accounts for a difference between the energy
cost required by an actuator to perform negative work from that required to perform positive
work. By turning to physiologists [Abbott, et al, 1952], who have studied the cost of negative
work for animal muscles (which can be considered very advanced actuators), a value of 7= 0 was
found to accurately represent most actuators. An important contribution of this work was
recognizing that positive and negative work values should be treated differently in the calculation
of the work required by a control surface. With the assumption of a linear aecrodynamic and
structural model, the details of calculating the energy cost for a general control surface
configuration are presented. This is new in that it accounts for the difference between positive
and negative work values, which allows for a simple and general method of calculating the

actuator energy cost.
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It appears that the equations obtained in Chapter 3 from thin airfoil theory for the load
distributions for quadratic camberlines (including NACA camberlines) are absent from the
literature. This may be because thin airfoil theory has been mainly used for the lift and pitching
moment coefficients, which can be obtained from the simple calculation of the first three Fourier
coefficients defined in Egs. (3.3 — 3.5). And, it seems that the load distribution calculation is
usually represented by the infinite series of Eq. (3.1) instead of the integral of Eq. (3.11). In any
case, these analytic equations for the load distribution are valuable for the application of the work

equations developed in Chapter 2, as well as many other aerodynamic analyses.

6.3 Future Work

There are four main extensions to this work that would make it a more accurate representation of
reality. The first of these is the use of unsteady thin airfoil theory to model the aerodynamic load
distribution during the control surface motion. There does not seem to be a large amount of
literature investigating the unsteady forces on an airfoil during the control surface motion. For
example, what is the time-history of the hinge moment on a flap as it is deflecting from 0 to 5
degrees? The second extension of this work is the addition of a boundary layer calculation. This
would allow for both viscous drag and flow separation to be predicted. The influence of different
control surface configurations on the viscous drag and location of flow separation would be very
interesting and useful. The addition of unsteady aerodynamics and viscous effects will likely
result in load distributions that are no longer linear with respect to the control surface motion.
This would require the work equations developed in Sections 2.3 and 2.4 to be generalized. The
third extension of this work is the addition of a structural model. Although structural work terms
are included in Chapter 2, the analysis of Chapters 4 and 5 consider only the aerodynamic work
term. Extending this analysis to three-dimensional wings would allow for spanwise distributions
of control surface deflections to be investigated. The aerodynamics would have to be modeled

with a numerical method such as the vortex-lattice method instead of thin airfoil theory.
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Appendix A

MATLAB code to calculate the aecrodynamic work and aerodynamic properties of the MTE

airfoil defined in Section 3.7.

%%%%0%%0%%%%%0%%%%6%%%6%%6%%%%%6%%%%%%%0%%%%6%%%%%6%:%%% %%
% Input
%%%%0%%0%%%%%0%%%%6%0%%6%%6%%%%%6%%0%%%%%0%%%%6%%%%%6%:%%% %%

% Considers the change from state 1 to state 2 and then to state 3. If only
% one change is of interest, make C13=CI2, A_delta3=A_delta2, and
% alpha3=alpha2. ClI is implied through A_deltal, B_deltal, and alphal.

% lift coefficient at state 2
CI12=0.1;
% lift coefficient at state 3
Cl13=0.1;

% intial deflection of flap A (radians)
A_deltal=0*pi/180;

% intial deflection of flap B (radians)
B_deltal=0;

% deflection of flap A at state 2 (radians)
A _delta2=0;

% deflection of flap A at state 3 (radians)
A_delta3=0;
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% angle of attack at state 1 (radians)

alphal=0;

% angle of attack at state 2 (radians)
alpha2=0;

% angle of attack at state 3 (radians)
alpha3=0;

% start of flap A (x/c), see Figure 3.12
XA=.6;

% start of flap B (x/c), see Figure 3.12
xB=.8;

%%%%%%%%%%%%6%6%6%%%6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%0%%%%%%%%%6%6%%6%6%6%%6%%%%%%%%%%%6%%%%%%%%%%% %% %%
thetabl=acos(1-2*xA);
thetab2=acos(1-2*xB);

% Eq. (3.53) - per-radian of flap deflection A and B

al A =-1/(-2*xA + 2*xB);

a2 B=-(-1)/(-2 + 2*xB);

bl A =-(1*xA)/(XA - xB);

b2 A =-(-1+ (1)*xB)/(-1 + xB);

b2 B =-((1)*xB)/(-1 + xB);

cl A =-(1*xA"2)/(-2*xA + 2*xB);

c2 A =-(-((1)*xB"2) + 1*(xA + xB - xA*xB))/(2*(-1 + xB));
c2 B =-(-((1)*xB"2))/(2*(-1 + xB)) ;

% Eq. (3.54) - per-radian of flap deflection A and B

A0 _A=-1/pi*((al_A+bl_A)*(thetab2-thetabl)-al A*(sin(thetab2)-sin(thetabl))...
+b2 A*(pi-thetab2));

Al _A=2/pi*((al_A+bl_ A)*(sin(thetab2)-sin(thetabl))-al A/2*((thetab2-thetabl)...
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+1/2*(sin(2*thetab2)-sin(2*thetab1)))+(b2_A)*(-sin(thetab2)));
A2 A=2/pi*(.5%(al_A+bl_ A)*(sin(2*thetab2)-sin(2*thetabl))-al A*((sin(thetab2)...
-sin(thetab1))/2+(sin(3*thetab2)-sin(3*thetab1))/6)-.5*(b2_A)*sin(2*thetab2));

A0 B=-1/pi*(a2_B*(pi-thetab2)+b2 B*(pi-thetab2)+a2 B*sin(thetab2));
Al B=2/pi*((a2_B+b2 B)*(-sin(thetab2))-a2 B/2*((pi-thetab2)-.5*sin(2*thetab2)));
A2 B=2/pi*(-.5*%(a2_B+b2 B)*sin(2*thetab2)+a2 B*(sin(thetab2)/2+sin(3*thetab2)/6));

% Eq. (3.6 - 3.8) - per-radian of flap deflection A and B
Cm_B=pi/4*(A2_B-Al_B);
Cl B=pi*(2*A0_B+Al B);

Cm_A=pi/4*(A2_A-Al_A);
Cl A=pi*(2*A0_A+Al A);

% Defined in Eq. (3.55)
SA=-(0.5-xA)/(xB-xA);
SB=-(xB-0.5)/(xB-1);
TA=0.5/(xB-xA);
TB=-0.5/(xB-1);
RA=-1;
RB=(0.5-xB)/(xB-1);

% Calculates the gamma distribution per-radian of flap deflection A and B

% (Eq. 3.55)

x=.001:.001:1-.001;

theta=acos(1-2*x);

gammaAb=2/pi*(TA*(thetab2-thetab1)*sin(theta)...
+(SA+TA*cos(theta)).*(log((sin(theta)*tan(thetab2/2)...
-cos(theta)+1)./(sin(theta)*tan(thetab2/2)+cos(theta)-1))...
-log((sin(theta)*tan(thetab1/2)-cos(theta)+1)./(sin(theta)*tan(thetab1/2)...
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+cos(theta)-1)))+log((sin(theta)*tan(thetab2/2)-cos(theta)...
+1)./(sin(theta)*tan(thetab2/2)+cos(theta)-1)));

gammaAa=-2/pi*(SA*(thetab2-thetab1)+TA*(sin(thetab2)-sin(thetab1))...
+RA*(pi-thetab2))*((1+cos(theta))./sin(theta));

gammaBb=2/pi*(TB*(pi-thetab2)*sin(theta)-(SB+...
TB*cos(theta)).*log((sin(theta)*tan(thetab2/2)-cos(theta)+...
1)./(sin(theta)*tan(thetab2/2)+cos(theta)-1)));

gammaBa=-2/pi*(-TB*(sin(thetab2))+RB*(pi-thetab2))*((1+...
cos(theta))./sin(theta));

%%%%%0%0%%%%6%0%%%%6%0%0%%%6%0%0%%%%%0%%%%0%0%%%%6%%%%%%%%% %%
% Calculates the Q-terms defined in Eq. (2.18)
%%%%%0%0%%%%6%0%%%%6%0%0%%%6%0%0%%%%%0%%%%6%0%%%%6%0%%%%%%%% %%
x01=xA+.001:.001:xB-.001;

thetaOl=acos(1-2*x01);

fA1=-1/8*(1-cos(theta01)).”2./(xB-xA)-1/2*(1-cos(theta01))*xA/(xA-xB)-...
S5*xAM2/(xB-xA); % from Eq. (3.56)

% Integrals performed numerically

Q_A_ A al=trapz(theta01,-2/pi*(SA*(thetab2-thetab1)+TA*(sin(thetab2)-sin(thetabl))...
+RA*(pi-thetab2))*((1+cos(theta01))./sin(theta01)).*(-1/8*(1-...
cos(theta01)).72./(xB-xA)-1/2*(1-cos(theta01))*xA/(xA-xB)...
-.5*xA"2/(xB-xA))*0.5.*sin(theta01) );

Q_A B al=trapz(thetaOl, -2/pi*(-TB*(sin(thetab2))+RB*(pi-thetab2))*((1+...
cos(theta01))./sin(theta01)).*(-1/8*(1-cos(theta01))."2./(xB-xA)-1/2*(1-...

cos(theta01))*xA/(xA-xB)-.5*xA*2/(xB-xA))*0.5.*sin(theta01) );

Q_A_alphal=trapz(theta01,2*(1)*((1+cos(theta01))./sin(theta01)).*(-1/8*(1-...
cos(theta01)).72./(xB-xA)-1/2*(1-cos(theta01))*x A/(xA-xB)-...
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S5*xA2/(xB-xA))*0.5.*sin(theta0l) );

Q A A bl=trapz(thetaO1, 2/pi*(TA*(thetab2-thetab1)*sin(thetaO1)+...
(SA+TA*cos(theta01)).*(log((sin(thetaO1)*tan(thetab2/2)-cos(thetaO1)+...
1)./(sin(theta01)*tan(thetab2/2)+cos(theta01)-1))-...
log((sin(theta01)*tan(thetab1/2)-cos(thetaOl)+...
1)./(sin(theta01)*tan(thetab1/2)+cos(theta01)-1)))+...
log((sin(theta01)*tan(thetab2/2)-cos(thetaO1)+...
1)./(sin(theta01)*tan(thetab2/2)+cos(theta01)-...
1))).*(-1/8*(1-cos(theta01)).”2./(xB-xA)-1/2*(1-...
cos(theta01))*xA/(xA-xB)-.5*xA"2/(xB-xA))*0.5.*sin(theta01));

Q_A B bl=trapz(thetaO1, 2/pi*(TB*(pi-thetab2)*sin(theta01)-...
(SB+TB*cos(theta01)).*log((sin(theta01)*tan(thetab2/2)-...
cos(thetaO1)+1)./(sin(theta01)*tan(thetab2/2)+cos(thetaO1)-...
1))).*(-1/8*(1-cos(theta01)).”2./(xB-xA)-1/2*(1-...
cos(theta01))*xA/(xA-xB)-.5*xA"2/(xB-xA))*0.5.*sin(theta01));

x02=xB+.001:.001:1-.001;

theta02=acos(1-2*x02);

fA2=-.5*(1-cos(theta02))+.5*(xB+xA); % from Eq. (3.56)

fB=1/8*(1-cos(theta02)).”2./(xB-1)-1/2*(1-cos(theta02))*xB/(xB-1)+...
S5*xB"2/(xB-1); % from Eq. (3.56)

Q_A_ A a2=trapz(theta02,-2/pi*(SA*(thetab2-thetab1)+TA*(sin(thetab2)...
-sin(thetab1))+R A*(pi-thetab2))*((1+cos(theta02))./sin(theta02)).*(-...
.5*(1-cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02) );

Q_A B a2=trapz(theta02, -2/pi*(-TB*(sin(thetab2))+RB*(pi-thetab2))*((1+...
cos(theta02))./sin(theta02)).*(-.5*(1-cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02));

Q_A_alpha2=trapz(theta02,2*(1)*((1+cos(theta02))./sin(theta02)).*(-.5*(1-...
cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02) );
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Q A A b2=trapz(theta02, 2/pi*(TA*(thetab2-thetab1)*sin(theta02)+...
(SA+TA*cos(theta02)).*(log((sin(theta02)*tan(thetab2/2)-cos(theta02)+...
1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-1))-log((sin(theta02)*tan(thetab1/2)-...
cos(theta02)+1)./(sin(theta02)*tan(thetab1/2)+cos(theta02)-1)))+...
log((sin(theta02)*tan(thetab2/2)-cos(theta02)+1)./(sin(theta02)*tan(thetab2/2)+...
cos(theta02)-1))).*(-.5*(1-cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02) );

Q_A B b2=trapz(theta02, 2/pi*(TB*(pi-thetab2)*sin(theta02)-(SB+...
TB*cos(theta02)).*log((sin(theta02)*tan(thetab2/2)-cos(theta02)+...
1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-1))).*(-.5*(1-...
cos(theta02))+.5*(xB+xA))*0.5.*sin(theta02));

Q B_A a=trapz(theta02,-2/pi*(SA*(thetab2-thetab1)+TA*(sin(thetab2)-...
sin(thetab1))+RA*(pi-thetab2))*((1+cos(theta02))./sin(theta02)).*(1/8*(1-...
cos(theta02)).72./(xB-1)-1/2*(1-cos(theta02))*xB/(xB-1)+.5*xB"2/(xB-...
1)).*0.5.*sin(theta02) );

Q B B a=trapz(theta02, -2/pi*(-TB*(sin(thetab2))+RB*(pi-thetab2))*((1+...
cos(theta02))./sin(theta02)).*(1/8*(1-cos(theta02)).”2./(xB-1)-...
1/2*(1-cos(theta02))*xB/(xB-1)+.5*xB"2/(xB-1))*0.5.*sin(theta02) );

Q_B_alpha=trapz(theta02,2*(1)*((1+cos(theta02))./sin(theta02)).*(1/8*(1-...
cos(theta02)).”2./(xB-1)-1/2*(1-cos(theta02))*xB/(xB-1)+.5*xB*2/(xB-...
1)).*0.5.*sin(theta02) );

Q B A b=trapz(theta02, 2/pi*(TA*(thetab2-thetabl)*sin(theta02)+...
(SA+TA*cos(theta02)).*(log((sin(theta02)*tan(thetab2/2)-cos(theta02)+...
1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-1))-...
log((sin(theta02)*tan(thetab1/2)-cos(theta02)+...
1)./(sin(theta02)*tan(thetab1/2)+cos(theta02)-1)))+...
log((sin(theta02)*tan(thetab2/2)-cos(theta02)+...
1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-...
1))).*(1/8*(1-cos(theta02)).”2./(xB-1)-1/2*(1-...
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cos(theta02))*xB/(xB-1)+.5*xB"2/(xB-1))*0.5.*sin(theta02) );

Q B B b=trapz(theta02, 2/pi*(TB*(pi-thetab2)*sin(theta02)-(SB+...
TB*cos(theta02)).*log((sin(theta02)*tan(thetab2/2)-cos(theta02)+...
1)./(sin(theta02)*tan(thetab2/2)+cos(theta02)-1))).*(1/8*(1-...
cos(theta02)).”2./(xB-1)-1/2*(1-cos(theta02))*xB/(xB-1)+.5*xB*2/(xB-...
1))*0.5.*sin(theta02));

Q A A=real(Q A A al+Q A A bl+Q A A a2+Q A A b2);

Q A B=real(Q A B al+Q A B bl+Q A B a2+Q_A B b2);

Q B A=real(Q B_A a+Q B_A b);

Q B B=real(Q_ B B a+Q B B b);

Q_A alpha=Q_A_alphal+Q_A alpha?2;
%%%%%0%0%%%%6%0%%%%6%0%0%%%6%0%0%%%%%0%%%%0%0%%%%6%%%%%%%%% %%
%%%%%0%0%%%%6%0%%%%6%0%0%%%6%0%0%%%6%%0%%%%6%0%%%%6%0%%%%%%%% %%

B_delta2=(CI2-Cl_A*A_delta2-2*pi*alpha2)/Cl B;
B_delta3=(CI3-Cl_A*A_delta3-2*pi*alpha3)/Cl B;

% Applies Eq. (2.19) for each control surface for both Cl changes 12 and 23

tau0 A12=-(Q A A*A deltal+Q_ A B*B deltal+Q A alpha*alphal)/(Q A A*(A_delta2-...

A _deltal)+Q_A B*(B_delta2-B_deltal)+Q A alpha*(alpha2-alphal));

tau0) B12=-(Q B _A*A deltal+Q B B*B deltal+Q B alpha*alphal)/(Q B A*(A_delta2-...
A deltal)+Q B B*(B_delta2-B deltal)+Q B alpha*(alpha2-alphal));

tau0 A23=-(Q A A*A delta2+Q A B*B delta2+Q A alpha*alpha2)/(Q A A*(A_delta3-...
A delta2)+Q_ A B*(B_delta3-B_delta2)+Q_ A alpha*(alpha3-alpha2));

tau0 B23=-(Q B_A*A delta2+Q B B*B _delta2+Q_ B_alpha*alpha2)/(Q_B_A*(A_delta3-...
A _delta2)+Q B _B*(B_delta3-B_delta2)+Q_ B_alpha*(alpha3-alpha2));
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I A0 12=(Q A A*A deltal+Q A B*B deltalt+Q A alpha*alphal)*(A_ delta2-A deltal);
I B 0 12=(Q B A*A deltal+Q B B*B deltal+Q B alpha*alphal)*(B delta2-B_deltal);
I A1 12=(Q A A*A delta2+Q A B*B delta2+Q A alpha*alpha2)*(A_delta2-A deltal);
I B 1 12=(Q B_A*A delta2+Q B B*B_delta2+Q B alpha*alpha2)*(B_delta2-B_deltal);

I A 0 23=(Q A A*A delta2+Q A B*B_delta2+Q_A_alpha*alpha2)*(A_delta3-A_delta2);
I B 0 23=(Q B_A*A delta2+Q B B*B_delta2+Q B alpha*alpha2)*(B_delta3-B_delta2);
I A 1 23=(Q_A_A*A delta3+Q_A B*B_delta3+Q_A_alpha*alpha3)*(A_delta3-A_delta2);
I B 1 23=(Q B _A*A delta3+Q B B*B_delta3+Q B alpha*alpha3)*(B_delta3-B_delta2);

% Applies Eq. (2.20) and (2.21)
ifI A0 12<=0&1 A 1 12<=0

W A 12=(Q A A*(A_delta2+A _deltal)+Q A B*(B delta2+B_deltal)+Q A_alpha*(alpha2-+..

alphal))*(A_delta2-A_deltal)/2;

elseif | A 0 12>=0 & I A 1 12>=0
W A 12=0;
elseif | A 0 12<=0 & I A 1 12>=0

W_A 12=(Q_A A*((A_delta2-A deltal)*tau0_A1272/2+A deltal *tau0 A12)+...
Q_A B*((B_delta2-B_deltal)*tau0_A1272/2+B deltal*tau0_A12)+...
Q_A_ alpha*((alpha2-alphal)*tau0 A12"2/2+alphal*tau0 A12))*(A_delta2-A_deltal);

else

W_A 12=(Q_A_A*((A_delta2-A_deltal)*(1-tau0_A1272)/2+A_deltal *(1-tau0_A12))...
+Q_A B*((B_delta2-B_deltal)*(1-tau0_A1272)/2+B_deltal *(1-tau0_A12))+...
Q_A_ alpha*((alpha2-alphal)*(1-tau0_A12"2)/2+...
alphal*(1-tau0_A12)))*(A_delta2-A_deltal);

end
ifl B0 12<=0&1 B 1 12<=0

W_B 12=(Q_B_A*(A delta2+A deltal)+Q B B*(B_delta2+B_deltal)+...
Q_B alpha*(alpha2+alphal))*(B_delta2-B_deltal)/2;

88



elseif | B 0 12>=0& 1 B 1 12>=0
W_B 12=0;
elseif | B 0 12<=0& 1 B 1 12>=0
W _B 12=(Q B _A*((A_delta2-A_deltal)*tau0_B1272/2+A_deltal *tau0_B12)+...
Q B B*((B_delta2-B_deltal)*tau0_B1272/2+B_deltal*tau0_B12)+...
Q_B alpha*((alpha2-alphal)*tau0 B12"2/2+alphal*tau0 B12))*(B_delta2-B_deltal);
else
W_B 12=(Q_B A*((A_delta2-A_deltal)*(1-tau0_B1272)/2+A_deltal*(1-tau0_B12))+...
Q_B B*((B_delta2-B_deltal)*(1-tau0_B12"2)/2+B_deltal *(1-tau0_B12))+...
Q_B_alpha*((alpha2-alphal)*(1-tau0_B12/2)/2+alphal*(1-...
tau0_B12)))*(B_delta2-B_deltal);

end

ifl A 023<=0&1 A 1 23<=0
W_A 23=(Q A A*(A delta3+A delta2)*+Q A B*(B_delta3+B_delta2)+...
Q_A alpha*(alpha3+alpha2))*(A_delta3-A_delta2)/2;
elseif | A 0 23>=0& 1 A 1 23>=0
W_A 23=0;
elseif | A 0 23<0& 1 A 1 23>=0
W_A 23=(Q_A A*((A delta3-A delta2)*tau0 A2372/2+A_delta2*tau0 A23)+...
Q A B*((B_delta3-B_delta2)*tau0 A23"2/2+B_delta2*tau0 A23)+...
Q_A_ alpha*((alpha3-alpha2)*tau0 A2372/2+alpha2*tau0 A23))*(A_delta3-A_delta2);
else
W_A 23=(Q A A*((A_delta3-A_delta2)*(1-tau0_A23"2)/2+...
A delta2*(1-tau0_A23))+Q A B*((B_delta3-B_delta2)*(1-...
tau0_A2372)/2+B_delta2*(1-tau0_A23))+Q A alpha*((alpha3-alpha2)*(1-...
tau0 A2372)/2+alpha2*(1-tau0_A23)))*(A_delta3-A_delta2);

end

ifl B 023<=0&1 B 1 23<=0
W_B 23=(Q B_A*(A delta3+A delta2)+Q B B*(B delta3+B delta2)+...
Q _B_alpha*(alpha3+alpha2))*(B_delta3-B delta2)/2;
elseif I B 0 23>=0& 1 B 1 23>=0

W B 23=0;
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elseif | B 0 23<=0& 1 B 1 23>=0
W_B 23=(Q B A*((A_delta3-A_delta2)*tau0 B2372/2+A delta2*tau0 B23)+...
Q B B*((B_delta3-B delta2)*tau0 B2372/2+B_delta2*tau0 B23)+...
Q_B alpha*((alpha3-alpha2)*tau0 B23"2/2+alpha2*tau0 B23))*(B_delta3-B_delta2);
else
W_B 23=(Q_B_A*((A_delta3-A_delta2)*(1-tau0 B2372)/2+A_delta2*(1-...
tau0_B23))+Q_ B B*((B_delta3-B_delta2)*(1-tau0_B2372)/2+B_delta2*(1-...
tau0_B23))+Q_ B_alpha*((alpha3-alpha2)*(1-tau0_B2372)/2+alpha2*(1-...
tau0 B23)))*(B_delta3-B_delta2);

end

% The total practical work is:

W=(W_A_12+W_A 23+W B_12+W B 23);
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