H. 1 TRIDAG: Solution of tridiagonal systems of equations

The Thomas Algorithm is a special form of Gauss elimination that can be used to solve tridiagonal systems of equations. When the matrix is tridiagonal, the solution can be obtained in $\mathrm{O}(n)$ operations, instead of $\mathrm{O}\left(n^{3} / 3\right)$. The form of the equation is:

$$
a_{i} x_{i-1}+b_{i} x_{i}+c_{i} x_{i+1}=d_{i} \quad i=1, \mathrm{~K}, n
$$

where a_{1} and c_{n} are zero. The solution algorithm (Ref. E.7-1) starts with $k=2, \ldots, n$:

$$
\begin{aligned}
m & =\frac{a_{k}}{b_{k-1}} \\
b_{k}^{\prime} & =b_{k}-m c_{k-1} \\
d_{k}^{\prime} & =d_{k}-m d_{k-1} .
\end{aligned}
$$

Then:

$$
x_{n}=\frac{d_{n}^{\prime}}{b_{n}}
$$

and finally, for $k=n-1, \ldots, 1$:

$$
x_{k}=\frac{d_{k}^{\prime}-c_{k} x_{k+1}}{b_{k}}
$$

In CFD methods this algorithm is usually coded directly into the solution procedure, unless machine optimized subroutines are employed on a specific computer. A sample FORTRAN program to implement this algorithm is given here as:

```
subroutine tridag(a,b,c,d,nn)
c solves a tridiagonal system using the Thomas Algorithm
c there are nn equations, in the tridiagonal form:
c a(i)*x(i-1) + b(i)*x(i) + c(i)*x(i+1) = d(i)
c here, a(1) and c(nn) are assumed 0, and ignored
c x is returned in d, b is altered
c code set up to run on WATFOR-77
c w.h. mason, April 10, 1992
    dimension a(nn),b(nn),c(nn),d(nn)
if(nn .eq. 1) then
    d(1) =d(1)/b(1)
    return
    end if
do 10 k = 2,nn
km1 = k - 1
if(b(k-1) .eq. 0.0) then
    write(6,100) km1
    stop
    end if
xm = a(k)/b(km1)
b}(\textrm{k})\quad=\textrm{b}(\textrm{k})-\textrm{xm}*\textrm{C}(\textrm{km}1
d(k) = d(k) - xm*d(km1)
1 0 ~ c o n t i n u e
```

```
    d(nn) = d(nn)/b(nn)
    k = nn
do 20 i = 2,nn
k = nn + 1 - i
d(k) = (d(k) - c(k)*d(k+1))/b(k)
20 continue
return
100 format(/3x,'diagonal element .eq. O in tridag at k = ',i2/)
end
```

A check can be made using the following main program and resulting output:

```
c main program to check the Tridiagonal system solver
            dimension a(20),b(20),c(20),d(20)
            n = 10
            do 10 i = 1,n
            a(i) = -1.
            b(i) = 2.
            c(i) = -1.
    10 d(i) = 0.
            d(1) = 1.
            call tridag(a,b,c,d,n)
            write(6,610) (i,d(i), i = 1,n)
610 format(i5,e15.7)
            stop
            end
```

The results are:

1	$0.9090909 \mathrm{E}+00$
2	$0.8181819 \mathrm{E}+00$
3	$0.7272728 \mathrm{E}+00$
4	$0.6363637 \mathrm{E}+00$
5	$0.5454546 \mathrm{E}+00$
6	$0.4545454 \mathrm{E}+00$
7	$0.3636363 \mathrm{E}+00$
8	$0.2727273 \mathrm{E}+00$
9	$0.1818182 \mathrm{E}+00$
10	$0.9090909 \mathrm{E}-01$

Reference

H.1-1 Conte, S.D., and deBoor, C., Elementary Numerical Analysis, McGraw-Hill, New York, 1972.

