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Formation flight can result in large induced drag reductions. Optimum spanloads for a
group of aircraft flying in an arrow formation were found using a discrete vortex
method with a Trefftz plane analysis under constraints in lift, pitching moment and
rolling moment coefficients. It has been shown that large reductions in induced drag
can be obtained when the spanwise and vertical distances between aircraft are small. In
certain cases this results in negative induced drag (thrust) on some airplanes in the
configuration. The optimum load distributions necessary to achieve these benefits may,
however, correspond to a geometry that will produce impractical lift distributions if the
aircraft are flying alone. Optimum separation among airplanes in this type of
formation is determined by such diverse factors as the ability to generate the required
optimum load distributions or the need for collision avoidance.

I. Introduction*†

A group of aircraft flying in formation will
experience induced drag savings due to the
upwash coming from nearby airplanes.
Formation flight benefits can be observed in
nature in the flying disposition of migrating
birds, often adopting V-shaped configurations.
These formations help birds save energy by
decreasing drag so that they can travel longer
distances.

The variability in geometry of bird’s wings,
together with their highly controllable flight,
allows them to change their wing geometry and
fly very close to each other. This allows them to
take full advantage of formation flying. For a
rigid wing aircraft the capability of adapting
wing geometry is very limited. Close flying is
difficult because of collision dangers and, until
recently, precision control problems. In this
paper the advantages of formation flying will be
studied as a function of relative distance between
aircraft, and the adaptability and limitations of
rigid aircraft will impose restrictions on the
benefits that can actually be achieved.
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Formation flight has been studied frequently
in the past. For example, Schollenberger and
Lissaman1 investigated the formation flight of
birds. They realized that the bird flexibility was
an important requirement to obtain maximum
advantage in formation flying. Their analysis
showed that a 40% induced drag reduction could
be achieved for each bird flying in an arrow
formation consisting of just three birds.
According to these authors, when 25 birds were
flying in an arrow formation, induced drag
savings as large as 65% could be achieved for
each bird, and this drag reduction could result in
a range increase of about 71%. Feifel2 used a
vortex lattice method with calculations
performed in the near field to compute the
advantages of formation flying in an array of five
airplanes of specified geometry flying in a V-
formation. Feifel only shows results for one test
case, so that the magnitude of the induced drag
reduction and its variation with spacing between
aircraft was not shown. Maskew3, also using a
vortex lattice method, but with a Trefftz plane
analysis, studied the induced drag variation for
each aircraft and for the whole formation as a
function of the distance (in the three space
coordinates) between airplanes for an arrow
formation consisting of three equal aircraft.

In the last decade formation flying has again
become of interest.4 Beukenberg and Hummel5

studied formation flying, presenting flight test
data for three aircraft flying in an arrow
formation, and comparing the data to theoretical
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aerodynamic results obtained with various vortex
models. Blake and Multhopp6 also examined the
problem recently. This was followed by
experimental investigations performed by
Gingras7 who did wind tunnel experiments to
investigate the aerodynamic effects of a lead
aircraft on a trail aircraft in close formation.

 When dealing with arrow formations, all the
aircraft that are off-center will have an
asymmetrical load distribution due to the upwash
distribution coming from the other airplanes. Of
course the rolling moment coefficient must be
zero for each aircraft in the formation. In their
studies, Feifel2 and Maskew3 used aircraft of
completely known geometry, that is, the twist
distribution was specified for the wings (no twist
for both authors) and aileron deflection was used
to set rolling moment coefficient zero.

A different approach was followed here,
where no twist or camber distribution is known
before-hand, and the loads are calculated to
obtain minimum induced drag for the whole
formation under individual aircraft constraints of
lift coefficient and rolling moment coefficient.
While Feifel and Maskew solved an analysis
problem with known geometry, this paper
addresses a design problem for which the twist
and camber distribution is not known. Instead,
the actual geometry must be found after the
calculations are made to find the required load
distributions. Attacking the problem in a design
mode will give maximum achievable benefits for
the whole formation.

II. General Approach

Airplanes in formation flight can obtain large
advantages in induced drag reductions as a result
of the influence that the upwash from other
aircraft exert on them. A code has been
developed to obtain the optimum spanload
distributions for a group of airplanes flying in a
V-formation. Only aerodynamic considerations
are taken into account, with no structural
constraints.

 The main purpose of the code developed is to
find the optimum spanload that gives minimum
induced drag for the whole system of airplanes.
The induced drag for each aircraft alone will also
be of primary importance to study the effects of
relative position on individual aircraft
performance. Induced drag will be the measure
of effectiveness, both for the formation and for
the single aircraft.

An important aspect of the code developed
and the studies performed must be pointed out.

The flow is being modeled as potential, inviscid
flow. A potential flow vortex model
representation is being used. These models
usually give quite good results for regions that
are not near the vortex cores, which are small,
where viscous effects become important.

A description of the aerodynamics code used
for optimum load distribution design and
induced drag calculations follows.

III. Description of the Aerodynamics Code

A code written by Grasmeyer8 (idrag version
1.1), which applies the theories developed by
Blackwell9, Lamar10, Kuhlman11 and Kroo12 was
modified here. This theory is a discrete vortex
method with a Trefftz plane analysis to calculate
spanloads corresponding to the minimum
induced drag of the configuration.

The code also includes an optional trim
constraint, in which the pitching moment
coefficient can be fixed if several surfaces are
analyzed. Given the geometry for a number of
surfaces, the program finds the spanload that
gives minimum induced drag for a specific value
of lift coefficient and moment coefficient using
the method of Lagrange multipliers8.

Several modifications have been made to this
code to include the capability of analyzing
several aircraft configurations. First, a lift
coefficient constraint is now necessary for each
aircraft. A trim constraint on the rolling moment
and the pitching moment of individual aircraft in
the formation is also required.

The code now assumes that the configuration
is always symmetric, so that the geometry of V-
formations can be specified only with the central
aircraft and one side of the formation. The
central aircraft, due to symmetry, will have an
equal load distribution on both sides. Off-center
airplanes, on the contrary, will have
asymmetrical spanloads because the formation
does not meet the symmetry condition from their
point of view. This asymmetry causes these
airplanes to have non-zero rolling moment
coefficients about their centers of gravity, so that
an extra constraint to maintain rolling moment
coefficient for off-centered aircraft equal to zero
has also been imposed.

Optimum load distributions for a group of
airplanes flying in the V-formation is found
using the method of Lagrange Multipliers under
the constraints of a specified lift coefficient for
each aircraft, a pitch trim constraint for each, and
a rolling moment coefficient constraint for all
except the central one.
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Another major modification has been
introduced in the code to allow the analysis and
induced drag calculations of separate airplanes.

The code used (idrag version 1.1) is merely
an implementation of the equations used by
Blackwell9. This theory makes use of Munk’s
Stagger Theorem13. According to the theorem,
the induced drag of the entire system is
independent of the streamwise location of the
spanloads. Once the optimum load distribution
for the whole configuration has been found, that
will always be the optimum no matter what
changes in the streamwise location of different
aircraft in the formation are made, and the
formation induced drag will always remain the
same. For this reason, Blackwell’s theory makes
the induced drag calculations in the Trefftz
plane. The Trefftz plane is located at an infinite
distance downstream of the lifting surfaces.
Making the calculations in this plane allows
Blackwell to ignore streamwise effects.

 For a formation configuration, where the
interest lies not only in the induced drag as a
whole, but rather on the induced drag of each
airplane, Blackwell’s theory is not completely
applicable. This is because the induced drag of
each lifting surface is dependent on its
streamwise position although the total induced
drag of all the aircraft is not.

The code was modified by assigning a
streamwise coordinate position to each discrete
vortex. The downwash angles are calculated on
the lifting surfaces at the midpoint of each
discrete bound vortex line. Calculations are now
performed in the near field, and not in the Trefftz
plane. The influence of each trailing vortex on
each force point was modified applying Biot-
Savart law in the streamwise direction and the
influences of the bound vortex lines on the force
points were also added. In that way, optimum
spanloads are still independent of streamwise
vortex locations, but individual downwash
angles and induced drags have a strong
dependence on movements along this axis (total
induced drag of the complete system remains
unchanged). To obtain accurate nearfield
induced drag calculations using this approach the
bound vortices must not be swept. This
requirement was proven theoretically by Jan
Tulinius14, and was proven numerically in this
work.

Forces are calculated at the midpoint of the
bound vortex lines to obtain a quick and simple
way for finding minimum drag spanloads, while
performing the calculations in the near field.
Loads at each station are assumed to be applied

at the same location. If the induced angle is
known here, the induced drag at each station is
simply the induced angle times the
corresponding load. However, there is one slight
complication. The relation between the loads at
each station and the wing geometry (twist or
camber) at that station has not been established.
Thus at this point we have not found the twist or
camber distribution required to obtain the
spanload.

With the code modified, results can be
obtained that give total and individual drag
savings as a function of aircraft relative distances
to each other. The optimum load distributions
required to achieve these drag benefits are also
obtained. Complete details, including the
mathematical derivations, are given in the thesis
by Iglesias15, which is available electronically.

IV. Results for equal aircraft

Optimum load distributions for a group of
three equal aircraft flying in an arrow formation
will be found, and their induced drag compared
as a function of relative distance in the three
space directions. Planform geometry and the
relative spacing between aircraft are the same as
in Maskew’s3, with three airplanes, each one of
them consisting only of planar wing panels so
that pitching moment constraints do not need to
be applied. Each planform is trimmed with
respect to rolling moment. The characteristics of
the planform geometry are given in Table 1
(from Maskew3).

Table 1. Basic wing geometry
Span 2.0
Geometric mean chord 0.25
Area 0.5
Aspect ratio 8.0
Taper ratio 0.33
Sweepback (quarter-chord line) 5 deg
Dihedral 0

The aircraft will be moved relative to each
other in the x (streamwise), y (spanwise) and z
(vertical) directions, studying the effects of these
distances on load distributions and drag savings.
Figure 1 shows how the off-center airplane will
be moved relative to the central one. Recall that
it is assumed that the configuration will always
be symmetric.

The off-center aircraft (Aircraft 2) will be
moved along the heavy bold line in Figure 1.
First, from x/b = -3.0 to x/b = +3.0, the variation
in induced drag savings will be studied as a
function of streamwise distance, maintaining
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y/b=0.89 and z/b=0.01. This small, but still
significant value of vertical offset between
airplanes is used due to numerical problems in
the code when the projections of different lifting
surfaces in the Trefftz plane lay on top of each
other.

Then, with a fixed x/b = 3.0, the spanwise
effect will be considered by letting z/b = 0.01
and changing y/b. Finally, the vertical effect is
obtained by letting z/b vary while setting x/b =
3.0 and y/b = 0.89. This is similar to the
approach used by Maskew3.

Figure 1. Movement of the off-centered
aircraft relative to the central one (from
Maskew3)

Although the planform geometry and
movements of the airplanes are taken from
Maskew’s paper, the main purpose here is not to
compare results. The geometric similarities will
certainly make them resemble his results.
However, Maskew solves an analysis problem in
which the wing twist distribution is specified and
the aileron deflection is found so that rolling
moment equals zero. With the whole wing

geometry fixed, downwash angles completely
determine the loads at each station.

In this paper a design problem is treated, in
which only planform geometry is known and
optimum loads are found. This time the loads are
not determined by the downwash angles
satisfying a surface boundary condition. Instead,
we determine the loads and downwash angles
from the requirement of minimum induced drag
for the formation, together with the imposed
constraints on lift and rolling moment.

To set the rolling moment coefficient to zero
in the design problem, the aileron used by
Maskew will not be useful, because calculations
are not dependent on twist or camber, and
therefore, angle of attack. In a sense, the entire
wing is considered to be a control surface and the
rolling moment constraint is applied to each
wing through a constraint on the spanload.

A. Streamwise Effect

Airplane 2 is moved along the x-axis from
x/b=-3 to x/b=3 as shown in Figure 1. Figure 2
shows the change in induced drag coefficient for
each aircraft and for the formation as the
streamwise relative distance is changed. Results
are shown as the ratio of their induced drag in the
formation to their induced drag when flying alone.
Induced drag for single flight is the minimum
induced drag for an aircraft alone configuration,
corresponding to an elliptic lift distribution and a
span efficiency factor equal to 1.
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Figure 2. Effect of streamwise position,
y/b=0.89, z/b=0.01.

Note that the induced drag for the formation
is independent of the streamwise location of the
airplanes, as stated by Munk’s theorem. That
constant value is the minimum induced drag for
the whole configuration. The optimum spanloads
corresponding to this minimum drag are shown
in Figure 3 (only shown half). The load
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distribution is also independent of streamwise
position, so that Figure 3 shows the spanload for
any x/b.
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Figure 3. Optimum load distribution z/b=0.01,
y/b=0.89

The induced drag coefficients of Aircraft 1
and Aircraft 2 are highly dependent on x when
the aircraft are close in this direction. For a
streamwise distance between them greater than
three spans, their induced drag reaches a steady
value and is no longer dependent on x separation.

When x/b is negative, the central aircraft is
behind the two leading ones, so that it receives
the upwash from them. The result is that Aircraft
1 has a negative induced drag (a thrust forward).
The upwash from the leading aircraft is higher
than the downwash caused by the central aircraft
on itself.

For x/b positive, the central aircraft is leading
the formation, and its upwash influences Aircraft
2 reducing its induced drag. This time, since it is
only the central aircraft influencing two trailing
ones, the upwash contribution by Aircraft 1 on
Aircraft 2 is lower than the downwash caused by
Aircraft 2 on itself.

When Aircraft 1 leads the formation with a
high streamwise separation with respect to
Aircraft 2 (see Figure 2 for x/b=3), its induced
drag ratio is greater than one. The induced drag
coefficient when flying alone was established to
be the minimum induced drag, corresponding to
an elliptical load distribution. Then, the leading
aircraft suffers a decrease in performance. This
seems contradictory, since almost no downwash
should be felt on Aircraft 1  due to Aircraft 2  (it
is far aft). However, this increase in induced drag
coefficient enhances the performance of the
trailing airplanes, so that a formation minimum
induced drag is obtained. Figure 3 shows that
the load distribution for the central aircraft is not
elliptic. It has higher loads toward the wing tip
than an elliptically loaded wing would have.

These high loads towards the tip induce greater
upwash angles on the trailing aircraft, reducing
their induced drag coefficients. The result is that
a decrease in performance in the leading aircraft
can help obtaining overall drag reductions for the
formation.

The same thing happens for a high negative
value of x/b. In this case the off-center airplanes
lead the formation and they experience a
reduction in performance due to their non-elliptic
load distributions. Here, however, the two
leading aircraft influence each other so that their
induced drag increase is compensated by the
upwash they exert on each other.

For x/b near zero, the induced drag curves for
Aircraft 1 and Aircraft 2 have a break (see
Figure 2). This is caused by the influence of the
bound vortex lines on the airplanes. If Aircraft 1
leads the formation, it feels an upwash from the
bound vortex lines of the trailing aircraft, and
exerts a downwash on them. When they cross,
the upwash and downwash influences are
inverted and a break in the induced drag curve
appears. The break is a lot smoother if vertical or
spanwise distance is increased (for a y/b = 0.94
the break no longer appears). Note that a
streamwise distance near zero with a vertical
distance as small as 0.01 is not really a
physically achievable situation.

One further consideration must be pointed
out. Figure 3 shows the asymmetry in the load
distribution of Aircraft 2. This asymmetry is a
consequence of a V-formation geometry, in
which only the central aircraft has a symmetric
lift distribution. Despite the asymmetric spanload
on Aircraft 2, its rolling moment coefficient
about its center of gravity is zero (the rolling
moment constraint was active). Achieving the
desired lift distribution will be the greatest
problem, not only because of the asymmetry of
the load distribution, but because the spanloads
will be dependent on vertical and spanwise
distance between airplanes.

B. Spanwise Effect

Aircraft 2 is moved along the y direction
while x/b is fixed at a value of 3.0 and z/b=0.01.
Figure 4 shows the changes in induced drag for
each aircraft and the whole formation as the
spanwise distance is varied.
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The formation induced drag coefficient is
highly dependent on spanwise separation. When
y/b=1 the right tip of Aircraft 1 coincides with
the left tip of Aircraft 2 in y location. The
formation minimum actually occurs for a value
of y/b less than one, where Aircraft 2 is in the
wake of the leading aircraft. For a spanwise
distance of two spans, the drag savings are very
small and formation flying is no longer
beneficial. Thus, it is important to maintain the
airplanes in close spanwise position to obtain
any significant induced drag reduction.
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Figure 4. Effect of spanwise position,
x/b=3.0, z/b=0.01.
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The drag dependence of Aircraft 2 on spanwise
distance is also very strong, with 80% potential
induced drag savings for optimum position.
Aircraft 1, however, has a constant induced drag
coefficient equal to its minimum induced drag
when flying alone as long as the airplane tips do
not get close in the spanwise direction. If the
aircraft tips come close or overlap, Aircraft 1
performance decreases, while the induced drag
for Aircraft 2 and the formation starts decreasing
more rapidly.

The previous section showed how a decrease
in performance in Aircraft 1 could produce an
induced drag decrease for the trailing airplanes,
and in turn for the whole formation. But it is
necessary to see why this effect only takes place
for close spanwise distances. Figure 5 shows the
optimum load distributions for several spanwise
positions.

When the airplane tips start overlapping, their
optimum load distributions are very different
from the elliptical loading, the main difference
being higher loads in the vicinity of the other
aircraft’s tip. These loads increase drag on
Aircraft 1 but induce a greater upwash on
Aircraft 2, improving its performance. That is
why Figure 4 shows a rise in induced drag when
tips overlap.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

y

lo
a
d

Aircraft 2Aircraft 1

b) z/b = 0.01, y/b = 0.95

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

y

lo
a
d

Aircraft 2Aircraft 1

d) z/b = 0.01, y/b = 1.05

Figure 5. Optimum load distribution for different spanwise distances
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For a tip spanwise distance greater than
y/b=1, the overlapping does not occur, and the
optimum load distributions for both airplanes
become nearly elliptic. Their spanloads are now
close to the optimum for single flight. In this
situation, higher loads towards the aircraft tip
will again decrease leading aircraft performance
helping the trailing airplanes. However, the
induced upwash on Aircraft 2 will be much
smaller when the aircraft do not overlap (note
that induced velocities are inversely proportional
to spanwise distance). The result is that the
reduction in the trailing aircraft drag will not
compensate for the drag increase on the leading
aircraft. The formation minimum corresponds to
load distributions close to those for solo flight
when aircraft tips do not overlap.

The fact that a potential flow vortex model is
used in this analysis should be emphasized here.
Overlapping tips means close vortex interactions,
where potential flow can fail and viscous effects
may need to be included.

C. Vertical Effect

Aircraft 2 is moved in the vertical direction
while keeping y/b=0.89 and x/b=3.0. The
induced drag variation is shown in Figure 6.
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Figure 6. Vertical effect, x/b=3.0, y/b=0.89.

The strong dependence on z location is clear
from this figure. Maximum drag reductions for
the formation occur at z=0 (induced drag
variation will be equal for negative values of
vertical position). The actual drag reduction
values at z=0 are not obtained due to numerical
problems at these very close vertical locations.

When the vertical distance between aircraft is
small (less than 0.05), optimum load
distributions start deviating from their elliptical
shapes, having higher loads near the tip. A
decrease in Aircraft 1 performance that helps

formation drag is again observed. The load
distribution change with vertical position is
similar to that obtained with spanwise distance
variation (Figure 5).

V. Results for different aircraft sizes

Recently, interest has been concentrated on
systems of airplanes consisting of a leading,
large size mother aircraft and two smaller aircraft
on its side, trailing the formation. The greater
loads that the mother aircraft experiences in
flight produce large upwash velocities that can
be used by the trailing airplanes. In this way
smaller, less efficient airplanes can get large drag
benefits from big, efficient aircraft with long
ranges.

The configuration studied here is shown in
Figure 7. The planform characteristics of the
mother aircraft are given in Table 2. Aircraft 2
geometry is exactly equal to that of the leading
aircraft, with a scale factor of 0.5. That is,
Aircraft 1  is exactly twice as large as Aircraft 2 .
The lift coefficients of both airplanes are set to a
value of 0.6.

Note that the airplanes now have tail panels,
so that the pitching moment coefficient can be
included in the calculations. Optimum spanloads
for minimum induced drag are found with
constraints in lift, pitching moment and rolling
moment coefficients.

Since the smaller, off-center aircraft are the
ones that must receive drag benefits from the
central one; they are located trailing the
formation. The streamwise distance between
aircraft is set to be large enough so that aircraft
collision can be avoided and induced drag
coefficients are independent of x direction.
Figure 2 showed that Aircraft 2 obtains the
largest benefit at this position. Figure 6 also
shows that vertical spacing between aircraft must
approach zero for maximum drag reductions. So,
in this study x/b will be set to 3.0 and z/b=0.01.
These values are non-dimensionalized by the
span of the mother aircraft (b=1.0). The small
vertical spacing again avoids numerical
problems.

Only the spanwise effect will be studied this
time, since it will give maximum induced drag
reductions for the trailing airplanes. The induced
drag variation for each aircraft and the formation
as a function of relative spanwise distance is
shown in Figure 8. Spanwise position is non-
dimensionalized by the span of Aircraft 1 . As in
the previous case, when y/b=1 the tips of the
different aircraft are in the same y position.
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Figure 7. Geometry and relative
movements between airplanes for different
aircraft size configuration.

Table 2. Basic wing geometry for mother
aircraft
Span 1.0
Geometric mean chord 0.2
Area 0.2
Aspect ratio 5.0
Taper ratio 1.0
Sweepback (quarter-chord line) 0 deg
Dihedral 0

The induced drag for Aircraft 2 and the
formation is again highly dependent of the
relative spanwise distance between airplanes.
Aircraft 1 has a constant induced drag coefficient
when airplane tips are not very close to each
other. When y/b approaches 1, Aircraft 1
experiences a sharp increase in induced drag that
benefits the whole system of airplanes since the
drag of Aircraft 2 is highly decreased. Negative
induced drag values (a thrust) are experienced by
the trailing aircraft for y/b values lower that 1.05.
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Figure 8. Spanwise effect for different
aircraft size configuration, x/b=3.0, z/b=0.01

Elliptic load distributions, close to the
optimum ones, are obtained for values of y/b
greater than 1.05. It is in this region where the
induced drag coefficient of Aircraft 1 remains
constant. When the tips come closer, the load
distributions deviate from the elliptic shape and
higher loads are found near the tips.

For this case, higher loads on the tips of the
mother aircraft are even more beneficial, since
they will cause a high upwash field that can be
used by the smaller airplanes. The result is that
optimum spanloads for close aircraft positions
deviate more from the elliptical loading for this
type of configuration.

Figure 9 shows the optimum load
distributions for two cases. For y/b=1.0 the
spanloads are very different from flying-alone
optimums, resulting in an 80% increase in the
induced drag of the mother aircraft and a
negative induced drag on the smaller ones (see
Figure 8). For y/b=1.05 the optimum spanloads
are now nearly elliptic. Aircraft 1 still has high
loads near the tips because of the relative
proximity between airplanes. Aircraft 1
experiences an increase in induced drag of less
than 10% while the trailing aircraft achieve drag
reductions greater than 80%.

Again, overlapping tips means close vortex
interactions, where the potential-flow vortex
model may not be accurate.
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Figure 9. Optimum load distributions for

different spanwise distances. Different
aircraft size configuration.

VI. Optimum aircraft position

It seems that the ideal V-shape configuration
will be that in which the induced drag of every
airplane will be the same, so that each one of
them obtains equal benefits. Figure 2 shows that
such a configuration requires close spacing
between aircraft (x/b=0.1). A more realistic
configuration will be that in which aircraft
collision can be avoided. When x/b is high both
in the negative and positive directions, the
danger of collision is eliminated.

Besides collision avoidance, desired aircraft
position is also limited by the ability of each
airplane to maintain its position and optimum
load distribution in the configuration.

It was noted above (see Figures 5 and 9) that
the optimum load distribution is highly
dependent on aircraft’s relative position when
airplanes overlap in the spanwise direction and
they have a close vertical spacing. The key
problem here is how to obtain different load
distributions for different aircraft positions.

The approaches of Feifel2 and Maskew3 do
not encounter that problem since their effective

angle of attack at each station is known. Their
only problem is finding the aileron deflection
required to obtain a zero rolling moment about
the center of gravity.

In this paper the entire wing is treated as a
rolling-control surface. Moreover downwash
velocities and optimum spanloads are dependent
on aircraft position. A new twist distribution is
needed (recall that planform geometry is always
constant) for every configuration to achieve
these load distributions.

Another problem exists for formation flying.
For these cases the rapidly changing conditions
when airplane tips are close to each other leads
to highly varying rolling moment coefficients
that require continuous aileron adjustments.
Wolf, Chichka and Speyer16 developed
decentralized controllers and peak-seeking
control methods to make these adjustments and
maintain the aircraft at their optimum positions.
For the peak-seeking control methods, due to the
difficulties of measuring drag (or thrust) during
flight, airplanes are maintained at a position
where the rolling moment coefficient is a
maximum. It is assumed that the maximum
rolling moment coefficient occurs at the
minimum induced drag location. This
assumption may not always be true, so that real
optimum positions are not necessarily obtained.

Beukenberg and Hummel5 showed that with
the application of such a maximum rolling
moment control method in test flights, only half
of the expected benefits could be achieved. Other
control methods designed to maintain aircraft in
formation have been developed,7,18 but these
methods do not include the strong aerodynamic
effects that cause high rolling moments. Further
work is required in this field before conclusions
can be made.

For this case study, the changing spanload
distributions in the overlap region will be
difficult to obtain. However, important drag
reductions can be obtained for a y/b greater than
one (see Figures 4 and 8). In this region, the
optimum load distribution is in fact nearly
elliptic, very close to the solo flying optimum.

If the overlapping region is not a feasible
solution for a formation configuration due to
geometry or control problems, the induced drag
benefits will be decreased. In the spanwise study
for three equal aircraft, for example, induced
drag reductions for Aircraft 2  will go from 80%
to around 40%, and total formation drag savings
will decrease from 50% to about 30% (see
Figure 4).
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VII. Conclusions

A method has been developed to calculate the
optimum load distribution for a group of aircraft
flying in V-formation that gives minimum
induced drag for the whole configuration. The
method allows the study of induced drag
coefficients for separate aircraft and the
formation as a function of relative distance
between airplanes. Only planform geometry is
fixed for each aircraft in the formation, with no
twist or camber distribution specified.

When the distance between airplanes is
changed, the optimum load distribution giving
minimum induced drag also changes. Twist
distribution must then be changed as a function
of aircraft distance if maximum induced drag
savings are expected.

A test case has been studied consisting of
three aircraft flying in an arrow formation. It has
been shown that the optimum load distribution
(and hence the optimum twist distribution) is
highly dependent on spanwise distance when the
aircraft tips are very close to each other or they
overlap in this direction. When aircraft tips do
not overlap in the spanwise direction the load
distribution nearly approaches the optimum
spanload when flying alone.

To avoid collisions between aircraft, they
should be separated in the streamwise direction.
Results show that for a large enough streamwise
distance between aircraft (about three spans),
induced drag coefficients for each airplane are no
longer dependent on this direction. Induced
velocities also become independent of the
streamwise direction for these distances. A given
twist distribution will provide then the desired
optimum lift distribution in this region.

As long as the airplanes are in a not very
sensitive region with respect to required twist
distributions the induced drag reductions can be
certainly obtained. For a configuration of three
equal aircraft, with the central aircraft leading
the formation and the other ones in a non-
sensitive region, induced drag reductions for the
formation of about 30% are achievable.

 A formation with a mother aircraft leading
two smaller airplanes half its size in a non-
sensitive region can give formation drag
reductions of 40%, with induced drag savings in
the trailing aircraft greater than 80%.

Unfortunately, highly sensitive regions to
required twist distribution coincide with regions
of maximum drag savings. If aircraft were
positioned in the aerodynamic optimum, with no
regards to required geometries, induced drag

reductions of 50% are possible for the equal
aircraft formation. For the mother aircraft and its
trailing partners, about 60% savings for the
formation induced drag can be obtained, and the
trailing aircraft would experience a negative
induced drag (a thrust forward).

The results obtained here need to be extended
to include the design wing shape. With the
aircraft position and spanload known, the camber
surface required to achieve the design spanload
must be found.
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