40. A probe is sent to Jupiter using a Hohmann transfer orbit to get there.
a) Find the time of the trip (one way). ($\mathrm{TU}_{\text {sun }}$ and in years, 365.25 days/year)
b) Find the position r, and v, at half the trip time.
41. A satellite is in an orbit the lies in the equatorial plane of the Earth. A ship at 150 deg W longitude observes the satellite directly over head and records its position and velocity as $\vec{r}=1.2 \hat{i} \mathrm{DU}$ and $\vec{V}=0.1 \hat{i}+1.0 \hat{j}$ DU/TU. Later, another ship on the equator located at 130 deg W longitude observes the satellite directly overhead. Determine the time between sightings (neglect the rotation of the Earth). (TU, and in minutes)
42. A parabolic orbit is used to go to Jupiter with its perihelion tangent to Earth's heliocentric orbit. Determine:
a) The time to travel to Jupiter ($\mathrm{TU}_{\text {sun }}$, and in years).
b) The position r , and v, after half the trip time.
43. The same trip to Jupiter is now going to be done with a hyperbolic orbit. Assume the eccentricity of the hyperbolic orbit is 2.0 and that it is tangent to the Earth's orbit at perihelion.
a) Find the time to travel to Jupiter ($\mathrm{TU}_{\text {sun }}$, and in years)
b) Find the position r, and v after half the trip time.
44. The space station is in a 250 km circular orbit. A mechanic (wanting to get out of work) throws his wrench radially outward with a velocity of $50 \mathrm{~m} / \mathrm{s}$.
a) Find the distance between the space station and the wrench after 30 minutes
b) Will the mechanic ever be able to retrieve his wrench? Why or why not, show work.
