Read Chapter 1 (Should be second reading. This time read it for understanding)

The following problems (1-7) deal with the following set of Vectors:

$$
\vec{A}=3 \hat{i}+2 \hat{j}+1 \hat{k} \quad \vec{B}=3 \hat{i}-5 \hat{j}+2 \hat{k}
$$

1. Determine $|\vec{A}|,|\vec{B}|$
2. Determine $\vec{A} \cdot \vec{B}$
3. Determine $\vec{A} \times \vec{B}$
4. Determine the angle between the two vectors
5. If \vec{B} is a position vector (units - meters) and \vec{A} is a force vector (units - Newtons), determine the moment (units - Newton meters) about the origin of the reference system.
6. Assuming the same vector designation as in prob. 5 , determine the moment about the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,2,3)$.
7. Find two points, other than the origin, that the moment of force $(\vec{F}=\vec{A})$ equals zero.
8. The velocity at any point on a rotating body is given by $\vec{V}=\vec{\omega}_{b o d y} x \vec{r}$. Using the data from JGM-2, and assume a spherical earth, determine the magnitude of the velocity of someone
a) at sea level on the equator
b) in Blacksburg, altitude 2000 ft , and latitude of 37.229 degrees.
9. If $r(t)=5 \cos (3 t)$ distance units, and $\theta(t)=2 t^{2}$ Radians, find the position, velocity, and acceleration vectors when $t=3$ time units, that is find their radial and transverse components.
10. For the results in problem 9 find (at $t=3$ time units)
a) magnitude of \vec{r}
b) magnitude of $\dot{\vec{r}}$
c) \dot{r}
d) magnitude of $\ddot{\vec{r}}$
e) \ddot{r}
