Some Astrodynamic Equations

1. Equations Applicable to All Orbits

a) Orbit Equation: $r(v)=\frac{\frac{h^{2}}{\mu}}{1+e \cos v}=\frac{p}{1+e \cos v}$

$$
\left.\frac{h^{2}}{\mu}=p=r_{(v=\pi / 2)} \quad \text { (Orbit parameter, or semi-latus rectum }\right)
$$

b) Energy Equation: $\frac{V^{2}}{2}-\frac{\mu}{r}=E n$
c) Angular Momentum: $\vec{h}=\vec{r} \times \vec{V}=c o \vec{n} s t$

$$
|\vec{h}|=r^{2} \dot{v}=r V_{\theta}=r V \cos \phi=h=\text { const }
$$

d) Velocity Components:

Radial component: $V_{r}=\dot{r}=V \sin \phi$
Transverse component: $V_{\theta}=r \dot{v}=V \cos \phi$
e) Eccentricity: $e^{2}=1+\frac{2 h^{2} E n}{\mu^{2}}$
f) Flight path angle $(\phi): \tan \phi=\frac{V_{r}}{V_{\theta}}=\frac{\vec{r} \cdot \vec{V}}{h}=\frac{e \sin v}{1+e \cos v}$
2. Parabolic Orbits $\left(E_{n}=0, e=1\right)$
a) Orbit equation: $r(v)=\frac{\frac{h^{2}}{\mu}}{1+\cos v}=\frac{p}{1+\cos v}=\frac{p}{2 \cos ^{2} \frac{v}{2}}$
b) Energy Equation: $\frac{V^{2}}{2}-\frac{\mu}{r}=0, \quad \Rightarrow \quad V=V_{e s c}=\sqrt{\frac{2 \mu}{r}}$
c) Flight path angle: $\tan \phi=\frac{\sin v}{1+\cos v}=\tan \frac{v}{2} \quad \Rightarrow \quad \phi=\frac{v}{2}$

Parabolic Orbits (cont)

$$
\cos \phi=\left(\frac{r_{p}}{r}\right)^{1 / 2}
$$

d) Other relations

$$
r_{p}=\left.\frac{\frac{h^{2}}{\mu}}{1+\cos v}\right|_{v=0}=\frac{h^{2}}{2 \mu}=\frac{p}{2}
$$

3. Elliptic Orbits (En < 0, e<1)
a) Orbit Equation: $r(v)=\frac{a\left(1-e^{2}\right)}{1+e \cos v}, \quad \frac{h^{2}}{\mu}=a\left(1-e^{2}\right) \quad \Leftrightarrow \quad h=\sqrt{\mu a} \sqrt{\left(1-e^{2}\right)}$
b) Energy Equation: $\frac{V^{2}}{2}-\frac{\mu}{r}=-\frac{\mu}{2 a}=E n \quad \Rightarrow \quad a=-\frac{\mu}{2 E n}$
c) Angular momentum: $h=\sqrt{\mu a} \sqrt{\left(1-e^{2}\right)}=r_{p} V_{p}=r_{a} V_{a}=r V \cos \phi$
d) Flight Path Angle:

$$
\tan \phi=\frac{e \sin v}{1+e \cos v}, \quad \cos \phi=\left[\frac{a\left(1-e^{2}\right)}{r\left(2-\frac{r}{a}\right)}\right]^{1 / 2}
$$

e) Period of Elliptic Orbit

$$
\left.\begin{array}{ll}
T_{p}=2 \pi \sqrt{\frac{a^{3}}{\mu}} & n=\frac{2 \pi}{T_{p}}
\end{array} \quad \text { (Mean angular rate) }\right)
$$

f) Peri- and apo- center relations:

$$
\begin{aligned}
& r_{p}=a(1-e) \\
& r_{a}=a(1+e)
\end{aligned} \quad e=\frac{r_{a}-r_{p}}{r_{a}+r_{p}}=\frac{r_{a}-r_{p}}{2 a}
$$

$$
h=\sqrt{\frac{2 \mu r_{p} r_{a}}{r_{a}+r_{p}}}=\sqrt{2 \mu} \sqrt{\frac{r_{a}}{1+\frac{r_{a}}{r_{p}}}}=r_{p} V_{p}=r_{a} V_{a}=\frac{2 \mu}{V_{a}+V_{p}}
$$

velocity at pericenter and apocenter

$$
\begin{array}{ll}
V_{p}=\sqrt{\frac{\mu}{r_{p}}} \sqrt{\frac{2 \frac{r_{a}}{r_{p}}}{1+\frac{r_{a}}{r_{p}}}} \\
E n=-\frac{\mu}{r_{a}+r_{p}}=-\frac{V_{p} V_{a}}{2}, & V_{a}=\sqrt{\frac{\mu}{r_{a}}} \sqrt{\frac{2}{1+\frac{r_{a}}{r_{p}}}} \\
\end{array}
$$

Special Case - Circular Orbit $(\mathrm{e}=0)$

$$
\begin{aligned}
& r=\frac{\frac{h^{2}}{\mu}}{1+e \cos v}=\frac{h^{2}}{\mu}=a\left(1-e^{2}\right)=a=r_{c} \\
& \frac{V^{2}}{2}-\frac{\mu}{r}=-\left.\frac{\mu}{2 a}\right|_{r=a} \quad \Rightarrow \quad V_{c}=\sqrt{\frac{\mu}{r}}
\end{aligned}
$$

4. Hyperbolic Orbits $(\mathbf{E n}>\mathbf{0}, \mathbf{e}>\mathbf{1})$
a) Orbit equation: $r(v)=\frac{\frac{h^{2}}{\mu}}{1+e \cos v}=\frac{a\left(e^{2}-1\right)}{1+e \cos v}$
b) Energy Equation: $\frac{V^{2}}{2}-\frac{\mu}{r}=\frac{\mu}{2 a}=E n$

$$
\text { At } \mathrm{r}=\infty, \quad V_{\infty}=\sqrt{\frac{\mu}{a}} \quad \text { (Hyperbolic excess velocity) }
$$

c) Turning Angle : $\quad \sin \frac{\delta}{2}=\frac{1}{e}$

Many relations are the same as the elliptic relations with (a) in the elliptic equations replaced with (-a)

