Astromechanics
The Two Body Problem (continued)
8.0 Recovering the Time

The differential equation of motion for the two body problem is given by:

?+r_*‘3f=o (1)

This equation is a second order, vector, ordinary differential equation for which the solution
contains six constants of integration. Up to now we have extracted the following constants:

1) The angular momentum vector constant, 7 = constantis equivalent to three scalar
constants. From our previous discussion, we found that the angular momentum constant
establishes the orbit lies in a plane fixed in space. It turns out that two constants are
sufficient to establish the plane of the orbit. The third constant is the magnitude of the
angular momentum.

2
2) The energy of the orbit remains constant. En = VT - B = constant
r

We took advantage of the fact that the motion was in a plane (yet to be determined by two of the
constants associated with angular momentum), by writing Eg. (1) in plane polar coordinates:
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We used two of the know constants to establish the plane so that the differential equations of the
orbit in that plane, EQ. (2) are two second order ordinary differential equations that need four
constants of integration to establish a solution. Two of these constants are known, the magnitude
of the angular momentum, h, and the energy En. A third constant was extracted by removing time
as the independent variable and obtaining the equation of the orbit:

h2
b ©)
1 +ecos(D - w)

ry =

where w isthe third constant. The two constants h, and En were combined to form the constant
called the eccentricity which is not a new independent constant. Hence we have one constant left
to extract. This constant is associated with the time and will allow us to determine the position of
the satellite in the orbit at any given time.



Thisfina constant of motion is associated with integrating the transverse equation of
motion to extract the time relationship. The transverse differential equation of motion can be
written as

1d(.298)_
;E(r 6)—0 (4)

that gives us the magnitude of the angular momentum as
h=r20 (5

Since we used this equation to eliminate time to enable us to solve for the orbit, it is this same
equation that we use to recover the time into the problem. We can recover time by rearranging

Eq. (5):

r2

dt = —db
. (6)

If we define the true anomaly as we have previoudly, v = 0 - w, and note that dv = dO, and also
that at the point of closest approach (periapsis passage), v = 0, and we can define the time at
perigpsis passage as, t = T, (t = time of periapsis passage), then Eq. (6) can be put in the form of a
guadrature (integral with the integrand in terms of only the independent variable, in this case v):

t—-7 =— 7

'[ 1 +e COSI/ 0
The key thing to note hereisthat v isthe mdependent variable and the solution givest = f(v). In
addition, t is our sixth (fourth for in plane motion) and final constant of integration. In principle,
the problem has been solved! However we will find that Eq. (7) is not the best for solving the
original problem of interest, given the time, find the position and velocity. We will introduce an
alternate from for the time equation when needed.

Timein a Parabolic Orbit (e=1)

We can evaluate Eq. (7) relatively easy for a parabolic orbit, since the eccentricity equals
one. Using some trigonometry half angle identities, we have:

v v

2
u3(t—‘c)— f dvv . = dv ®
h =0 1 + cos?= - sin®~  v-0 1 + co?> - | 1 - cos? ¥
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The integration is easily carried out to give:
p‘=2(t - 1) = Ian? + Liap
7z 2l T2 3T 2 (10)

We can put this equation in its final form by noting that the angular momentum can be written in

terms of the orbit parameter, pas 2 = /. p. We can also define the parameter n, that satisfies
the following equation:

n?p? =p (11)

Then Eq. (10) can be rewritten in the form:

Time Equation for a Parabola (Barker’s Equation)

2n(t-1) = tan;

Equation (13) is the time equation for a parabolic orbit and is known as Barker’ s equation.

Example

Congder a parabolic transfer orbit from Earth’s orbit to Mars' orbit. We will assume that
the perihelion radius of the transfer orbit is the same as the Earth’s orbit radius so that the
parabolic transfer orbit is tangent to the Earth’s orbit at perihelion. We would like to find the
AVrequired for the transfer, and the time of flight for the transfer. Further, compare the results
with a Hohmann transfer.

We need to determine the properties at Earth orbit and at Mars orbit. The velocity
anywhere in a parabolic orbit is escape velocity.



At Earth orhit: Velocities are parallel at perihelion

AV, =V, \17 (V2 - 1)( 04142( 0.4142 AU/TU

At Mars' orhit:
2r
r=—2 - LI Y R — —
I +cosv 1+ cosv 1 + cosv,

cosv, = 0.312 = v, = 71.80 deg
The flight path angle at Mars’ orbit is

sinv sin71.80 v,
tand, = = = 0.7239 - = 35.90 de =2
¢, 1 +cosv 1 + cos71.80 ¢, N 2 )

The orbit speed at Mars' orbit is just the escape speed and Mars orbit speed isjust the circular

Speed:
Vl(l -1.1456 AUTU 7, = |® = |1 - 08100 AU/TU
r 2 r 1.524

The AV, is obtained from the law of cosines:

AV; = V3 + V2 = 2V, V, cosd, = (11456 + (0.8100) ~ 2 (1.1456) (0.8100) cos 35.90 = 0.4652

AV, = 0.6820 AU/TU

Calculating the time of flight
The parabolic transfer orbit parameter p = 2r, = 2(1) = 2 AU

ﬁ2p3:u = ﬁ: L: é:# 25:#
\lp3 2 242 V2

Barker’'s equation is:

1. 3V 1 .
21(f - 1T) = tany + —tan®y = — (£ - T) = tan— + —
( ) 2 3 ( ) 2

2 2



t - T =12025 TUg = 69.9 days
We can now compare these results with a Hohmann transfer calculated previously

Earth/Mars Transfer Hohmann Parabola
AV,AU/TU 0.0989 0.4142
AV, 0.0890 0.6820
AV, . 0.1879 AU/TU 1.0962 AU/TU
5.5960 km/s 32.65 km/s
TOF 4.4539 TU 1.2025 TU
258.92 days 69.90 days

The Kepler Problem (Parabolic Orhit)

Unfortunately, the original problem that we set out to solve was to find the position (and
velocity) in orbit, given the time. Such a problem is called the Kepler problem. In other words,
given the time in Barker’ s equation, find the true anomaly. Barker’s equation is given
by

- Y 1, 3V
2n(t - 1) = tan— + —tan’—
( ) ;3 5 (14)

which can be rearranged as
tan®Y. + 3tany - 67(7 - T)= 0
2 2 (15)
x3+3x-b=0

where we see Barker’s equation is a (kind of special) cubic equation in tan % We can examine

the expected roots that we will get using Descarte’ s rule of signs for polynomials of the form: f(x)
=0.

1) The number of sign changes equals the maximum number of positive real roots

2) The number of sign changes in f(-x) equals the maximum number of negative real roots.

Using (1) we have 1 sign change so we have at most one positive real root (note b>0)
Using (2) (-x)®+ 3(-x)~-b = 0, we have zero sign changes so no negative real roots.

Our conclusion isthat Eq. (15) has one real root (positive) and two complex conjugate roots. We
only need to solve for the real root. For a cubic in this form, we can write the solution directly.



Let

— b
R=3n(t—1:)=? (16)
then the solution is:
v 3 3
tanEZ‘/RwR”“\/R—vR“l (17)

Example

Consider (¢ - t) = 1.2025 TUin aparabolic orbit where p = 2 AU. Find the true
anomaly, v, and radial distance, r. First calculate n and subsequently, R.

E:JI:\JZ:L R=3m(t-1)=3| | 12025 = 12754
p3 23 Zﬁ 2\/5

then
v 3 3
tan7 = \/1.2754 +1/1.2754% + 1 + \/1.2754 - 1.2754% + 1
3 3

= /2.8961 + |/-0.3453

= 1.4254 - 0.7016

= 0.7238
% = 38.90 deg = v = 71.80 deg

The time given, was the travel time to Mars aong a parabolic orbit, and the true anomaly
caculated was that to arrive at Mars. The radial distance is calculated from:

p=_ P 2 = 1524 AU

1 + cosv 1 + cos71.80




Timein an Elliptic Orbit (e< 1)

We can extract the time equation for an elliptic orbit in the same manner as we did for the
parabolic orbit. However, since e #1, the results are not so nice. We have from the original time
expression:

3
(t-ty=" dv
u? 2L, (1 +ecosv)

(18)

Ih— <

2

For an dliptic orbit, L a(l -e?) = h=ypaya(l - e?).If wesubstitutein for
"

the angular momentum, and bring the terms containing p.and a to the left hand side we arrive at:

e _ _ _ _ _ . dv
J;(t Dl - (- [ (19)

0

where we have incorporated the relation developed previoudly:

n?a’ = p (20)

The integral can be evaluated for the case wheree < 1. Theresult is

- 52 o
n(t-1t)=|2tan’ l-e | eyl-e”sinv (21)
1+e 1 + ecosv
Or
M= | 2tan? l-e |  eyl-e?siny (22)
l1+e 1 + ecosv
where we have introduce a definition of the mean anomaly:
Mean Anomaly
M=n(t-r1) (23)

The mean anomaly is not a physical angle that we can designate on adrawing. It isjust the
angle that would be travel through by a satellite moving at its constant mean angular rate, n, in



time (t - ©). It varies uniformly in time and is often used instead of time as the independent
variable.

Equation (22) is amessy equation. However it can be used to solve for the time (or mean
anomaly) given the true anomaly. On the other hand, solving the Kepler problem, given the time,
find the true anomaly, is much more complicated. Consequently an aternative approach is
available which ends up still solving a non-linear equation for the angle, but it is not nearly as

messy.
The Eccentric Anomaly

In order to simply the time equation, we can introduce a new variable called the eccentric
anomaly. It is defined with the help of an auxiliary circle. The auxiliary circle is centered at the
center of the ellipse (not the focus) and has a radius equal to the semi-magjor axis, a. Asaresult it
is tangent to both the periapsis and the apoapsis. At the point the radius vector touches the ellipse,
we construct a perpendicular to the semi-major axis and extende it outward until it touches our
auxiliary circle. A line isthen drawn from this point to the center of the ellipse. The angle thisline
makes with respect to the mgjor axislineis
designated as E and is called the eccentric
anomaly. It turns out that using this variable as Axiliary circle y
the angle variable leads to arather nice form of
the time equation. In order demonstrate this, we
will use a coordinate system centered at the
focus of the ellipse with the x axisin the
direction of the periapsis, and the y axis
perpendicular to it and pointing in the direction

of the semi-latus rectum. Such a coordinate
system is called the perifocal coordinate system.
We could use a coordinate system centered at
the center of the elipse, but this one will save us
some algebra, believe it or not. We first want to
get an expression for the radius as a function of
E.

Consider determining the x and y positions on the ellipse in terms of E. From the geometry
we can write:

acosE = ae + x = x = a(cosE - e) (24)
The equation of an ellipse with the center located at the point (x,, y,) is given by

(x - x0)2 + (y _y0)2 _

a? b2

1 (25)



Inour case the center of the ellipseislocate at (x,, y,) = (-ae, 0). Inaddition we can recall

that b = ay/1 - e?, sothat Eq. (25) becomes:

(x +ae) N y? -1
a? a?(1 - e?) (26)
or
y2=a?(1 - e?)(1 - cos’E) (27)

The desired result for now is

y =ay1l - e?sinE = bsinE (28)

We now have expressions for x and y in terms of the eccentric anomaly, E so we can find r
as afunction of E:

r2 =x2=y2=4qa%(cosE - e) + a?(1 - e?)sin’E
= a?[cos’E - 2ecosE + e? + sin’E - e?sin’E ] (29)

= a?[1 - 2ecosE + e?cos’E]
Or, taking the square root:

r in Terms of the Eccentric Anomaly

r=a(l -ecosk) (30)

In order to put this result in perspective we can note:

a(l - e?)

r=a(l - ecosE) =
1 + ecosv

(31)

Hence we have an expression for the radius in terms of two different variables, the true anomaly
and the eccentric anomaly. They are equivalent, and can e interchanged. Equation (31) can be
used to determineE’ = f{v) or v = f{E) which we will do later. Now we would like to proceed
to the time equation.

We can recover the time equation in a similar manner that we did previously. However
here, all we will need to do is evaluate the angular momentum. We will do thisin the perifocal



coordinate system. We have the following components of the position and velocity:

a(cosE - e) y=ayl - e? sinE

x =
: _ (32)
X = —asinEE y=ayl - e? cosEE
The angular momentum is given by:
i jk 0
h=FxV=|xyo|= 0 (33)
Xy 0 Xy - yx

or the magnitude of hish = xy - yx.lf we substitute in our expressions from Eq. (32) we have:

a(cosE - e)(ayl - e?cosEE) - ay1 - e’sinE (-asinEE)
a?\1 -e? E(cos’E - ecosE + sin’E) (34)

a*J1 - e (1 - ecosE)E

We also canrecall that 2 = y/pay1 - e?. Substituting the angular momentum expression in
Eq. (34), and breaking our the differentials in Eleads to the equation:

h

£di = (1 - ecosE)dE (35)
a

We can integrate the above equation from the time of periapsis passage to the current time and

note that at periapsis both the true anomaly and eccentric anomaly are zero. So, integrating Eqg.

(35) and putting in the limits gives:

Kepler’s Equation

n(t-t)=FE - esinE

M = E - esinE

Equation (36) is known as Kepler's equation and is generally the time equation related to elliptic
orbits. If we are given the position or eccentric anomaly, we can solve for the time and more
importantly, if we are given the time, we can solve for the eccentric anomaly, iteratively, alot
easier than we could for true anomaly.

We can complete this section on elliptic orbit time by comparing Eq. (36) with Eq. (22).



These equations must be the same. We can recognize the first termin each is an angle, and the
second term in each is multiplied by an e. By comparison we can find:

tanZ = | 1= € Y (37)
2 1 +e 2
and
_ o2
sing = V1 =€ smv (38)
1 + ecosv

In addition, from the relations: x = rcosv = a(cosE - e), and Eg. (31), we can get the
results:

e + cosv
1 + cosv

cosE = (39)

and

— 02 &
tanE = Y1 - e”sinv (40)

e + Ccosv
Finally, these results can be inverted to give:
tany = | L* €k
2 1 -e 2
J1 - e? si
Siny = 1 - e” sink (41)
1 - ecosE
cosV = cosk - e
1 - ecosk

Note that these relationships can be developed directly from geometry.

In al these equations it isimportant to note the quadrant in which the angles occur. We
should note from the figure above that:



if 0

IA

< T then 0
<27 then

IA

Y E<m
(42)
Y T<FE<2n

if T

IA

Note that this doesn’'t mean of Eisin the first quadrant that visin the first quadrant, vcould bein
the first or second quadrant, and vice versa.

Timein a Hyperbolic Orbit (e > 1)

We can extract the time equation for an hyperbolic orbit in the same manner as we did for
the dliptic orbit.

h3 d
(t-v)="2 . (43)
p* L, (1 +ecosv)

Ih— <

2
For a hyperbolic orhit, L a(e? - 1)

=

h = Juaya(e? - 1).If wesubgtitutein

for the angular momentum, and bring the terms containing p and a to the left hand side we arrive
at:

ooty mm(i-t) = (et - 1yR [ 24
a’ { (1 + ecosv)? (44
where we again have incorporated the relation developed previoudy: 243 = p

The integral can be evaluated for the case wheree > 1. Theresult is




- v
e+l +/e-1tan—
eye’ - 1sinv _ / / 2

I +ecosv Je+1 —\/e—ltan%

2 _ : _
_ eye 1 sinv 2 tanh™! e-1 tanl
| 1 + ecosv e+1 2

n(t-1)

(45)

In addition we will introduce a new variable called the hyperbolic anomaly that is
analogous to the eccentric anomaly. It leads to a simplified time equation similar to Keplers's
equation that we developed for elliptic orbits. In addition there are relations similar to those for
eliptic orbits for relating the hyperbolic anomaly to the true anomaly. These relations follow.

Time Equation for Hyperbolic Orbit
n(t - 1) = esinhF - F (46)

where F is the hyperbolic anomaly.

Many hyperbolic equations are the same as elliptic equations with a replace with -a.
However in the following equations we will definea >0, or a = |a| > 0.

Radial Disance
2 _
r =a(ecoshF - 1) = a(e’ - 1) (47)
1 + ecosv
coshF = &
1 + ecosv
2 _ .
sinh F = Ve 1sinv (49)
1 + ecosv
anf = | €71 ¥
2 e +1 2

Theinverse reations:



_ e - coshF
cosy = —————
ecoshF - 1
(49)
. ye? - lsinhF
sinv =
ecoshF - 1
Additional Relations of Interest
Since dealing with hyperbolic functions is sometimes uncomfortable for students,
alternative representations can be used. We have:
sinhx = % sinh 'y = In[y + 4y? + 1]
coshx = % cosh™ly = In[y + yy? - 1] (50)
tanhx = &~ ¢ tanh! = Ln| L*Y
e +x~* 2 [1-y

Time of Flight Problems

It is assumed that the properties of the orbit are known, the semi-mgjor axis, a, the
eccentricity, e, (or their equivalents, angular momentum and time), and the time of periapsis
passage, r, Then there are two types of time of flight problems:

1) Given the true anomaly, find the time from periapsis,

2) Given the time past periapsis, find the true anomaly. (Kepler problem)

The first type of problem is easily solved since we have been using the true anomaly as the
independent variable and we have a time equation with time as a function of true anomaly. The
second problem requires us to “invert” the time equation that is nonlinear. Consequently most
schemes for solving this problem require iteration.

Another aspect of either time problem is the fact that the times determined using the time
equations developed are times measured from periapsis passage. Consequently, if we want to find
the time of flight between two arbitrary pointsin the orbit, we must find the times from periapsis
to those points and then take the difference.

Methods of solving time problems are best illustrated by examples. Several examples of
both types of time problems are now presented.
Example




We are in the Earth’s orbit about the Sun and apply atangent Delta-V = 0.20 AU/TU.
Find the time it takes to reach Mars' orbit, r = 1.524 AU.

Asinal problems, we will find the properties of the original orbit assumed to be a circular
orbit at 1 AU radius from the Sun.

y - |2 - |1 _AutU En:ﬁ_i=1=2_i=_iAU2
¢ r 1 2 r 2 1 2 DU?

h=rVcosd¢ =rV =1(1) = 1 AU¥YTU

Next we find the properties of the new orbit. Here we note the radius is unchanged and the
velocity increment is tangent to the original velocity so that the new flight path angle is still zero,
so that the point in the new orbit is at the periapsis of the new orbit. We have:

V=V, +AV =1+ 0.20 = 1.2 AU?TU Then energy and angular momentum is given by:

V? B 1.22 1 _ 2 2 _ — 2

T, Ty -0.280 AU*/TU*, h - rVcosd = 1(1.2)cos0 = 1,2 AU*/TU
r

a=-HF - L - 175857 4U Semi-major axis

2En  2(-0.2800

Q
|

2 2y (_
_ \ll . 2h%En _ \ll . 201.2)(=0280) _ 4 4400
p‘2 12

We need to determine the eccentric anomaly when the vehicle reaches Mars' orbit

r=a(l -ecosE) = 1.524 = 1.7857 (1 - 0.4400 cosE) = cosk = 03331

E = 70544 deg = 1.2321 rad Note that we must be careful we have the correct quadrant
In this case it could be 1% or 4™. Since it is going out, it

must be 1%,

We can find the mean angular rate or in this case its reciprocal is more convenient:

3 3
niad = - L \l“_ _ \l ”?57 - 23863 (n = 0.4191)
n n

Then the time of flight from perihelion to Mars' orbit is given by Kepler’s equation:



f-1=L[E - esinE] = 2.3863[ 12312 - 0.4400sin (1.2321)] = 1.9481 TU = 113.25 days
n

Alternatively we could have solved for the true anomaly and then either used it directly in Eq,
(22) or then convert to eccentric anomaly:

poall=e®) gy L7857(1 - 04400) | o0 01253 = v - 97.1972 deg
1 + ecosv 1 + 0,4400 cosv

and

onE o |1-e, v _ [1-04400 971972 _ ...
2 1+e 2 1 + 0.4400 2

tan% = 35.2722 = E = 70544 deg (Asbefore - we can now use Kepler’s equation

Note that here the eccentric anomaly is in the first quadrant, and the true anomaly is in the second.

Example

We will now get to Mars using a hyperbolic orbit of eccentricity 2. We will thrust
tangentialy from Earth’s orbit. Find the time of flight to reach Mars' orhit.

Since we are again launching tangent to the original orbit, we know that we will be at the
perihelion of the new orbit. Hence we have:

rpzlza(e—l):a(Z—l) = a=1AU
From the energy equation:

v v, 1 1
p__ B R V. =43 = 1.7320 AU/TU
1 2(1) P

AVp = 1.7320 - 1 = 0.7320 AU/TU

_2 _2
2 2 2a 2
We need to calculate the hyperbolic anomaly when we reach Mars' orhit:
r =a(ecoshF - 1) = 1.524 = (2coshF - 1) = coshF = 12620

F =0.7089

We can now use “Kepler's’ equation:



~
|

A
1

3 3
1 (esinhF - F) = | % (esinhF - 1) = IT(2sinh(O.7089) - 0.7089)
n "

0.8307 TU = 48.29 days

We can now summarize the results of the last few examples:

Earth-Mars AV (AU/TU) TOF (days)
Hohmann 0.0989 258.3
Ellipse 0.2000 113.2
Parabola 0.4142 69.9
hyperbola 0.7089 48.4

Example

We will now consider atransfer orbit from Earth to Mars that is designed to return to the
Earth if it does not intercept Mars. That isit isan orbit with atwo year period so that if a vehicle
is launched in this orbit from a perihelion at Earth orbit radius, it will return to that point in two
years. Hence if launched from Earth, it will return to Earth in two years. This orbit will intersect
Mars orbit in two places. We are interested in the time from Earth to Mars. We are also
interested in other times relating to this orbit.

The period of this orbit is twice the period of Earth in its orbit. In time units, the period of
the reference orbit is

Tp - 2myfatlp = 2 131 = 27 TU Transter orbit
Hence the period of this “free return”

orbit is 2(2m). Then we have:

227) = 27nya®/1 = a = 15874 AU

Since we know the perihelion distance, we
have

r, = a(l -e)=1=15874(1-¢)

ore = 0.3700.

WE can compute the eccentric anomaly at
Mars orbit from :

r=a(l -ecosE) = 1.524 = 1.5874(1 - 03700cosE) = cosE = 0.1079



E = 838032 deg  (First quadrant).  Thetime of flight is obtained from Kepler’s equation:

3 3
t-1=L[E-esinE] = | % [E - esinE] = 1'5?74 [83.8032% ~ 0.3700 cos (83.8932) ]
n "

t -t =2189 TU = 127.29 days

We now ask the question, how long does it take to get from Mars' orbit on the way out,
to Mars orbit on the way in? We calculate this time of flight by calculating the time of flight from
perihelion to point 1, and from perihelion to point 2, and taking the difference to get the time from
point 1 to point 2.

The time of flight from perihelion to point 1 is the time calculated above. In order to calculate the
time from perihelion to point 2, we need to determine the eccentric anomaly at point 2. We do
this from the radius equation:

r,=r =1524 - a(l - ecosE) = 1.5874(1 - 03700cosE) =  cosE = 0.1079

Exactly the same value as before. Here, however, we will be in the 4™ quadrant since we are
returning. (Positive cosinein 1% or 4™, so it must be 4™ ). Hence angle of interest is 360 - 83.8032
= 276.1968 deg. We can now calculate the time from perihelion to point 2.

3
t-1=L[E - esinE] = %[276.1968% ~ 037005in(276.1968) | = 10.3768 TU
n

The time of flight from point 1 to point 2 is then

TOF = (t, - ©) - (t, - ©) = (¢, - t,) = 103768 - 2.1896 = 8.1872 TU = 475.94 days

The time to go from Earth’s orbit to the second crossing of Mars' orbit is just what we calculated
above, 10.3768 TU .

Although the proper way to calculate time of flights is a shown previously, sometime one
can take advantage of orbit symmetry about the semi-major axisto simplify calculations. For this
example we could calculate the time from Mars to Mars orbit (over the top) by calculation the
time from Mars’ orbit to the aphelion, and then double it. We already know the time from
perihelion to Mars orbit (point 1) and we know the time from perihelion to aphelion is half the
period, Tp/2 = 2 . Hence the time from point 1 to aphelionis 7T0F, = 27 - 2.1896

ThenTOF, | = 2TOF, = 2(2 1 - 2.1896) = 8.1872 TU as before.

Solving the Kepler Problem

A version of the Kepler problem can be stated as follows: Given the orbit properties, the
initial position of the vehicle on the orhit at some time ¢, find the position on the orbit after some



time of flight, TOF. A more general statement of the Kepler problem will be given later. In order
to solve this problem we must use Kepler’s equation to solve for the proper eccentric anomaly at
the end of the time of flight. The procedure is as follows:

It is assumed we know the energy and angular momentum of the orbit and hence the semi-
major axis and the eccentricity of the orbit. At epoch, time 7, we know the true anomaly, v, and

the corresponding radius, r,. We now have to find the time past periapsis to the initial time, z,.

We do this using the procedures in the above examples. Since we know the radius, (or true
anomaly), we can solve for the eccentric anomaly at epoch:

r, = a(l - ecosk) (51)

Once we know the eccentric anomaly, we can use Kepler’s equation to solve for time past
perigpsis:

t, - T = %(EO - esinE0> (52)

where n2a® = p. We never have to solve for t, just for z, - ©. Then, after the time of flight,
the new time past periapsis will be:

(¢-t)=(t, -t) + IOF (53)

Kepler's equation at the end of the time of flight becomes:
n(t-t)=M=E - esinE (54)

where M is the mean anomaly at the new position, and is known. Hence we know M and must
solvefor E. There are several waysto solve this equation for E, one of which isto use the
nonlinear equation solver on your calculator or computer if it has one. This equation is well
behaved, especially if the eccentricity is small and these algorithms should have no trouble solving
for the eccentric anomaly. If such atool is not available, the equation can typically be solved using
one of two methods: fixed point iteration or Newton's method.

Fixed-Point I teration

If the eccentricity is small, then this method converges fast and is easily implemented. The
first thing we need to do isto rearrange Kepler’s equation in the form:

E =M + esinE (55)
Then if the eccentricity were zero, the solution would be £ = M. Hence we will start with this as

our first guess. We then simply put that value back into Eq. (55) and solve for a new value of E.
The algorithm is as follows:



E, =M
E1 =M + esinEO
E, =N + esinE1

(56)

o = o 4
e = « 4 .

E ., =M+ esnk,

The agorithmisrepeated until £, | - E, = AE,isassmal as one desires. Asthe eccentricity
increases, the number or iterations needed for the result to converge becomes large.

A method that converges faster, but requires more agebraic calculationsis Newton's
method, likely the method used in many calculators. In general, Newton's method is looking for
the solution to the problem: find x given f(x) = 0, where f(X) is some arbitrary function of x. the
ideais that we can expand the function in a Taylor’s series two first order and set that equal to
zero

F(x) = f(x) + f/ () (x = %) + hot =0 (57)

where x, is some initial guess, and f’(x,)is the derivative of f(x)evaluated at x = x,. We can
solve Eq.(57) for anew estimate of x to get:

/)
71(x%,)

1 0

(58)
For our problem, the function in which we are interested is Kepler’s equation. Hence we
have:

f(E)y=FE -esink - M

f(E) =1 - ecosE (59)

Then the Newton algorithm becomes:



E

. esinEk - M
E .. =E -

1 - ecosE,

: (60)
M - Ek + es1nEk

1 - ecosEk

:E =+

A modified Newton’s method can be developed by keeping the second order terms in the
Taylor series expansion. A little algebra will lead to the resullt:

=D, 1767 (%)

X, .1 =X —_ (61)
k+1 k f/(xk) 2 (f/(xk)>2
or for the Kepler problem:
E e s (M - M,) 1 esink, M-M, \? (62
F*1 % 1 -ecosE, 21 -ecosE,| 1- ecosE,

WhereMk =K, - esinEk.

Example

Here we are given the orbital properties, En = -0.28 AU%TU? and h= 1.2 AU¥TU. We
would like to find the position of the satellite 1.9481 TU into the flight assuming the satellite was
launched at perihelion.

We can compute the semi-major axis and eccentricity from:

2 Ay
a=-P -1 _ymsiTUu = [1+2P°En | 20.2)(028) _ 40
2En 2(-0.28) u 12
The mean angular rate and the mean anomaly is determined from:
n= | B o | 04191 adTU M- n(t- 1) = 04191(1.9481) = 0.8164 rad
a’ (1.7857)

Kepler’s equation then becomes:
M =FE - esinE = 08164 = E - 0.4400 sinE
that must be solved for E.

Fixed Point Iteration Solution E, , = M + esinE, , E =M



Theresults are:

E, = 0.8164

E, = 0.8164 + 0.4400sin0.8164 = 1.1370
E, = 12156

E, = 1.2289

E, = 1.2309

E, = 12312

E, = 12313

E, = 123128 = 70.5473 deg

Theradia distance is determined from:

r=a(l - ecosE) = 1.7857[1 - 0.4400 cos(1.23128) | = 1.524 AU

This problem isjust the trip to Mars problem that we solved for the time of flight to Mars
previously. Here we put in the time and determined the distance.

The true anomaly can be determined in severa ways.

v _ |1l+e E
tan— = tan =
2 N1-e¢ 2
_ cosE-e
cosy = ————
1 - cosE _ [ 1+0.4400 705473
_ \ 1 -0.4400 2
_ _03330-04400 _ _, oc4
1 - 0.4400 (0.3330) = 1.1343
v = 1.6965 = 97.200 deg _

0.8482 = 48.6000 deg

< N|<

97.200 deg
Newton's Method

M- E, + esinEk
Ek+1 = Ek + > E() =M
1 - ecosk,




E, =M = 08164

E, = 0.8164 + 0.8164 - (0.8164 + (0.4400) sin(0.8164) _ 127531
1 - (0.4400) cos(0.8164)

E, = 123175

E, = 123128

Note that it takes only 3 iterations here.

Modified Newton's Method

(M - M,) 2

1 esinkE,
1 - ecosk, 2 1 - ecosk,

M- M,

1 - ecoskE,

E . =¢ +

whereMk =K, - esinEk.
Here, M = 0.8164, M, = 0.8164 - 0.4400sin(0.8164) = 0.49578

E, = 0.8164
E, = 122698
E, = 123128

Example

Given: a= 2.0 DU, and e = 0.2. Theinitial positionisat r = 1.7 DU and the flight path is
greater than zero. Find the position after 10.1365 TU.

We must find the time past periapsis at the initial position (position 1). We can find the
eccentric anomaly at position 1 from:

~
1

a(l -ecosE;) = 1.7 =2(1 - 02cosE,)
= 0.7500

o
Q
w2

=

|

&
|

| = 41.4096 deg

We can find the mean anomaly at point 1 from:

- n(t -t) = E, - esink, = % - 0.25in41.4096° = 0.5904

M,



We can find the mean anomaly at the new location from the following:

M,

,=n(t,-t)=n(t,-t) +n(t,-1t)=AM+ M,

or (Recal, n2?a® =)

M, = %(10.1356) + 0.5904 = 4.17424 rad
2
We can now solve Kepler's equation for E,.
M, = E, - esink, = 417424 = E, - 02sinE, = E, = 402026 rad = 230.3439 deg

Then the radial distance is:

r,=a(l - ecoskE) = 2[1 - 0.2co0s(4.02026) ] = 2.25525 DU

The true anomaly is found from:

E
o |lre. FEa_1+02 2303439 _
2 l-e 2 1-02 2

% Has to be in the first or second quadrant. Since the tangent is negative, we know it isin the

\Y
second quadrant. A calculator would give Tp = -69.0069 deg, the principal angle. To convert
to
\Y
the angle of interest we have% = 180 + Tp = 180 - 69.0069 = 110.9931 deg

or

v = 221.9862 deg

V1 -e?sinE _
Alternatively: tanv = 2 - 20789 _ 8999 (third quadrant)
cosk, - e -0.8382

The calculator will give: v,=41.9828 deg, sothat v = 180 + v, = 221.98 deg




Application to Hyperbolic Orbits

The Kepler problem for the hyperbolic orbit is carried out in exactly the same manner as
for the eliptic orbit. The main difference isthat the orbit is not periodic and be don’t have to be
concerned with multiple revolutions. Generally we use Newton's method for solving the
hyperbolic form of Kepler’s equation. An example will best illustrate how to treat time in the
hyperbolic orhit.

Example

Given |a) =2 DU, and e = 1.2. Theinitial radiusisr = 1 AU with the flight path angle
grater than zero. Find the radial distance and true anomaly after a flight time of 0.4238 TU.

Again, we must find the conditions at the initial flight time, position 1. First some
preliminariesfrom n2a® = p.

n = \l b \li = 0.35355 rad/TU  and

1 28284 TU/rad
|a |3 23 n

The initial hyperbolic anomaly is obtained from:
r = |al(ecoshF - 1) =1 =2(12coshF - 1)
coshF = 1.2500 = F = 0.6931

Since the flight path angle is greater than zero, the vehicle is on the outward bound leg of the
hyperbola, so we must calculate the time past periapsis passage to the current point 1. From
Kepler’s equation:

M =n(t, - t) = esinhF - F = 125inh(0.6931) - 0.6931) = 0.2068

The mean anomaly at the new position is given by:

M, = M, + n(TOF) = 0.2068 + 0.3536(0.4238) = 0.3566 rad

Kepler’'s Equation now looks like:
n(t, - t) =M, =esinhFF - F = 03566 = 1.2sinhF - F

Newton's method becomes:

_esmhF - F - M
ecoshF -1




For this problem we have:

F, = 0.3566
F, - 03566 - 12 coshl(?z.scissi)(ogg.;ésf ; 03566 _ | 3531
F, = 1.04373
F, = 0.94292
F, = 0.93353
F, = 0.93345
F, = 0.93346

Then:
r = |a|l(ecoshF - 1) = 2(1.2cosh(0.93346) - 1) = 1.524 AU

The true anomaly is found from:

tan = [EFLgpnf o 12415093346 _ g 4440 (first quadrant)
2 Ne-1 72 N12-1 2

= 55.307 deg = v = 110.614 deg




