
Astromechanics

7. Mission Analysis (Patched Conic Approach)

By mission analysis we generally mean determining the fuel and time budget for carrying
out an interplanetary mission. Although this problem can be difficult, we can simplify it by using
the idea of the patched conic approximation. For this approach we consider the problem to be
broken up into several two body problems, that are patched together. This idea comes for the
concept of the “sphere of influence.” The sphere of influence is considered to be an imaginary
sphere about the smaller of two (or more) bodies inside of which only the attractive force of the
small body is considered so that the orbits may be considered to be those of a “two body”
problem. Once outside the sphere, the problem is considered to be a “two body” problem with the
attractive force due only to the larger body. At the sphere of influence, the two solutions are
“patched” together. For example if we consider an Earth - Mars mission. The transfer orbit from
Earth’s orbit to Mars’ orbit may be considered to be the solution to the Sun - Vehicle two body
problem, a heliocentric orbit. In the neighborhood of the Earth, however, we will ignore the Sun
effects and consider the launch ascent ellipse, the Earth parking orbit, and the Earth escape
hyperbolic orbit to be geocentric two body orbits, ignoring the effects of the Sun. We make the
same assumption upon arrival at Mars, that the entry hyperbolic orbit, the capture orbit, the
swing-by orbit, and any other desired orbit are Mars-centered two body orbits neglecting the
effects of the Sun (and Earth). The transition from heliocentric to Mars or Earth-centered orbits
occurs at the sphere of influence boundary. However for these interplanetary mission analysis
calculations, the following rule applies: From the point of view of the Sun, the sphere of influence
about any planet has zero radius (changes happen at the planet orbit radius), while from the point
of view of the planets, the sphere of influence is infinite, that is the properties of orbits at the
boundary of the sphere of influence are the properties at infinity with respect to the planet.
Consequently, for these calculations, we do not need to know the radius of the sphere of
influence.

However, for completeness, we can calculate the sphere of influence from the following
equation:

(1)

Here,  is the distance between the two bodies,  is the mass of the smaller body (say Earth)

and is the mass of the larger body (say Sun).  Is the radius of the sphere of influence. We can

consider the Earth-Moon system where there would be a sphere of influence about the moon
(with respect to the Earth) which would fully lie inside the sphere of influence of the Earth, with
respect to the Sun. In problems concerning the Moon, one may not be able to ignore the radius of
the sphere of influence of the moon when calculating Earth-Moon trajectories. We can, however
ignore the planet spheres of influence when doing mission analysis regarding the planets.

The mission analysis problem always starts by calculating the Heliocentric orbit(s) first.
For example if we were to use a Hohmann transfer orbit, we would calculate the required



velocities and s as required. Here we will carry an example through as we explore each
portion of the mission. The example that we will use is a mission to Mars, either an orbiter or a
fly-by, with the transfer orbit tangent to Earth’s orbit, but in a heliocentric orbit with a two year
period. The properties of this heliocentric transfer orbit are easily found to be:

aT = 1.5874 AU,     e = 0.3700       rp = 1 AU       V1 = Vp = 1.1705 AU/TU

7.1  Heliocentric Orbit

The first calculation to be done when performing mission analysis is to calculate the
heliocentric orbit properties. Generally it is necessary to determine the energy and angular
momentum from the information given. Once these quantities are known, the conditions at the
Earth’s orbit and at the target planet’s orbit can be determined. Assuming these locations are
designated (1) and (2) respectively, we can find the speeds, V1 and V2 from the energy equation:

 (2)

 
And the flight path angle from the angular momentum:

(3)

Hence from the heliocentric orbit properties we can get V1, N1, V2 and N2.  Since we know the
orbital speeds of the Earth and the target planet, we can calculate the necessary  at the
departure point (1) and at the arrival point (2) necessary to leave the Earth’s orbit or to enter into
the target planet’s orbit, respectively. In the mission analysis problem, these s

convert into the velocity relative to the respective planets or V4 with respect to the planet. This
result can be established in the following way: If a vehicle were to escape Earth (or any other
planet) using a parabolic orbit, when it got to infinity, its velocity relative to the planet would be
zero. Hence its velocity relative to the Sun would be the same as the velocity of the planet relative
to the sun. Consequently any excess speed would represent an additional  over and above the
velocity of the planet. We can then observe that any excess speed would be the hyperbolic excess
speed, the speed at infinity for a hyperbolic orbit. We can summarize this result by simply stating:

(4)

That is to say, the hyperbolic excess speed of a planetocentric escape orbit is just the  available
for insertion into the heliocentric transfer orbit. Likewise on arrival, the  required to enter into
the target planet’s orbit is the hyperbolic excess speed of arrival of the vehicle with respect to the
target planet. We can now treat this aspect of the flight in a more formal manner. The velocity of



the vehicle with respect to the Sun is the sum of the velocity of the vehicle with respect to the
planet plus the velocity of the planet relative to the Sun. We have then at point (1)

(5)

We can draw the vector diagram to
illustrate the location of these
vectors.

Here  is the planet’s

circular velocity, the transfer

orbit velocity, , the flight path

angle of the transfer orbit, the hyperbolic excess speed or equivalently, the required  to

enter into the transfer orbit, and , the angle  makes with the circular velocity of the planet.

This angle may be used later. From the heliocentric orbit properties, we know  and . We also

know the planet velocity relative to the Sun, (circular speed). Therefor we can calculate the
required  from the law of cosines:

(6)

Example:   In our example the transfer orbit is parallel to the Earth’s orbit so:

7.2 Departure-Planet-Centered Orbits

Before discussing the departure planet escape orbit, we should be careful to note that we
must be consistent with units. If we use basic units (km, km/s, etc) then we need to be sure that
we are using the correct gravitational parameter :.  If we persist on using canonic units, then we
must convert to the canonic units of the planet of interest. This conversion is done by the use of
the reference distance and the reference velocity. The reference distance is the radius of the
planet, and the reference velocity is the circular speed of a satellite at the orbit radius of the

planet, .  The reference time is the time it takes to move through 1 radian in the



reference orbit. For the sun, the reference distance is the Earth’s orbit radius, (1 AU) and the
reference speed is the Earth mean orbital speed (1 EMOS) = 1 AU/TU. To convert from one
system to the other we can perform the following operation when going to or from heliocentric to
planetocentric orbits.

 (7)

 

    (e.g. for Earth)

In our example we have,

We now know that we need a hyperbolic orbit with respect to the departure planet that
has a hyperbolic excess velocity of . If we leave from a parking orbit (or for that matter leave

from the surface of the Earth), we can compute the required burnout velocity using the energy
equation. For the planet-centered hyperbolic escape orbit, the energy equation takes the form:

(8)

For our example, if the escape burn were done from a circular parking orbit of radius 1.05 DU,
then the burn out velocity would be:

If we were to leave from a circular parking orbit at some specified flight path angle, then the 
 required would be given by the law of cosines:

(9)

which, for the case of a tangent burn becomes . In most cases, one would



leave tangentially from the parking orbit since the required )V needed to achieve a given burnout
velocity would be the smallest. 

For our example problem, we will leave tangent to the circular parking orbit, we have

The planet escape orbit is going to be a hyperbolic orbit with a hyperbolic excess velocity,
V4 = )V1. The properties of this escape orbit can be determined from the energy and angular
momentum equations applied to the burnout conditions. The velocity at burnout can be related to
the hyperbolic excess velocity from the expression given previously. These calculations lead to the
following result. The semi-major axis of the escape orbit is determined from the energy equation:

(10)

The eccentricity of the escape orbit is given by: 

or equivalently,
Eccentricity of Escape Orbit

(11)

For the special case where the escape burn is done tangentially and thus occurs at the periapsis of
the escape orbit, we can determine the eccentricity from the expression for the periapsis, 
rp = a (1 -e), and using the previous expression for a,

Eccentricity of escape orbit if escape burn at periapsis

(12)



For our example, since we are launching from perigee, we can use the short form for e,

Then we have, in either case,

(13)

For our example, 

The expression for the true anomaly at insertion into the escape orbit can be determined in a
couple of ways:

or

(14)

At periapsis insertion,  =  Nbo = 0.

The next calculation relating to the escape orbit is that relating to the “patch” conditions.
In particular we need to know the angle between the hyperbolic excess velocity vector and the

planet velocity vector with respect to the Sun. Assuming a circular planet orbit we have from the
previous figure:

which leads to, 



 

or preferably,

(15)

The final calculation deals with the location of the escape burn. The angle will be called
the launch angle , and is measured from the positive direction of the planet’s heliocentric

velocity, counter clockwise to the location on the circular parking orbit at which the escape burn
takes place.  From geometry,

(16)

For periapsis launch, , and we have

  (periapsis launch)

For our example problem, since ,

7.3  Arrival Planet-Centered Orbits

The “patch” conditions at the arrival planet are essentially the reverse of those at the
departure planet. Here we compute the relative velocity to the planet, or the  required for
planet velocity match and that, as for departure, gives us relative to the planet. This calculation

is the same:

(17)

where  =  Heliocentric arrival velocity

= Circular velocity of arrival planet with respect to the Sun

Again one must be careful to use consistent units. Here they are Sun canonic units.



For our example problem the arrival condition at Mars is determined from the angular
momentum and energy of the heliocentric orbit.

The conditions at the “patch” point allow us to determine the angle  makes with the

arrival planet’s heliocentric velocity vector ( ). The calculations are the same as departure, and

the picture is essentially the same. Designating the arrival parameters with a subscript 2, we have

(18)

where:
= flight path angle of heliocentric transfer orbit at arrival and are as defined

previously.

For our example problem, 

2nd quadrant (+/-)

Convert to Mars canonical units:



It is assumed that the periapsis height above the planet is given,  is known. Then we can

compute the planetocentric orbit parameters from the following equations, the same as used for
the escape orbit previously.

(19)

(20)

(21)

We can define a distance d, which is the perpendicular distance of the vector  from the

planet. This distance is a function of the periapsis distance and is determined from angular
momentum and energy considerations. From the definition of d, we have the following expression
for the angular momentum:

(22)

and of course the familiar expression for energy

(23)

Now    If we substitute this expression into the

energy equation and solve for d, we get an expression for d that contains only the periapsis
distance and .



(24)

To get this distance, we must plan to arrive in front of or behind the planet by some distance x.
This distance is given by:

(25)

Note that for a Hohmann transfer this last analysis collapses. For a Hohmann, you need to target a
smaller or larger radius, by the amount d. For all practical purposes in mission analysis, we can
assume the same Hohmann and just say that it gets there at the correct distance from the
planet with a relative velocity parallel to the planet orbit velocity with (0 for planet

radii less than departure planet radius, and B for arrival planet radii greater than departure planet
radius).

The hyperbolic entry orbit to the planet will strike the planet if  is less than the planet

radius. The corresponding value of d is called the collision radius of the planet. Approaches
within this radius will collide with the planet. If  is greater than that value which leads to

collision, the satellite will miss the planet, and continue on a hyperbolic orbit until it leaves the
planet. Since there is no energy lost, (assuming there is no atmosphere to cause drag), the satellite
leaves with the same magnitude of excess velocity as it had when it arrived.

At any given position in the hyperbolic orbit, we can calculate the true anomaly and flight
path angle in the orbit. These are calculated from the now familiar equations:

(26)

(27)

(28)



Of course if we elect to put the vehicle in some orbit at radius r, then we need to do a capture
burn. Assuming the planetocentric parking orbit is a circular one, the required  is given by

(29)

Where  is the circular velocity of the desired parking orbit at radius r, 

In most cases an attempt will be made to enter the parking orbit tangentially at the periapsis, so
that the following relations hold:

                   (periapsis capture)

For our example problem if we enter a circular orbit at 1.1 Mars radius at perimars, we
have the following calculations: (using Mars canonic units)

 (-)  Indicates slowing down

The location of the capture is determined from a similar equation for determining the
launch burnout location. Hence we have:

(30)

Flyby



If the vehicle is not captured, then it will fly by and leave at the same relative velocity as it
approached ( ). In this case we must do additional calculations to determine the heliocentric

orbit on leaving. First we need to determine the turning angle, or the angle between the approach
asymptote and the departure asymptote. This angle is given by:

(31)

where  is the turning angle.

For our example, 

Therefore the angle the departure makes with the planet heliocentric velocity vector,

, is given by;

+ for flight under the planet

- for flight over the planet

For our example: .

Then the “patch” conditions lead to the following equations. These are similar to those for
departure from the first planet, and entry to the second planet. However different quantities are
known so the equations appear slightly different. It is still the application of the law of cosines.
We will designate the conditions at departure from the flyby as 3. Note that the planet orbit’s
radius .

(32)

(33)

For our example: (these are back in Sun canonic units)



        (First quadrant +/+)

7.4 Heliocentric Orbit After Flyby

From the information calculated on leaving the planet, we can determine the
characteristics of the new heliocentric orbit after the flyby. To do this, we need the energy and
angular momentum.

(34)

(35)

(36)

This information is sufficient to determine all properties of the heliocentric orbit. We could
continue to flyby another planet by repeating the calculations for points 2 and 3. Notice that the
radius of the sphere of influence does not enter into these mission analysis calculations. The
original heliocentric orbit and the new heliocentric orbit terminate and initiate at the orbit radius
of the flyby planet. ( ). Hence the heliocentric orbit is discontinuous in energy, angular

momentum,  and consequently, flight path angle and velocity at the planet orbit radius. Over
flights tend to increase the energy while under flights may decrease the energy. 

Example problem continued:

These are the new heliocentric orbit properties. 



Energy Gained During Flyby

The energy gained during a flyby (over the planet) can be established in a manner that
gives more insight to the problem. We will continue the notation from above and consider item
(2) to be the approach conditions, and item (3) to be the departure conditions. In addition, our
approximation includes the assumption that the sphere of influence relative to the Sun is zero, so
that the distance from the Sun at arrival and departure is the same. Under these assumptions, the
energy gained during a flyby is given by:

(37)

We can represent the approach and departure vectors as:

(38)

where = planet velocity

= hyperbolic excess speed at approach and departure

= unit vector along the departure asymptote

= unit vector along the approach asymptote

If we take the scalar of  and with themselves to get their squares, we can substitute them

into Eq. (37) to get:

where  is a unit vector along the planet velocity direction, or,

(39)

From Eq. (39) we can make the following observations:

1) For a given direction of arrival, we can maximize the increase in energy when is
maximum, or when the exit or departure velocity is parallel to the planet velocity. In this case the
heliocentric orbit after leaving the planet would be tangent to the planets orbit velocity (Homann-
like).

2) For a given turning angle, *, , the maximum increase in energy occurs when

is a maximum which occurs when the is parallel to the planet velocity.
Because of symmetry, this occurs when the major axis of the hyperbola is aligned with the planet
velocity.




