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Astromechanics
Two-Body Problem (Cont)

5. Orbit Characteristics

We have shown that the in the two-body problem, the orbit of the satellite about the
primary (or vice-versa) is a conic section, with the primary located at the focus of the conic
section. Hence the orbit is either an ellipse, parabola, or a hyperbola, depending on the orbit
energy and hence eccentricity. For conic sections we have the following classifications:

e < 1 ellipse
e = 1 parabola      (An exception this relation is that all rectilinear orbits 

have e = 1, and angular momentum = 0)
e > 1 hyperbola

Of main interest for Earth centered satellites (Geocentric satellites) and Sun centered satellites
(Heliocentric satellites) are elliptic orbits. However when we go from one regime to another such
as leaving the Earth and entering into an interplanetary orbit then we must deal with hyperbolic
orbits. In a similar manner, if we approach a planet from a heliocentric orbit, hyperbolic orbits are
of interest. Parabolic orbits, on the other hand are more theoretical than practical and simply
define the boundary between those orbits which are periodic and “hang around,” (elliptic orbits),
and those orbits which allow one to escape from the system (hyperbolic orbits). So one might say
that the parabolic orbit is the minimum energy orbit that allows escape. In the following, we will
determine the properties of each of these types of orbits and write some equations that are
applicable only to the type of orbit of interest.

PROPERTIES OF THE ORBITS

Parabolic Orbit (e = 1, En = 0)

The parabolic orbit serves as a boundary between the elliptic (periodic) orbits and the
hyperbolic (escape) orbits. It is the orbit of least energy that allows escape. The orbit equation
becomes,

Further, the periapsis distance = r(0) = p/2 = h2 / 2:. 

The energy equation becomes:
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Escape Velocity

Equation (2) defines the escape velocity, which is the minimum velocity to escape the two body
system at the given radius r. Note that the speed required for escape is independent of its
direction! 

The flight path angle in a parabolic orbit is given by:

    Also it is easy to show ( use V cos N = r ) that .

Example

A satellite is in a circular orbit pf 100 n mi. Find the escape speed and the minimum )V
needed to insert the satellite in and escape orbit. 

Convert to canonic units: r = Re + 100 n mi~=~

If we assume a launch tangent to the orbit all we have to do is add the increment in velocity ()V)
to the existing circular velocity:
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Elliptic Orbits (e < 1, En < 0)

Recall that the radius position is
measured from the focus of the ellipse (not
the center). By evaluating the orbit
equation at values of the true anomaly of 0
and B, we can determine the closest
approach (periapsis distance, rp) and the
furthest distance (apoapsis distance, ra).
The sum of these two comprise the major
axis of the ellipse. Of interest to us is half
the distance or the semi-major axis, usually
designated by the symbol a. Hence a is the
distance from the center of the ellipse to the
periapsis or apoapsis. We can set < = 0 and
B to obtain rp and ra respectively,

Then the major axis, 2a = ra + rp, and we have,

or
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.

Hence the orbit equation for the ellipse becomes;
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Also it follows:

Periapsis and apoapsis distances
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and
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From the geometry:
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Define the semi-minor axis:
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Energy in an Elliptic Orbit

We can recall the expression for the eccentricity in terms of the energy and angular
momentum:
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We can eliminate the eccentricity from Eq. (6) using Eq. (12):

or
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Energy in an elliptic orbit

Hence the energy equation takes the form (for an elliptic orbit):

Energy equation, elliptic orbit

Solving for the velocity we have
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Additionally we have the flight path angle relation

and in terms of r, 

An interesting set of relations happen at the point on the orbit at the end of the semi-minor
axis. At that point, the following relations can be found: (can you prove these relations?)
True only at the end of the semi-minor axis:

r = a,    cos < = -e,    tan N = ,   sin N = e, 

Orbit Properties in Terms of Apoapsis and Periapsis Properties (rp, ra, Vp, Va)



We know that the major axis of an elliptic orbit is equal to the sum of the periapsis
distance and the apoapsis distance . Consequently, the energy in an elliptic orbit is

given by:
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Starting with this equation we can determine an expression for the velocity at periapsis and
apoapsis:

These equations can be rearranged to give the velocities at each apse:
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Angular momentum in terms of and 

The radial velocity component is zero at both the apoapsis and periapsis so the total
velocity is the transverse velocity. Consequently we have the nice relation:
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Substituting in for either Vp or Va from Eq. (19) in the above equation provides the angular
momentum in terms the distances only. Using either one it is easily shown that

(21)

Angular Momentum in terms of  and 
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We can use Eq. (20) to get the relation  to replace the ratios in Eq. (19), and get

the result:

(21)

or by rearranging:
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Orbit Energy in terms of  and 

If we rearrange Eq. (21) we can obtain an expression for  in terms of the velocities at

the apses:
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Then the energy can be obtained from:
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Period of an Elliptic Orbit 

An elliptic orbit is the only type of orbit that has a period.  We can determine the period by
recalling the angular momentum equation and noting that half the angular momentum is the aerial
rate,

Then integrating both sides over one period or once around the orbit we have
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But , and , and the (1 - e2) terms cancel leading to the period
given as

We can see that both the energy and the period of the orbit depend only on the size of the orbit
and not on the shape (e). 

It is useful to define the mean angular rate, n = 2B / Tp. With this definition we can write
a form of Kepler’s third law, the square of the period of an orbit is proportional to the cube of
the orbit size.

Circular Orbit - As a Special Case of Elliptic Orbit (e = 0, )

With e = 0, the orbit equation gives,

From the energy equation,

Vc is called the circular speed and is defined at every radius r as   regardless of the

orbit.

Example

We will launch from the Earth’s surface with a velocity of 3 km/s at a flight path angle of
30 degrees. Find the properties of the orbit. The first thing that we do is to calculate the energy
and angular momentum!



and

From these properties we can calculate the eccentricity and semi-major axis of the orbit:

Now we can calculate the maximum and minimum radii of the orbit.

Note that part of the “orbit” lies interior to the Earth. The perigee is only 363.6 km from the
center of the Earth. On the other hand, the maximum radius is well outside the earth and the
satellite ( missile?) achieves an altitude of

                    

We could have done this problem in canonic units in the following way:

Then the energy and angular momentum become:

,  
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The eccentricity is obtained from:

Hyperbolic Orbits (e > 1, En > 0)

From the orbit equation, , it is clear that the radial distance will go to

infinity when the denominator term goes to zero.

r µ 4     when ( 1 + e cos < ) = 0 
Then 

Equation (31) puts limits on the true anomaly of a hyperbolic orbit.

Just as in an elliptic orbit, we can calculate the closest approach at < = 0. We can also
calculate the “apoapsis” distance by letting < = B.  However the result is negative and represents
the “closest approach” of the other branch of the hyperbola, one that has no meaning in our orbit.
However, formally we can then note that ( remember, e > 1):

Substituting for rp in the above equation yields the hyperbolic orbit result,

and the corresponding hyperbolic orbit equation
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Hyperbolic Orbit Equation

If we substitute for  in Eq. (33) we find the hyperbolic orbit energy,

The corresponding energy equation is

or
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One of the consequences of Eq. (36) (or 37) is that at infinity, the velocity is no longer zero and is
given by

and is defined as the hyperbolic excess velocity.

We can also determine the flight path angle in terms of < or in terms of r in a similar
manner as we did for elliptic orbits. The results are

and 
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Finally, the hyperbolic orbit has a property that no other orbit has. A vehicle traveling the
length of the orbit will arrive coming from some point at infinity, and then fly by through the
closest approach point (periapsis), and then leave, going to some point at infinity. The approach
direction comes in from a direction of -<4 and the departure direction in the direction of +<4 . The
angle through which the vehicle turns is called the turning angle, *. This turning angle can be
determined from the properties of the hyperbola.

Then . Consequently the turning angle is 

given by

The properties characteristic of all orbits were presented in this section. Equations which
apply to all orbits are given and those which are applicable to specific orbits are presented. Be
sure you don’t apply equations that apply to a specific case to a general case.


