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Astromechanics
The Two Body Problem (Continued)

3. Constants of Motion for the Two Body Problem

The vector differential equation of motion which describes the relative motion of a satellite
with respect to a “primary” body is 

Equation (1) is a second order ordinary vector differential equation. Once we pick a coordinate
system, we can write the representation of Eq. (1) in scalar form. For Cartesian coordinates, for
example, we can write Eq. (1) in scalar form:

where r3 = (x2 + y2 + z2)3/2. We could also pick cylindrical or spherical coordinates in which to
represent Eq. (1). In any case, no matter how we represent it, Eq. (1) represents a sixth order
dynamic system. We can obtain the solution to the system if we can determine 6 constants of
integration! We can extract 4 of these constants by applying standard techniques in dynamic
analysis to Eq. (1). We can save ourselves a lot of grief if we keep Eq. (1) in vector form. These
standard techniques include looking at the angular motion or moment equation, and applying the

work-energy relation. Both of these techniques can be applied to the Newton equation ,

which is essentially the form of Eq. (1). (Equation (1) can loosely be considered to be  ).

Angular Motion (Angular Momentum Constant)

The moment of force is defined to be , and the corresponding time derivative of the
moment of momentum (angular momentum) is given as . In this problem we have divided
through by m, hence the results are associated with the specific angular momentum. Here 
 we can take the cross product of the vector,  with Eq. (1),

(3)
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(5)

The last equality holds since . (a radial force passes through the origin and hence
cannot have a moment about the origin) The first term (the term on the left side of the equation)
can be rewritten, and Eq. (3) becomes,

Therefore we can write that the specific angular momentum (angular momentum per unit mass) is

a constant which we shall label, . 

Note that  is a vector constant so it is equivalent to 3 scalar constants (3 down, 3 to go).  Any
given orbit has constant angular momentum. 

Consequences of Angular Momentum Constant

The fact that the angular momentum is a constant simplifies the problem considerably. The
angular momentum being constant means that it is fixed in (inertial) space. One can also note that
the velocity vector and the position vector are always perpendicular to the angular momentum
vector (by definition of the cross product). Furthermore the position vector goes through the

center of attraction (Earth, Sun, or whatever is the primary mass). Note that  and  form a
plane, and that plane is perpendicular to the angular momentum vector. We can now come to the
following conclusions for the two-body problem:

1. Any given orbit lies in a plane fixed in space.
2. The fixed orbit plane must pass through the center of attraction.

Reducing the Equations of Motion

Since the orbit lies in a fixed plane, the equations of motion may be simplified by noting
that we can now (for the time being) reduce the problem to two dimensions. Hence we can write
Eq. (1) in plane coordinates, either x and y as in Eq. 2 (with z = 0), or we can use plane polar
coordinates. It turns out more useful to reduce the problem by using plane polar coordinates.
Formally, we can use the two of the three angular momentum constants to locate the plane in
space (we will do that later). This leaves one of the constants associated with angular momentum
that we can apply to our reduced equations of motion.
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Plane Polar Coordinates

Before examining Eq. (1) further, we will look in more detail at the representation of
various vector quantities in a plane polar coordinate system. From previous work we can see that
the position, velocity, and acceleration vectors can be represented as:

(6)

The angular momentum vector (per unit mass) is given by . We can implement this
operation in the following way:

(7)

Hence the magnitude of the angular momentum is given by:

(8)

We can introduce a new “in-plane” variable, the flight path angle N, the angle between the
velocity vector and the local horizontal. With this definition, we can write the angular momentum
and the components of velocity in another way:

(9)
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(11)

(12)

Kepler’s Second Law

We are now in a position to extract Kepler’s second law: “Equal areas are swept out in
equal times,” or “the areal rate is a constant.”  This law can be established by determining the area
swept out as the position vector moves from a location 2 to 2 + )2. The area between the two
vectors is approximately:

Then, we can divide by )t and take the limit as
to get:

 (10)

or the areal rate is a constant ( equal areas are swept out in equal times). The consequence of this
law is that when the radial vector is small, the angular rate is large and vice-versa. Hence a
satellite in an orbit that varies in altitude will be moving the fastest when closest to the Earth and
slower when further from the Earth.

Specific Energy Constant 

We will now extract the work-energy integral. We can extract this integral by noting that 

. If we take the dot product of this equation with Eq. (1), we have,

Recall,  . Then using these relations we can rewrite Eq. (11)

in the following manner,

Integrating both sides of Eq. (12) leads to 
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(13)

(14)

(15)

Eq. (13) is the specific energy equation and says that the kinetic energy plus the potential energy
(all per unit mass) is a constant. Typically we use the symbols T + U = En, where En is the total
mechanical energy/unit mass.  Therefore, the potential energy for an inverse square gravitational

field is given by , where the datum is selected such that the potential energy is zero at 

infinity. As a consequence of this reference point, the Potential Energy of All Orbits is
Negative! The energy equation for all orbits is given by 

En in Eq. (14) represents the fourth constant of integration (4 down, 2 to go), and is the Energy
constant. Any given orbit has a constant energy. 

Equations-of-Motion in Plane Polar Coordinates

The equations of motion can now be written in plane polar coordinates. We will write the
radial acceleration equals the radial force per unit mass, and the transverse acceleration equals the
transverse force per unit mass. From previous work we can write directly,

These equations are two second order, ordinary differential equations in the dependent variables, r
and 2, with the independent variable, t. A solution consists of determining r(t) and 2(t).
Determining such a solution requires determining 4 constants of integration. Such a solution will
not be possible. However we will try and extract as much information as we can. Remember, two
of the constants that we already have are the constant magnitude of the angular momentum, h,
and the specific energy En. Hence for a complete solution, we need two more constants of
integration.

Using Angular Momentum and Energy Constants to Solve Problems

The two constants, angular momentum and energy for a given orbit, fully describe the size
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and shape of the orbit in the orbit plane. They also serve to describe the velocity magnitude and
orientation at different points in the orbit. Here we will look at determining certain properties of
the orbit, namely the speed and flight path angle of the satellite, and maximum and minimum
distances from the attracting body. Note that we can find these properties without knowing any
particular details about the orbit. These problems are presented to illustrate the importance of
these two constants. There are better ways to calculate some of the properties in the problems
then that given here. However, knowing the angular momentum and the energy of an orbit is
always the first step in solving virtually any problem!

In the examples that follow we will use astrodynamic constants from the Joint
Gravitational Model 2 (JGM-2). The constants of interest here are the Earth’s gravitational
constant, :, and the radius of the Earth, Re.

:e = 3.9860 x 105 km3/s2 = 9.563 x104 mi3/sec2 = 6.275 x 104 Nm3/sec2 = 1.4076 x 1016 ft3/sec2

Re = 6378.1363 km = 3963.1902 mi = 3443.9181 Nm = 2.0926 x 107 ft

More accurate values appear on the JGM-2 constant sheet.

Example

Consider the launch from the surface of the Earth (assume no atmosphere) with a launch
velocity of 3 km/s (in any direction!). Determine the speed at 300 km altitude (if it reaches that
altitude). We can solve this problem using the energy equation.

At launch:

Hence the energy of the orbit is negative! Remember that potential energy is zero at infinity. Here,
the potential energy is more negative then the kinetic energy is positive so the sum is negative. 

At 300 km:

If the satellite in this orbit reaches the altitude of 300 km, it will have a speed of 1.8399 km/s.

Note that the direction of launch is not important, and the direction of the velocity at 300 km is
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not determined. In fact we do not know if the orbit will even go that high without specifying the
direction of launch.
Example

If, in the previous problem, the satellite was launched at a flight path angle of 30 deg.,
what would be the maximum altitude reached?

In order to solve this problem, we will need to calculate the angular momentum for this
orbit. However, prior to doing that, let us solve this generically (no numbers) and substitute the
number is at the end. From the angular momentum we can determine the transverse component of
velocity:

From the energy equation we can write:

However at the peak of the orbit,  = 0 ( V does not equal zero!), so that we can write:

The solution is given by:

For our problem:

 ;     

Then:
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The maximum altitude is determined by subtracting the radius of the earth from rmax

The minimum “altitude” is obtained the same way:

The minimum altitude is below the Earth’s surface. This result should not be surprising since we
launched from the surface of the Earth, the lower part of the “orbit” should be inside the Earth.
That is, in order to launch into an orbit from the surface of the Earth, the orbit mu;st intersect the
Earth. 

What is the satellite orbit speed at rmax and rmin?  An easy way to calculate these speeds is
to note that at these two points in the orbit, Vr = 0, and V = V2. So we can write:

At the minimum radius

Also, we could have used the energy equation. For Example at the maximum radius ( or height)

     Y       

We can note a few things here. One is that as the distance gets smaller, the speed gets
faster. Here it is 20 times faster at the closest point than at the peak. 

Example

Consider a vertical launch with the same velocity. Find the maximum altitude that can be
reached. Here the flight path angle is 90 deg.
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Then the maximum altitude would occur when Vr = V = 0   Then we can use the energy
equation to determine the maximum altitude.

,  or

Example

Suppose that we launch with a higher speed, say, 15 km/s (in any direction). How high
will this vehicle be able to go?

For all problems dealing with speed, we use the energy equation. In this case we have:

If we substitute r = 4 into the energy equation we get . So for our problem we can

solve for the velocity when the spacecraft is at infinity, .

Hence for this orbit, the satellite still has speed at a large distance from the center of the
Earth. This speed is called the hyperbolic excess velocity.

(16)

We can now ask the question if there is some launch speed that will just get us to infinity, but
have no velocity when we get there. Or another way to think about it is if there is an energy level
that will just let us get to infinity. Well we want at . If we evaluate the energy

equation at infinity with these values we get:

The result is that an orbit whose energy level is 0 will have just the right amount of energy to get
to infinity with zero velocity. An orbit with negative energy cannot get to infinity, and one with
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(18)

positive energy gets there with an excess of velocity. This energy level is the boundary below
which the satellite cannot escape the Earth, and above which it can. Consequently we can
calculate the velocity at any radius that will be the lower bound for escape:

Escape Velocity at any radius r

(17)

At any given radius (distance from the center of the primary attracting body) we can
calculate the minimum velocity (in any direction) required for escape). At the surface of the Earth
we have:

Escape Velocity from Earth’s Surface

Special Case - Circular Orbit

We can return to the general differential equations of motion and examine them to see if
we can extract a solution for the special case of a circular orbit. In plane polar coordinates, a
circular orbit would be described by the fact that the radius of the orbit is constant, r = constant.
Let us look at plane polar differential equations of motion and substitute in the fact the radius is a
constant. The general equations are:

If we specify that r = constant we have , where we will

designate the constant as  (r circular). Substituting these values into Eq. (18) gives:

(19)

Equation (19) implies that   (n / mean angular rate, in this case constant)
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We can also note: . That is that

the circular orbit speed is same as the transverse component of velocity since .  We

can rewrite Eq (19) by multiplying through by :

Then the circular speed is given by:

 Circular Speed at radius r   

(20)

Equation (20) is the speed a satellite would have if it were in a circular orbit at radius r.
However, it also serves to define the circular speed a radius r. For example we might be in an
orbit that at some radius r, has a speed V that might be twice the circular speed. Hence we might
describe the orbit speed as twice circular. Hence the circular speed often serves as a reference
speed from which to define other speeds. Later, we will use such a definition to define canonical
units. 

Energy in a Circular Orbit

We can compute the energy in a circular orbit by substituting the orbit speed in the energy
equation:

Energy in a Circular Orbit

(21)

Here we see that the energy of a circular orbit is always negative and depends only on the
size of the orbit, the bigger the radius the higher the energy. 

Angular Momentum in a Circular Orbit

The angular momentum of a circular orbit is easily found from:

Angular Momentum in a Circular Orbit
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(22)

If we squar both sides of Eq. (22) (using the third term and the last term), we can arrive at the
result:

(23)

where n is the (mean) angular rate defined earlier.

Period of a Circular Orbit

Since a circular orbit closes on itself, we can ask the question about how long it takes to
return to a given position, or what is the period of the orbit? This calculation is easy since we
know the speed and the radius (and hence the circumference) we can simply divide the
circumference by the speed:

Period of Circular Orbit

(24)

Example:   Find the properties of a 200 km circular orbit.

Position:

Orbit speed:

Angular rate:

Period:
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Example: What is the altitude of a synchronous, 24 hour orbit?

      

Canonic  Units

We hinted previously about using the circular speed as a reference speed and measuring
other speeds relative to it. If in addition, select the corresponding radius as a reference length, and
measure other lengths relative to it, the resulting units that we end up with are called canonic
units. Consider satellites orbiting the Earth. We can define the Earth radius as a reference length,
Re = 6378.1363 km = 1 DU, where DU means “distant unit.” The reference speed is the speed of
a circular orbit at the radius of the Earth (sometimes called the speed of a surface satellite). Since

, we have , where SU

stands for “speed unit”, and TU stands for a “time unit”. With this definition, a satellite in a
circular orbit of 1 DU has a circular speed of 1 DU/TU. If we apply the expression for the circular

orbit speed we have: . When we

reference distances and speeds to the radius of the Earth (or any other planet) and its associated
circular speed, we call these canonic units. In canonic units referred to a given planet, the value of
: associated with that planet is always 1 DU3/TU2.  For example in canonic units the energy

equation is written as , where the units of energy are DU2 / TU2.

The period of the reference orbit is given by  TU.

Therefore the time unit, TU is the time it takes a satellite in the reference orbit to travel through 1
radian. For orbits about the Sun, the Earth’s orbit radius is the reference distance, and the Earth’s
mean orbital speed (EMOS) is the reference speed. In order to convert from canonical units to
scientific units we can use the following conversion factors (more accurate ones appear on the
JGM-2 constant sheet).
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Canonic Units

Earth Sun

1 TU 13.4468 min 58.1328 days

1 DU 6378.1363 km 1.4960x108

1 SU (DU/TU) 7.9054 km/s 29.7848 km/s

When using canonic units, the orders of magnitude of the numbers in the equations is
about 1. 

Example:

What is the energy of a synchronous (24 hour) satellite? 
A synchronous satellite has an orbit radius of 6.6228 Earth radii so r = 6.6228 DU

The speed of a synchronous satellite is 

The orbital energy of a synchronous satellite is given by:


