Astromechanics
1. Preliminaries

Since we will be using vectorsin this course, it is of interest to review some ideas
relating to them. Of particular interest is the distinction between a vector and it representation.
Once the difference between the two isidentified, we will be interested in the representation of
position, velocity, and acceleration in various coordinate systems.

Vectors and Their Representations

A vector is an abstract symbol introduced by mathematicians and engineers to represent a
guantity which has magnitude and direction. Typically in this course we are interested in three
dimensional vectors representing position, velocity, and acceleration. A vector is generally
represented in its abstract form by an arrow whose length is proportional to the magnitude of the
vector quantity. We can deal directly with the vector symbol when doing certain operations such
as addition, subtraction, vector, and scalar multiplication by using graphical techniques or by just
indicating them, suchas. 4 + B = C . However, to perform calculationsit is generaly
necessary to use arepresentation of the vector. These representations are not unique but are
related to some coordinate system. In general the same vector can be represented in many
different ways, depending upon the coordinate system selected. We can pick different types of
coordinate systems, e.g. rectangular (Cartesian), spherical, cylindrical, and in two dimensions,
plane rectangular, and plane polar, and we can pick different orientations of the same type of
system. In either case, the representation of the same vector will appear quite different.
Although in general we are usualy interested in different orientations of the same type of
coordinate system (to be dealt with later), at the present time we are interested in different types,
in this case rectangular and cylindrical (in 2D, plane polar), and spherical coordinate systems.

We generally define a coordinate system by a set of mutually orthogonal unit vectors,
called basis vectors. These vectors are of unit length and are perpendicular to each other forming
aunit triad. Typically they are designated by the symbol é,, where, i, indicates adirection. For

example the following is an equivalent representation of the generic vector dina rectangular
coordinate system:

A=A47i+47]+4k
=Adé + A, + e, (1)

=46 + 4,6, + 4; &

or in the last case we could write:

” 3
ol o= ZA..:}‘. (2)



Here, 4,, 4, A or the 4, terms are called components of the vector, and are scalars, and the

@7, k), (6, éy, é,), or (é, i = 1,2,3) arethe basis vectorsfor this coordinate system.

The position vector in arectangular coordinate system is generally represented as

F=xi+yj+zk (3

with 7,7, £ being the mutually orthogonal unit vectors along the x, y, and z axes respectively.
Thevalues x, y, and z are the scalar components of the position vector 7.

All coordinate systems have two itemsin common, a reference plane, and areference
direction in that reference plane. For rectangular coordinates one can think of the reference plane

as the x-y plane and the reference direction as the x direction or i . Further, the coordinate z is

measured perpendicular to the reference plane, (dlong k) giving us the coordinates (X, y, z). If
we consider cylindrical (or plane-polar) coordinates, the reference plane is the one in which the
radial component is measured, (r), and the reference direction, the one from which the angle to
the radial component is measured (0). In addition, in cylindrical coordinates, the coordinate z is
measured perpendicular to the reference plane, giving us the coordinates (r, 0, z). In spherical
coordinates we can think of some equatorial-like plane as the reference plane. The magnitude of
the position vector (r) is one coordinate. The reference direction is that direction from which the
angle to the projection of the position vector on the reference plane is measured (0), and the
elevation of the position vector with respect to the reference plane is the third coordinate (¢),
giving us the coordinates (r, 6, ¢). (Note that sometimes the third angle is measured from the
normal to the reference plane (z axis) instead of from the reference plane).

Here, for reasons to become clear later, we are interested in plane polar (or cylindrical)
coordinates and spherical coordinates. Cylindrical coordinates have mutually orthogonal unit
vectorsin theradial (parallel to the radius vector), transver se (perpendicular to the radius vector
in the plane of interest) and normal (perpendicular to the plane of interest). They are designated

as é, é,, é,respectively. A generic vector Awould be represented as:

Z{ = Arér + Ae éﬂ + Azéz’ (4)

where 4, 4,, A are the scalar radial, transverse, and normal (z) components of the vector 4.

Spherical coordinates aso have mutually orthogonal unit vectorsin theradia (parale to
the position vector), the longitudinal (parallel to the reference plane and perpendicular to the
position vector), and the elevation or latitude (along a constant longitude line and perpendicul ar



to the position and longitudinal unit vectors). A generic vector 4 would be represented as:

A =46 +dy64 + A6, (5)

r-r

where 4,, 4,, A,arethescalar radial, longitudinal, and |atitudinal components of the vector 4.

It should be clear that the scalar components of the representation of the vector A4 in plane polar
or spherical coordinates are not the same as those in rectangular coordinates. Hence the same
vector has a different representation in different types of coordinate systems. Also it should be
clear that the same vector will have a different representation in two rectangular coordinate
systems oriented with different reference directions and reference planes.

Although the two representations are different in the two systems, they are related to each
other. If we consider the same vector represented in arectangular coordinate system, in a
cylindrical, or in aspherical coordinate system, we have the following relations between the two
representations.

Z=AxiA+ijA+AZI€,
=Aé + Agéy + A,¢, (6)
=A,é, +Agéy + 4,8y,

where even the components A, and A, are different in the two different representations.

The relationship amongst the various componentsis called a transformation. We can
write the transformation matrix relating the cylindrical and spherical components of the vector to
the rectangular components. The results are, for rectangular to cylindrical:

rect

A, kg cos@ sinO 0 A4,
A, = | -sin® cos® 0|4, ., (7
A4, o o 1|4

and for spherical:

rect

A |Phere cospcosO cosPsin® sind A,

A, =| -sin@ cosH 0 |14, (8)

¢ sindpcosO sindsin® cosd 4,



Hence, athough the representations of the same vector are different in different coordinate
systems, these representations are related to each other. Note that these transformations can be
represented in matrix form, and these matrices are called transformation matrices.

Furthermore we can note that we can represent vectors as column matrices if we can
specify in what coordinate system they are represented. For example if we have a position vector
in arectangular coordinate system, we can write:

X systeml
o= {y} 9)
z

When transforming the representations of the vectors from one system with an
orthogonal unit triad of basis vectorsto another system with a different orthogonal unit triad of
basis vectors, the transformation matrix takes on avery specia form. If both basis triads are right
handed (the unit vectors obey the right hand rule for taking a vector product, that is:
ixj=k jxk=1i, kxi=j0é xé =6, égxé,=¢, ¢ x¢é =¢), the
transformation matrix is an ortho-normal matrix. That is, its determinant is 1, and itsinverse can
be obtained by just taking the matrix transpose. Additional propertiesinclude: each row or
column can be thought of has a vector (with three components) that has a magnitude of 1.
Further, each row (vector) is orthogonal to every other row and each column (vector) is
orthogonal to every other column. In short the scalar (dot) product of any column (row) with any
other column (row) is zero, while the scalar (dot) product with itself is 1. See definitions of
vector and scalar products below.

Vector Algebra
Addition and Subtraction

Generaly we can manipulate vector equations using the generic vector itself. However, it
is useful to know how to do basic vector agebra using the representations of the vector. For
addition and subtraction we have for the generic operation,

A+B=C (10)

In addition, if we could draw each vector on a surface, we could add the two vectors graphically
by drawing the vector B with thetail of Battached to the head of 4. The vectorC is the vector
drawn from the'tail of 4to the head of B. Once we get more than two vectors, they may not all

be in the same plane, and such a construction could become unwieldy and certainly not accurate.
Consequently we would like to be able to perform these operations with precision and with ease.
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We can achieve both goals since we can perform this operation in terms of the vector
representations, if we have each vector represented in the same coordinate system. Then the
addition and subtraction operation is just the addition and subtraction of the vector components:

C, =4, +B, (11)
The Scalar (or Dot) Product

The scalar (dot) product is generically givenas 4 - B = S where Sisascalar
(independent of coordinate system in which 4 and B are represented). Furthermore, the
definitionis
A - B = |4| |B| cos/(4,B). Interms of the vector representations, one can use the definition

of the scalar product to show it can be calculated simply as the sum of the products of like
components. Here we have

A-B=3"AB,, (12)
i=1
or
and the result is the same scalar, regardless of which representation is used.

The magnitude of a vector is given by:

Al - i (14)
A+B =4 B, + AyBy +A4,B,,
= ArBr + ABBB + Asz’

(15)
=A B, + AgBy + A¢B¢,

=S

The Vector (or Cross) Product

The vector (cross) product is generically givenas Ax B = |4| |B| sin £(4, B)é, , where
é isaunit vector perpendicular to the plane containing A4 and B and directed in accordance

with the right hand rule. If you rotate A into B then the vector é pointsinthedirectionin



which aright handed screw would advance. Alternatively, take your right hand, point you

fingersin the direction of 4 and curl them towards B, your thumb will be pointing in the
direction of é . If we write each vector in terms of its components and basis vectors, and apply

the definition of the vector product to the unit vectors when we perform the vector
multiplication, we can arrive at a convenient way to calculate this vector multiplication
operation. It can be performed using the representations of the vector in the following manner:

Pk A,B, - A.B,
AxB=|A4, A A | ={4,B, - AB, | (16)
B, B, B, A.B, - 4B,
or
ér é@ éz AB Bz Az BB
AxB=|A4, 4y A |={4,B - A B, |, (17)
Br Be Bz ArBB AeBr
or
é, & &, AgB, - A, By
Ax B =|Ay Ay Ay |=1{4,B, - 4,B, |. (18)
B, By B, A By - 4y B,

Vector Calculus

We generdly haveto deal with derivatives of the above vectors. Or particular interest
hereisthe representation in plane-polar coordinates. It should be noted that the basis vectorsin
the (inertial) rectangular coordinate system do not change in magnitude or direction, and hence
are constant. In plane-polar coordinates, the basis vectors are constant in magnitude, but are
changing direction. Hence their derivatives are not zero. We can note the following

development:

. lim Aé, . lim Aeée A A
¢, = A=0, = A=05, - 9% (19)

Similarly,



6 = —0¢,. (20)
Then,since# = ré,,
dr = . . AaA _ 1A .
Z—V—rr+r*r—rr+r0ee—Vrer+Veee. (21)

In asimilar manner we can represent the accel eration.

22 %4 N o s .
a7 _dV_ e +ré +F0é +r0é, +r04,
de* dt ’ 0
or
i=9Y _po s 500, 4706, +rbe, - rtPe
dt
(22)

(7 - r&)e « (r® +270)e

Similar, but much more complicated, calculations can be carried out for spherical
coordinates. The resulting unit vector rates can be determined to be:

ér = (i)é¢ + Bcosdé,

éy = Gsind)e‘(b - Bcosde, (23)

.
A

)

-pé, + Bsindé,
Summary

The position, velocity, and acceleration for each coordinate system are given next.

Rectangular Coordinates Polar coordinates (in-plane components only)
F=xi+yj+zk F=ré

V=3xi+y]+:ik V=ré +rbé,

a=xii+jj+zk da=(¢-r0’)e +(rd +270)¢,
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F=Fi+F,j+Fk
dF = dxi + dyj + dzk

N-00)r, 002, 9O ¢
VO= % "% Tk
0®

VO-dr = —dx + —dy + —dz
ox

Spherical Coordinates:

F=re,

V=V,6, + Vyby + Vyé,

Fé, +rOcosdéy + ré,

QL
I

a.e, t ageg t a¢e¢

F = Feer + Fyéy
dr = dré, + rd0é,

wo=%ﬁé+lﬁﬂ%

r " r a0
vo-ar - 9%4 + 9% 49
or 00

x =rcosd, y = rsing.

(’,: _rd-)z —r62c0s2d>)é, + (récosd) + 2;’6005(1) - 2r(i)esind))ée

+ (rd +27d +r623in¢cos¢)é¢

-

F =F,6 +Fyéy + Fyé,
dr = dré, + rcosddd éy + rdpé,

ve) =906 + 1 90, .1

or rcos¢p 00 r

vo-dr - %a + %40 + 9% 44
or 00 od

Finally we note:

Ad-71=-A4d

Also you can verify from above that

o
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(24)

(25)

(26)

(27)



E.g. Inplane polar coordinates: | 7| = [f2 r 202 [?



