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Performance
14. Range and Endurance

Both the range and endurance of an aircraft depends on rate of fuel consumption of the
engine, and therefore, on the type of engine that is involved - output measured in terms of thrust
or output measured in terms of power. We generally consider the range to be the distance the
aircraft can fly from a given speed and altitude until it runs out of fuel and the endurance as the
time it takes to run out of fuel. As one might expect, there is a flight condition that will give us
the best range for a given aircraft, and a different flight condition that will give us maximum
endurance. In this section we are interested in determining:

1. Flight conditions for maximum endurance
2. Flight conditions for maximum range
3. Computing range and endurance for any given flight condition

Of interest to us are two measures of fuel consumption. For maximum endurance, we are
interested in determining the fuel consumed per unit time:

Minimize for maximum endurance

and for maximum range we are interested in determining the fuel consumed per unit distance:

Minimize for maximum range

As indicated previously, the fuel consumption is related to the type of power plant with which an
aircraft is equipped. The results being different depending on if the aircraft is equipped with an
engine whose output is measured in terms of thrust or in terms of power.

Range and Endurance for Aircraft whose Engine Performance is given in Terms of Thrust
(Jets)

Here we will define a measure of fuel consumption. For our problems we need this
measure in terms of proper (basic) units. Unfortunately, it is usually not given in these units. We
can define:

Definition: Thrust specific fuel consumption: The thrust specific fuel consumption can be
defined in proper units as:

(1)
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Unfortunately, the numbers above are rarely given. The information is usually given in the
following terms:

(2)

A typical value of this parameter is 1 lb fuel/hr per lb thrust (1 Newton fuel/hr pr Newton thrust).
All equations that follow will be written for the use of basic units! Consequently the normally
given number must be converted. (There are some cases where such a conversion is not
necessary. However one is best off using basic units).

Recall, for straight and level flight, under our usual assumptions, T = D, and L = W.
Then we can determine the rate of fuel consumption as:

(3)

Maximum Endurance Flight Condition

Clearly, from Eq. (3) the rate of fuel consumption is a minimum when drag, D, is a
minimum. Hence the maximum endurance flight condition of a jet is at the minimum drag
condition. Then the maximum endurance for a jet occurs at the maximum L/D.

Maximum Endurance Flight Condition

(4)

For the general case, the minimum drag flight condition must be determined by selecting
the minimum point on the Drag vs. Airspeed plot. However, for the special case of a low
performance parabolic drag polar,

, then we can determine the

minimum drag flight conditions
from:

and
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Maximum Range Flight Condition

The maximum range flight condition can be determined by noting that in level flight, the

airspeed is given by: , where S is the range variable. Then we can compute the fuel

burned per unit range as follows:

(5)

Then, it is clear from Eq. (5) that the maximum range occurs when D/V is a minimum.
For the general case of an arbitrary drag polar, we can determine this flight condition from the
basic Drag vs Airspeed plot in the following way.
Note that from the diagram we can draw a
line from the origin that in general can
intersect the drag curve in two places. If we
take the minimum value of the angle so that it
is just tangent to the drag curve we can see
that:

and hence when � is a minimum (or tangent
to the drag curve) then the tangent point will
be the maximum range flight condition.
Further, we can note that the airspeed for
maximum range is greater than the airspeed
for maximum endurance.

For the general case we have:

(6)

Then for a given altitude and weight, the range is maximized when is a minimum. This is

a general result.
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Special Case - Maximum Range, Low Performance Parabolic Drag Polar

For the special case of a low performance aircraft (drag parameters constant) with a
parabolic drag polar, we can find the flight condition for the maximum range of a jet type
aircraft. We can simply use some introductory calculus:

or
Maximum Range Flight Conditions for Engine Performance Measured in Terms of Thrust

and (7)

General Results for Endurance and Range of an Aircraft whose Performance is Measured
in Terms of Thrust

The following results are true for all aircraft whose engine performance is measured in
terms of thrust. We are interested in calculating the range and endurance of the aircraft. In order
to do that, we must specify how the aircraft is to be flown so we can evaluate the required
integrals. First, we will develop general integral expressions for endurance and range.

Endurance

The endurance equation, Eq. (3) can be rearranged in the following form:

(8)

We can also note that the rate of fuel burn is the same as the rate of aircraft loss of weight. Hence
we can write, , so the time equation can be rewritten as:

(9)
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We can integrate Eq. (9) over the time-of-flight on the left and over the change in weight on the
right to get:

Endurance Equation

(10)

Range

In a similar manner, we can rearrange Eq. (5) to get the range equation:

Range Equation

(11)

Integration of the Endurance and Range Equations

In order to integrate the above equations, we need to know how the variables in the
integrand vary with the integral independent variable weight. That is, we need to know ctD as a
function of W or V/(ctD) as a function of W. These functions are not unique and depend on the
flight schedule. Typical flight schedules are:

1) flight using the maximum endurance flight conditions
2) flight using the maximum range flight conditions
3) flight at constant airspeed
4) flight at constant angle-of-attack
5) flight at constant altitude and constant airspeed

Etc.

Other flight schedules or any combination of schedules could be used. Here, however we will
assume one flight schedule is used throughout the flight.

Endurance (Engines whose output is measured in terms of thrust)

In order to be able to integrate Eq. (10), we will have to make some assumptions. These
assumptions involve how the thrust specific fuel consumption behaves and what flight schedule
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is used. Generally, the engine manufacturer provides tables that indicate how the thrust specific
fuel consumption varies with altitude and Mach number. Here, we will assume that these
variations are small and that we can assume ct is constant. In addition, we will assume that the
flight path is nearly level so that we can assume lift = weight. The last assumption we will make
has to do with the flight schedule. Here we will assume constant angle-of-attack.

Assumption: The thrust specific fuel consumption is constant, ct - const.

Assumption: L = W

Assumption: Constant angle-of-attack, ���� = const

This last assumption has many ramifications. Constant angle-of-attack implies that the lift
coefficient is constant, , that in turn implies the drag coefficient ( ), that

in turn implies , or . We these assumptions we can integrate Eq. (10) as

follows:

(12)

With the assumptions we have made, everything in the integrand other than the weight, is
constant. Consequently, we can integrate Eq. (12) to obtain:

Endurance - Thrust-rated Vehicle at Constant Angle-of-Attack, and Constant ct

(13)

From Eq. (13) we can see that for long endurance we want to have:
1) ct as small as possible
2) L/D as large as possible L/D|max

3) W1/W2 as large as possible (W2 = W1 - Wfuel as small as possible - lots of fuel!)

Note that this result (dependent on the constant angle-of-attack flight schedule)is independent of
altitude and is a general result independent of the form of the drag polar!
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As indicate previously, the result of carrying out the integration of Eq. (10) depends on
the flight schedule used. To demonstrate this idea, we will consider a flight schedule where we
use a constant altitude, constant airspeed flight schedule. We will still assume that the thrust
specific fuel consumption, ct is a constant. Under this flight schedule we can write the drag as

where

Here, we can see that if the altitude and airspeed are constant, the E and F are constant. The
endurance integral becomes:

The integral is well known and can be written as:

If we substitute in for E and F, we have:

Endurance for Thrust Rated Aircraft Using Constant Altitude, Constant Velocity Flight
Schedule with a Parabolic Drag Polar

(14a)

or

(14b)
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where

and

Even though L/D|max and appear in Eq. (14b) it is not specifically for maximum endurance!

Example:

A 600,000 lb aircraft has a drag polar, , and a wing area of 5128

ft2. The Thrust Specific Fuel Consumption (TSFC) = 0.85 (lbs/hr)/lb. The total fuel on board is
Wf = 180,000 lbs. Find the endurance for a constant angle-of-attack flight schedule and for a
constant speed, constant altitude flight schedule. Assume the initial conditions to be at 30,000 ft.

The first thing we need to do is to convert TSFC to basic units:

(Note that we don’t have to do this)

We will start the flight with the maximum endurance conditions (L/D|max or min drag)

, ,

The weight at the end of the flight is the initial weight minus the fuel weight:

For Endurance with a flight schedule of a constant angle-of-attack, we have

If we use a constant airspeed, constant altitude strategy we need to calculate the conditions at the
initial and final times. We will assume maximum endurance conditions at the initial point. (Note
that we can not maintain the best endurance conditions throughout the flight). At the initial point,
at 30,000 ft we have:

and ( V = 642.9 ft/sec )
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Then at the final time we have:

( Note that this is not )

We can now substitute into Eq. (14b)

If we had arranged our flight so that we ended up at the optimal min drag condition we would
have the conditions:

(V = 537.8 ft/sec)

and .

The endurance is given by:

Although the results of looking at imposing the max endurance conditions at the beginning and at
the end give close to the same result, one can ask if there is a “best point” at which to impose the
maximum endurance flight conditions so that under this schedule of flight, the endurance will be
the greatest? One might guess at the midpoint, when the fuel is half gone. Is this correct and can
you prove it or some other result?

Range (Engines whose Output is in Terms of Thrust)

We now will investigate the range integral, Eq. (11). Again, the integral can be evaluated
if we make appropriate assumptions, and pick a flight schedule. The integral of interest is:

(15)
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In a similar manner with the endurance equation, in order to integrate this integral we need to
know the airspeed, drag, and TSFC in terms of the weight. How these items depend on weight
depends on some assumptions and on the flight schedule we select. We will look at several flgiht
schedules. In all of them, however, we will assume constant TSFC.

Assumption: The thrust specific fuel consumption, ct = const

Here we will look at the various flight schedules and their associated assumptions.

Flight Schedule A: Constant altitude and constant angle-of-attack

Assumption: Angle-of-attack is a constant, � = const
Assumption: The altitude is a constant, � = const

Under these assumptions we can rearrange the range integral in the following way in
order to allow us to implement the assumptions:

(16)

Then, from our assumptions, everything in the integrand except the weight W, is a constant.
Recall that the lift coefficient is a function of angle-of-attack and hence is constant if angle-of-
attack is constant. The drag coefficient depends only on the lift coefficient, hence it is a constnnt.
Further, at constant altitude, the density is constant. Finally we assumed ct to be constant.

Under these assumptions and flight schedule, we can carry out the integration to give:

Range for Constant Altitude, Constant Angle-of-Attack, Thrust-Rated Vehicle

(17)

We should note that to fly this flight schedule, airspeed is not constant. In addition, by inspecting
Eq. (17) we can note the following requirements for a long range:

1) A small ct, the lower the TSFC, the farther you can fly!
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2) We would like to fly at a high altitude in order to have a low density

3) We would like to maximize

4) We would like to carry lots of fuel (W2 = W1 - Wf), then will be large.

Flight Schedule B: Constant angle-of-attack, and constant airspeed

Assumption: Constant angle-of-attack, � = const
Assumption: Constant airspeed, V = const

Under these assumptions we can rearrange the integral, Eq. (15) slightly to get
(recall L = W)

(18)

Everything in the integrand is constant except W so we can easily evaluate it to get the range:

Range for Constant Airspeed, Constant Angle-of-Attack, Thrust-Rated Vehicle

(19)

We can note that this expression is just the endurance equation (for the same conditions,
i.e. constant angle-of-attack, Eq. (13)) multiplied by the constant airspeed. This equation is valid

for all flight conditions. However, to maximize range we need to maximize or

equivalently maximize as we have suggested previously..

Flight Schedule C: Constant airspeed, and constant altitude

Assumption: Constant airspeed, V = const
Assumption: Constant altitude, � = const

Assumption: Parabolic drag polar,
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Under these assumptions we can rearrange the range integral, Eq. (15) to get:

(20)

where E and F are defined the same as in Eq. (14). The integration is the same and leads to the
result:

or:

Range for Constant Airspeed, Constant Altitude, Parabolic Drag Polar, Thrust-Rated
Vehicle

(21)

where , i = 1, 2

Consequences of Assumptions

In the previous developments, we found that certain characteristics of the flight were
assumed constant. For the three different flight schedules, we had three different combinations of
these constant variables. One would think that in each case there are different combinations of
variables that are changing. Here we want to look into what is happening to the non-constant
variables. Further, we did not examine if the assumptions were consistent with each other, of
even if they were possible, and if possible what they imply on the aircraft flight path of flight
controls.

Flight Schedule: Constant angle-of-attack and constant airspeed.

This flight schedule leads to CL = const and V = const. From the equation for V we have
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(22)

Under this flight schedule (V, � = const), we see as fuel is used up and the vehicle gets
lighter, the density is required to decrease. Therefore the altitude must increase as fuel is burned
up and the aircraft gets lighter. In addition, it may be required to adjust the throttle so that the
airspeed remains constant In the stratosphere, where the temperature is constant, if the thrust
available is proportional to the density, the engine thrust will drop off with altitude at the same
rate that the drag is reduced with altitude (with constant CD and CL) so that the throttle can
remain unchanged. This flight technique is called the “drift up” flight schedule.

Flight Schedule: Constant angle-of-attack and altitude

This flight schedule gives us � = const, and � = constant. The airspeed equation becomes:

(23)

Here as the flight continues and the fuel is burned up, the airspeed decreases. Generally, to fly
this schedule, the throttle must be reduced as the fuel is consumed and the weight decreases.

Flight Schedule: Constant altitude and airspeed

This flight schedule gives us V = const and � = const. The airspeed equation becomes:

(24)

Here the lift coefficient is proportional to the weight in order to satisfy the constant airspeed and
constant altitude constraint. As the weight decreases, so must the lift coefficient. Consequently
the angle-of-attack must decrease as the flight continues. As a result, the drag will decrease
slightly (smaller induced drag, zero-lift drag is unchanged) and the throttle may have to be
continually reduced during the flight.
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Range and Endurance for Aircraft whose Engine Performance is given in Terms of Power
(Piston Engines and Turboprops)

The fuel consumption for engines who’s output is measured in terms of power (piston
engines) or equivalent power ( turboprop engines), is measured in terms of power specific fuel
consumption (PSFC) which is defined as:

(25)

As with the TSFC, the usual information is given in non-proper units:

Here, all equations will be developed using the proper units. Here we will assume that all flight
conditions are level or near level (quasi-level) so that L = W, and T = D, or Pav = Preq. We can
relate power required to the engine shaft power through the propulsive efficiency. In level (or
quasi level flight) we have

(26)

We can now develop the endurance equation

(27)

and the range equation

(28)

General results (point performance)

For maximum endurance, we would like to minimize Eq. (27) and for maximum range,
minimize Eq. (28). We can determine the minimum of each equation directly from the basic plot
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of power required vs airspeed. It is clear from Eq. (27) that the minimum of that equation occurs
where power required, Preq = DV, is a minimum, and that the minimum of Eq. (28) occurs when
drag, D is a minimum (assuming cp and �p are weak functions of airspeed or are constant).

From the power required curves, we
can simply draw a horizontal tangent to the
power required curve and the tangent point
will provide the minimum power required and
the corresponding airspeed for maximum
endurance. If we draw a line from the origin
through the power required curve, the points of
intersection give

Hence the smallest angle obtained by drawing
the tangent line as shown in the figure will give the point where the drag is a minimum, and the
corresponding airspeed for the maximum range flight condition.

To summarize, for a power rated aircraft, the maximum endurance and range conditions
are as follows:

Maximum Endurance: Minimum power required flight condition

Maximum Range: Minimum drag (max L/D) flight condition

Endurance for Power-Rated Aircraft (Integral Performance)

We can compute the endurance for a power-rated aircraft by rearranging Eq. (27). As
before we will do the calculations in terms of the aircraft weight instead of the fuel weight by
noting that d W = - d Wf. Then the endurance equation becomes:

Endurance Equation - Power-Rated Vehicle

(29)

We can now investigate the endurance if we make a few assumptions, and prescribe some flight
schedule. In all that follows we will assume that cp = const and ����p = const.
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Flight Schedule A: Constant angle of attack, � = const and constant altitude, � = const.

Since angle-of-attack is constant, this implies that the lift coefficient is constant that in
turn implies that the drag coefficient is constant. We can use this information to simplify the
integral in Eq. (29) so that the integrand only depends on the weight, W. For quasi level flight
we can write:

Then the endurance equation, Eq. (29) can be written as:

and

Combining the two equations above, we can write the endurance as:

(30)

With our assumption regarding cp = const, and our specified flight schedule, all the items in the
integrand are constant except for the weight. Consequently we can integrate Eq.(30) to get:

Endurance for Power rated Aircraft, Constant Angle-of-Attack, Constant Altitude

(31)

Here we can note from Eq. (31) that to maximize the endurance, we need to:
1) have a small power specific fuel consumption, cp.

2) operate at a low altitude

3) use a flight condition that maximizes

4) have a lot of fuel, W1 - W2 should be large.

Flight Schedule B: Constant angle-of-attack, � = const, and constant speed, V = const

Constant angle-of-attack implies that the lift and drag coefficients are constant throughout
the flight. Under these circumstances we can rearrange the endurance equation to appear as:
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(32)

In Eq. (32), under our assumptions and flight condition, everything is constant except W so that
we can easily integrate it to get:

Endurance for Power-Rated Aircraft, Constant Angle-of-Attack, Constant Airspeed

(33)

Here we note that for long endurance we need
1) small cp

2) large

3)have a large amount of fuel

From our previous discussion regarding constant angle-of-attack and constant airspeed, this flight
schedule requires a “drift up” flight trajectory so maintain these constants.

Range for a Power-Rated Aircraft (Integral Performance)

The range integral can be established from Eq. (28) to be (using L = W)

(34)

Flight Schedule A and B: Angle-of-Attack constant, � = const, and either airspeed constant
V=const, or altitude constant, � = const.

If we use any flight schedule that includes a constant angle-of-attack, we can integrate the
above equation. Although the details of the flight path will be different, (constant altitude or
constant airspeed) the range will be the same:
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Range- Power-Rated Aircraft, Angle-of-Attack Constant, Either Airspeed or Altitude
Constant

(35)

This equation is known as the Breguet Range Equation. However virtually all the equations that
have this general from are called Breguet equations, even the one for thrust-rated aircraft that
were not around during his time.

Flight schedule C: Airspeed and Altitude Constant, V = const and � = const. (Parabolic drag
polar)

Under these conditions the range integral looks like:

and the range becomes:

(36)

Summary : For a power rated aircraft:

Maximum Endurance - requires minimum power required flight condition. For a parabolic drag
polar that is:

Maximum Range - requires minimum drag (or maximum L/D) conditions. For a parabolic drag
polar that is:
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Effect of Wind on Range and Endurance

Since time aloft doesn’t depend on location with respect to the ground, wind has no
effect on endurance. However, range can be considerably affected by the wind. If we assume
that the wind is blowing along the flight trajectory, the range can be given by:

(37)

where: = the range for given flight schedule with no wind

= the endurance for the same flight schedule
= the component of wind along the trajectory

+ = tail wind
- = head wind

Consequently, one might expect to fly at a different airspeed to maximize the range for a given
wind condition. If the wind was a tail wind, one would want to fly slower to take advantage of
the tail wind to add to the range. The longer the time aloft, the more the wind aids in the range.
On the other hand, a head wind reduces the range, so one might want to reduce the time aloft to
reduce the effect of the headwind on the range. So one would fly faster then normal in a head
wind. The actual speeds at which to fly can be determined graphacally.

Consider the case of an thrust rated aircraft. We can make the basic plot of drag vs
airspeed just as we did previously. Then we can mark off a location on the airspeed axis that
corresponds to a headwind or tailwind This point is the location where the ground speed would
be zero. For example, if we had 20
knot head wind, then we would mark
off a positive 20 knots on the
airspeed axis, and if a 20 know tail
wind we would mark off a negative
20 knots. This point then acts as the
“origin” for the ground speed axis.
We can then draw our tangent to the
drag curve, and the tangent point will
give us the airspeed for maximum
range. And, as expected, it is clear
with a headwind you fly faster, and
with a tailwind you prolong your
flight by flying slower.
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The same arguments can be made for power rated aircraft. Here, however, we use the
power required curves to pick off the
tangent points. Again, the headwind leads to
a higher airspeed and the tail wind to a
lower one. Note that not the aircraft is not
flying the flight schedule for maximum
range. The procedure for obtaining the
maximum range flight condition is as
follows: Determine the best airspeed
graphically from the appropriate figure,
drag or power required curves for a thrust
rated or power rated vehicle respectively.
Draw the tangents and read the airspeed of
the airspeed axis. Then determine the lift
coefficient for that airspeed from:

Determine the drag coefficient from or from some other drag polar

. Determine L/D from . Then use these values in the range and endurance

equations to determine the no-wind range, and endurance. Substitute the no-wind range and
endurance into Eq. (37) to obtain the wind-effected range.


