Topic 2

Thermodynamics
Why Thermodynamics?

• To tell us the relationship between the pressure, temperature and density of a gas as it moves.
• Altogether there are 6 variables we need to describe the state of a gas...
 • p pressure (Pa)
 • ρ density (kg/m3), or specific volume $v=1/\rho$
 • T temperature (K)
 • e internal energy per unit mass ($\mathrm{J/kg}$)
 • h enthalpy ($\mathrm{J/kg}$), $h=e+p/\rho$
 • s entropy ($\mathrm{J/kg\cdot K}$)
• To relate these variables we use
 1. *The Kinetic Theory of Gases*,
 2. *The 1st Law of Thermodynamics*,
 3. *Specific Heats*
 4. *The 2nd Law of Thermodynamics*
1. Kinetic Theory of Gases

- Assumes
 - Gas is a collection of molecules in random motion
 - Molecules bounce of each other like hard spheres
- Gives two sets of relations...

Equation of State

- Gas constant
 \[R = 287 \text{ J/kg/K} \]
 for air

- Gases that obey these relations are called “Thermally Perfect”
Thermally Perfect

• We will always assume gases are thermally perfect in this class, but this isn’t always true...

Ceases to be valid at high densities. Why?
2. 1st Law of Thermodynamics

“Energy is Conserved”

\[\Delta E = \Delta Q + \Delta W \]

- Change in energy
- Amount of heat added
- Amount of work done by pressure and viscous forces

Work =
In terms of enthalpy...

\[dq = de + pdv \]
3. Specific Heats

- Specific heat – amount of heat needed to raise the temperature of 1kg by 1 Kelvin
 \[C = \frac{\Delta q}{\Delta T} = \frac{\partial q}{\partial T} \]

- Two kinds:
 - Specific heat at constant volume \(C_v = (\frac{\partial q}{\partial T})_v \)
 - Specific heat at constant pressure \(C_p = (\frac{\partial q}{\partial T})_p \)

Pratt and Whitney JT58 Test (Powered SR71)
\[dq = de + pdv \]

\[dq = dh - vdp \]

With the energy equation...
Calorically Perfect Gas

A gas that is thermally perfect and for which the...

- specific heats are constant with temperature, so...

- We will assume calorically perfect gases in this class, but...
4. 2nd Law of Thermodynamics

Shock in a Converging Diverging Nozzle

Bourgoing & Benay (2005), ONERA, France

Schlieren visualization
Sensitive to in-plane index of ref. gradient
Processes and Entropy

• Adiabatic Process - no heat added or removed.
• Reversible Process – no dissipative phenomena occur.
• Isentropic Process – adiabatic and reversible

2nd Law of Thermo – dissipative processes may only increase entropy, but adding or removing heat may increase or decrease entropy by an amount $\Delta Q/T$

• So...
The Entropy Equation...

For a reversible process...

\[Tds = dq \]

1st Law

\[dq = de + pdv \]

Thermally perfect gas

\[de = C_v dT \]

\[p = RT / v \]
$R = C_p - C_v$

$\gamma = \frac{C_p}{C_v}$

...The Entropy Equation
Isentropic Relations

\[\frac{s_2 - s_1}{C_v} = \log_e \left[\frac{T_2}{T_1} \left(\frac{\rho_1}{\rho_2} \right)^{\gamma^{-1}} \right] \]

- If \(s_2 - s_1 = 0 \) then...
Summary

- **KTG**

 - All gases
 - Thermally perfect
 - Calorically perfect

 \[p = \rho RT \]

 \[e = e(T) \]

 \[h = h(T) \]

- **1st Law**

 \[dq = de + pdv \]

 \[dq = dh - \nu dp \]

- **Specific heats**

 \[C_v = (\partial e / \partial T)_v \]

 \[C_p = (\partial h / \partial T)_p \]

- **2nd Law**

- **2nd Law**

 Isentropic

 \[s_2 - s_1 = \log_e \left(\frac{T_2}{T_1} \left(\frac{\rho_1}{\rho_2} \right)^{\gamma - 1} \right) \]

 \[\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1} \right)^{1 - \gamma} \]

 \[\frac{p_2}{p_1} = \left(\frac{T_2}{T_1} \right)^{\gamma - 1} \]