Conical Flow
Air flow over a cone at Mach 3, as a function of cone half angle.

20 deg.

30 deg.

40 deg.

50 deg.

55 deg.

60 deg.

70 deg.
Basic Physics

\[\delta < \sigma \]

\[\beta \]

\[\sigma \]
WEDGE
- Use $M-\beta-\delta$ to find wave angle β. δ given by wedge angle.
- Find $M_{1n} = M_1 \sin \beta$
- Use NS tables to find conditions at 2, which are same as at wedge.

CONE
- Need $M-\beta-\sigma$ relationship to find β
- Use $M-\beta-\delta$ to find δ and $M_{1n} = M_1 \sin \beta$ and NS tables to find conditions at 2.
- Need additional relations to find conditions at ‘c’
No strong shocks

CHART 5
CHART 6

Pressure Coefficient on Cone C_{pc} vs Cone Angle σ

- Cone angle σ ranges from 0 to 56.
- Pressure Coefficient C_{pc} ranges from 0 to 1.8.

Legend:
- M_1: Supersonic speed
- σ: Cone angle

Graphical representation showing the relationship between the cone angle and the pressure coefficient under supersonic conditions.
Example

\[M_\infty = 2, \ 60,000\text{ft} \]
\[(T_\infty = 217\text{K,} \]
\[p_\infty = 7\text{kPa}) \]

Find \(T, p \) and \(M \) on the surface of the nose-cone and the Mach number just downstream of the shock.