Measuring the Dynamic Response of a Structure

• This week in lab
 – Experiment 6 – application of the analogue instrumentation you met in the 1st Instrumentation Lab period.
 – Works just like a regular experiment
 • Read manual
 • Meet with your team in advance
 • Visit the lab
 • Do a logbook preparation
 • Logbook is graded
 – Note your logbook preparation should be submitted to Dustin Grissom (dgrissom@vt.edu) not your regular TA.

• Next class 3/12 (no class next week)
 – Making measurements with computers
 – Read the ‘Digital Measurements’ section of the manual
Dynamic Response of a Structure

• Characterizing how a structure will respond to a time-varying set of loads is a fundamental requirement of engineering in aero, ocean and space applications.
Linearity

For small deformations structures tend to respond linearly to dynamic loads. This means that the response of the structure is the sum of its response to the individual frequencies in the load.

\[f(t) = F(\omega_1) + F(\omega_2) + F(\omega_3) + F(\omega_4) + F(\omega_5) \]
\[x(t) = X(\omega_1) + X(\omega_2) + X(\omega_3) + X(\omega_4) + X(\omega_5) \]

Response function \(G(\omega) \): Change in amplitude and phase at each frequency. Knowing \(G(\omega) \) tells us how the structure will respond to any load fluctuation, since any load fluctuation can be decomposed into a sum of sinusoids.
Dynamic Structural Testing

We wish to define this response function. So in a lot of dynamic structural testing:
• We apply artificial unsteady loads of known magnitude
• Measure displacement amplitudes and phases
• Infer response function, or parameters of the response function.

This requires:
• A means to apply the load at varying frequency
• A means to measure the displacement fluctuations
• A theoretical model of the structure that defines the parameters
Experiment 6

Force excitation system

Response measurement system

Beams

Rigid mass

Dashpot

Extra weights to change mass

Fixed support

Shaker

Proximeter
Application of Force (Excitation)

- Function Generator
- Voltage $v_1(t)$
- Shaker
- Power amplifier
- Force $f(t)$ applied without contact
- Beam system
- Magnet
- Coil
Shaker calibration

Force (lbs) f per volt v_1

CHECK YOUR SPECIFIC RIG, IT MAY BE DIFFERENT

Coil displacement (inches)
Measurement of Beam Position (Response)

Power supply

Oscilloscope

Proximeter unit

Voltage $v_2(t)$

Position measured with radio waves, without contact

Beam system

Position $x(t)$
Proximeter Calibration

Slope in linear range \(\approx 106 \) Volts/inch

Voltage \(v_2 \)

Linear range around 6V

Position \(x \) in 1/1000" (from probe tip to target)

CHECK YOUR SPECIFIC RIG, IT MAY BE DIFFERENT
Theoretical Model

- Mass can only move in one direction x, without rotation.
- Effective mass m includes rigid mass + a small fraction due to the beams
- Spring stiffness k derives from stiffness EI of beams and geometry
- Viscous damping b almost entirely from dashpot

There are therefore 3 parameters (m, b, k) we need to measure to completely define the response function of this system

$$m \ddot{x} + b \dot{x} + kx = f(t)$$
Solving the Governing Equation

\[m\ddot{x} + b\dot{x} + kx = f(t) \]

- Since governing equation is linear we can add solutions together to create new solutions
- Since we can add sine waves together to make any waveform, the sine wave solution can be thought of as entirely general
- So we assume a force and displacement of the form

\[
\begin{align*}
 f(t) &= f_m \cos(\omega t + \psi_f) \\
 x(t) &= x_m \cos(\omega t + \psi_x)
\end{align*}
\]

- Force amplitude
- Phase of force
- Displacement amplitude
- Phase of displacement
Using Complex Exponentials

The math is much easier if we write these in terms of complex exponentials, e.g.:

\[
x(t) = x_m \cos(\omega t + \psi_x) + jx_m \sin(\omega t + \psi_x) = x_m e^{j(\omega t + \psi_x)} = X(\omega)e^{j\omega t}
\]

Fake imaginary part

Complex number. Magnitude = \(x_m\)
Argument = \(\psi_x\)

And, likewise:

\[
f(t) = f_m e^{j(\omega t + \psi_f)} = F(\omega)e^{j\omega t}
\]

So,

\[
m\ddot{x} + b\dot{x} + kx = f(t)
\]

\[
-m\omega^2 Xe^{j\omega t} + jb\omega Xe^{j\omega t} + kXe^{j\omega t} = Fe^{j\omega t}
\]

\[
G = \frac{X}{F} = \frac{1}{-m\omega^2 + jb\omega + k}
\]

\[
-m\omega^2 X + jb\omega X + kX = F
\]
Alternative Approach Using Laplace Transforms

\[m\ddot{x} + b\dot{x} + kx = f(t) \]

Take Laplace Transform:
\[(ms^2 + bs + k)X(s) = F(s) \]

Re-arrange:
\[G(s) = \frac{X}{F} = \frac{1}{(ms^2 + bs + k)} \]

Let \(s \rightarrow j\omega \):
\[G = \frac{X}{F} = \frac{1}{-m\omega^2 + jb\omega + k} \]
Response Function Solution

So, the ratio of the amplitude of the displacement to that of the force is

\[\left| \frac{X}{F} \right| = \frac{1}{\sqrt{(k - m\omega^2)^2 + b^2\omega^2}} = \frac{x_m}{f_m} \]

And the phase of the displacement relative to the phase of the force is

\[\arg \left(\frac{X}{F} \right) = \tan^{-1} \left(-\frac{b\omega}{k - m\omega^2} \right) = \psi_x - \psi_f \equiv \psi_m \]
Low frequency behavior

\[\frac{x_m}{f_m} = \frac{1}{k} \] \(as \ f \rightarrow 0 \)

\[\frac{\psi_m}{\omega} = -\frac{b}{k} \]

\[x_m = \frac{1}{\sqrt{(k-m\omega^2)^2 + b^2 \omega^2}} \]

\[\psi_m = \tan^{-1} \left(-\frac{b\omega}{k-m\omega^2} \right) \]
Low Frequency Ideas

\[
\begin{align*}
 x_m / f_m &= 1/k \\
 \psi_m / \omega &= -b/k
\end{align*}
\] as \(f \to 0 \)

- Can’t use shaker at zero frequency (burn out)
- Measure parameters at several low frequencies and check they don’t change with frequency (accurate measurements of small phase may be hard).
- Could place structure on side and measure beam displacement due to gravitational force \(mg \). This is truly zero frequency, but need to get \(m \) from another measurement. Use add washers of known mass and measure displacement change.

Knowing the 2 displacements and the mass of the washers \(m_w \) is enough to infer \(k \) and \(m \)

Mass measured independently if the shaker calibration
Peak frequency behavior

\[\omega = \sqrt{\frac{\omega_n^2 - b^2}{m^2}} \equiv \omega_r \]

\[\omega = \sqrt{\frac{k}{m}} \equiv \omega_n \rightarrow \begin{cases}
\varphi_m = -90^\circ \\
\frac{x_m}{f_m} = 1/(b \omega_n)
\end{cases} \]

\[\frac{x_m}{f_m} = \frac{1}{\sqrt{(k - m\omega^2)^2 + b^2\omega^2}} \]

\[\varphi_m = \tan^{-1}\left(-\frac{b\omega}{k - m\omega^2}\right) \]
Peak Frequency Ideas

\[
\omega = \sqrt{\omega^2_n - b^2 / m^2} \equiv \omega_r
\]

\[
\omega = \sqrt{k / m} \equiv \omega_n \rightarrow \begin{cases}
\psi_m = -90^\circ \\
x_m / f_m = 1 / (b \omega_n)
\end{cases}
\]

• Lissajous figure (on oscilloscope) is by far the best way to determine when the phase is -90 degrees

• Could measure change in natural frequency when washers are added to separately determine \(m \) and \(k \)

• Resonant frequency and dynamic flexibility at the natural frequency may drift since you are measuring at the (very sharp) peak of the response

Knowing the 2 natural frequencies and the mass of the washers \(m_w \) is enough to infer \(k \) and \(m \)

\[
\omega_n = \sqrt{k / m}
\]

\[
\omega_{n1} = \sqrt{k / (m + m_w)}
\]
High frequency behavior

As \(f \to \infty \),

\[
\begin{align*}
\frac{x_m}{f_m} & \approx \frac{1}{m\omega^2} \\
(\psi_m + \pi)\omega & \approx \frac{b}{m}
\end{align*}
\]

\[
\begin{align*}
x_m &= \frac{1}{\sqrt{(k-m\omega^2)^2 + b^2\omega^2}} \\
\psi_m &= \tan^{-1}\left(-\frac{b\omega}{k-m\omega^2}\right)
\end{align*}
\]
High frequency ideas

\[
\begin{align*}
\text{As } f \to \infty & \quad \left\{ \begin{array}{l}
 x_m / f_m \approx 1/(m\omega^2) \\
 (\psi_m + \pi)\omega \approx b / m
\end{array} \right.
\end{align*}
\]

• Don’t know how high is high.
 – Use manual values of parameters to estimate how high frequency needs to be (could take damping from sample logbook)
 – Measure at several high frequencies and make sure results don’t change.

• Could use washers again…
Other ideas

- Could just measure entire response function. (Less efficient, but checks theoretical model).
- Check system linearity by checking independence of dynamic flexibility and phase with force amplitude. Is there a limit?
- Check shaker calibration by measuring mass independent of the shaker calibration, and then compare with mass measured using that calibration.
- Check proximeter calibration using caliper.
- Add and large rigid cardboard sail to mass. For small vibration amplitudes sail should produce some added mass. For large amplitudes it may add (nonlinear?) damping. Or not? Measure the added mass? Can cardboard sail produce significant force?
Preparing for lab

• Need to come up with your own approach using these schemes and ideas, or any others you can devise.
• Few of the schemes have been tried, so some may not be practical.
• Can use ballpark estimates of parameters (based on the manual or sample logbook, say) and uncertainty analysis, to weed out truly impractical approaches before the lab.