2) Using the data from Appendix A (Bate, Muller and White - BMW), evaluate $\frac{\mu_\oplus}{R_e^2}$ in metric units.

From B-M-W, page 429, $\mu_\oplus = 3.986 \times 10^5 km^3/s^2$ and $R_e = 6.378 km$. From these we find

$$g = \frac{\mu_\oplus}{R_e^2} = 9.798 m/s^2.$$