Course description:
An overview of aerospace engineering from a design perspective; introductory aerodynamics, lift, drag, and the standard atmosphere; aircraft performance, stability, and control; propulsion; structures; rocket and spacecraft trajectories and orbits.

Randolph 120
11:00 – 12:15 Tu Th

Professor C. D. Hall
Randolph 224D
231-2314
cdhall@vt.edu
Topics To Be Covered

- What is Aerospace Engineering? (Notes)
- History (Chapter 1 & Notes)
- Fundamental Thoughts (Chapter 2 & Notes)
- Atmosphere and Aerodynamics (Chapters 3 & 4)
- Aircraft Motion (Chapters 5, 6, & 7)
- Spacecraft Motion (Chapter 8 & Notes)
- Propulsion (Chapter 9 & Notes)
- Power (Chapter 6)

Reading Assignment: §§ 8.13, 8.14 and Chapter 1
<table>
<thead>
<tr>
<th>Grading Policy:</th>
<th>Homework</th>
<th>15% (includes daily quizzes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Essays (3)</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Midterm I</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Midterm II</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Wild Card</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Vehicle</td>
<td>2 points extra</td>
</tr>
</tbody>
</table>
What Is Aerospace Engineering?

- What do Aerospace Engineers do?
- How do they do it?
- What tools do they use?
- What knowledge do they need?
- How do they learn that knowledge?
- Who do they work with?
- Where do they go to work?
- How does what they do benefit society?
- What are some current AE systems?
- Do AEs need to go to Graduate School?
Graduating engineers should be able to

- Conceive
- Design
- Implement
- Operate

complex value-added engineering systems in a modern team-based environment
Boeing’s Desired Attributes of an Engineer

1. A good understanding of engineering science fundamentals: Mathematics (including statistics), Physical and life sciences, Information Technology (far more than “computer literacy”)
2. A good understanding of design and manufacturing processes
3. A multi-disciplinary *systems* perspective
4. A basic understanding of the *context* in which engineering is practiced: Economics, History, the environment, customer and societal needs
5. Good communication skills: written, verbal, graphic and listening
6. High ethical standards
7. An ability to think both critically and creatively – independently and cooperatively
8. Flexibility. The ability and self-confidence to adapt to rapid or major change
9. Curiosity and a desire to learn for life
10. A profound understanding of the importance of teamwork
Another View of Desired Attributes of an Engineer

1.1. Knowledge of underlying sciences
1.2. Core engineering fundamental knowledge
1.3. Advanced engineering fundamental knowledge

2.1. Engineering reasoning and problem solving
2.2. Experimentation and knowledge discovery
2.3. System thinking
2.4. Personal skills and attitudes
2.5. Professional skills and attitudes

3.1. Teamwork
3.2. Communication

4.1. External and societal context
4.2. Enterprise and business context
4.3. Conceiving and engineering systems
4.4. Designing
4.5. Implementing
4.6. Operating
Technical Areas of AE

- Fluid mechanics
- Solid mechanics
- Dynamics and control
- Instrumentation
- Automation
- Human-machine interaction
- Propulsion
- Aircraft, Spacecraft, and Rockets
Aerospace Engineers ...

• Conceive, Design, Develop, Test, Manufacture, Operate, Maintain, Market, Sell, Manage *Aerospace Vehicles and Related Systems and Subsystems*

• Work for small and large aerospace companies, in academia, in government, in other industries, on Wall Street

• Go on to graduate school in engineering, science, business, law, medicine, ...

• Create new companies to exploit advancing technologies

• ?
Aerospace Engineering (May 2001)
Operations Engineer, NASA Kennedy Space Center Shuttle Payloads and International Space Station Processing Directorate

Duties: I’m currently assigned as an operations engineer for the outboard truss power modules of the ISS, which are being readied for flight in the Kennedy Space Center Space Station Processing Facility. Operations engineer is a fancy word for “assistant project manager” for the ground processing of the ISS Elements that I’m assigned to. Go to http://www.spaceflight.nasa.gov/shuttle/future/index.html and check out the links to the 12A, 13A, and 15A assembly flights to see the space station hardware I’m working on. And visit http://www.spaceflight.nasa.gov/realdata/ksclive/index.html to see video feeds of the SSPF (I think channels 5, 6, and 9 are from my facility).

These pictures are from when Apollo astronaut Jim Lovell toured the SSPF high bay. I had the opportunity to meet him and talk to him about the space station elements I’m working on, as well as his experience with Apollo 13.
B.S. ’00, M.S. ’02, Aerospace Engineer, NASA Goddard Space Flight Center
Code 542/Mechanical Systems Analysis & Simulation Branch

Job Description:
Perform all aspects of spacecraft structural analysis and testing. Assist designers with sizing and optimization of components. Development of precision optical assemblies for space applications. Derive loads in structure due to acoustic, random vibration, and sine vibration loading. Coupled loads analysis (CLA) of spacecraft and launch vehicle in launch environment. Vibration testing of spacecraft and spacecraft components to verify integrity during mission.

Projects:
• Mercury Laser Altimeter (MLA): MESSENGER
• SWIFT: Test and Analysis Correlation
• STS Return to Flight: Fatigue Life Analysis of LH₂ Flowliner
• LEISA: Pluto New Horizons Instrument
• GPM: (Global Precipitation Measurement) mission with JAXA (Japan)

Required Skills: Programming: C++, MATLAB, Perl
• FEA: FEMAP, NASTRAN; Reports: MS Word, Excel
<table>
<thead>
<tr>
<th></th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOE</td>
<td>2074 COMP METHODS</td>
<td>AOE 3094 AOE MATERIALS</td>
</tr>
<tr>
<td>AOE</td>
<td>2104 INTRO AERO ENGR</td>
<td>AOE 3104 AIRCRAFT</td>
</tr>
<tr>
<td>ESM</td>
<td>2104 STATICS</td>
<td>PERFORMANCE 3*</td>
</tr>
<tr>
<td>MATH</td>
<td>2224 MULTI VAR CALC</td>
<td>ESM 2204 MECH DEFORM</td>
</tr>
<tr>
<td>PHYS</td>
<td>2306 PHYSICS II</td>
<td>BODIES 3</td>
</tr>
<tr>
<td>ELECTIVE**</td>
<td>1</td>
<td>ESM 2304 DYNAMICS</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>MATH 2214 DIFFERENTIAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EQUATIONS 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELECTIVE** 3</td>
</tr>
</tbody>
</table>

Sophomore Year
Junior Year

<table>
<thead>
<tr>
<th></th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOE</td>
<td>AOE 3014 AERO/HYDRODYNAMICS 3</td>
<td>AOE 3054 EXPER. METHODS 3</td>
</tr>
<tr>
<td>AOE</td>
<td>AOE 3024 THIN-WALL STRUCTURES 3</td>
<td>AOE 3114 COMPRES. AERO-DYNAMICS 3</td>
</tr>
<tr>
<td>AOE</td>
<td>AOE 3034 VEH. VIB & CONTROL 3</td>
<td>AOE 3124 AERO STRUCTURES 3</td>
</tr>
<tr>
<td>MATH</td>
<td>MATH 4564 OPER METH FOR ENGR 3</td>
<td>AOE 3134 STABIL & CONTROL OR 3</td>
</tr>
<tr>
<td>ME</td>
<td>ME 3134 FUND OF THERMODYN 3</td>
<td>AOE 4140 SPACECRAFT DYN & CONT.</td>
</tr>
<tr>
<td>ELECTIVE</td>
<td>ELECTIVE** 3</td>
<td>MATH ELECTIVE+ 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELECTIVE** 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 18
Senior Year

<table>
<thead>
<tr>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOE 3044 BOUND LAYER & HEAT TR</td>
<td>AOE 4066 DESIGN II *** (WI)</td>
</tr>
<tr>
<td>AOE 4065 DESIGN I *** (WI)</td>
<td>ELECTIVES**</td>
</tr>
<tr>
<td>AOE 4134 ASTROMECHANICS</td>
<td>TECHNICAL ELECTIVES++</td>
</tr>
<tr>
<td>AOE 4154 AERO ENGR LABORATORY</td>
<td></td>
</tr>
<tr>
<td>AOE 4234 AERO PROPULSION</td>
<td></td>
</tr>
</tbody>
</table>

Note: There is a choice between Aircraft and Spacecraft Design. To take Spacecraft Design, you must take AOE 4134 and AOE 4140 in Junior Year.
Next Time

Reading Assignment:
§§ 8.13, 8.14 and Chapter 1

• Quiz Bring 3x5 cards
• Finish discussing aerospace engineering
• Begin discussion of relevant history