

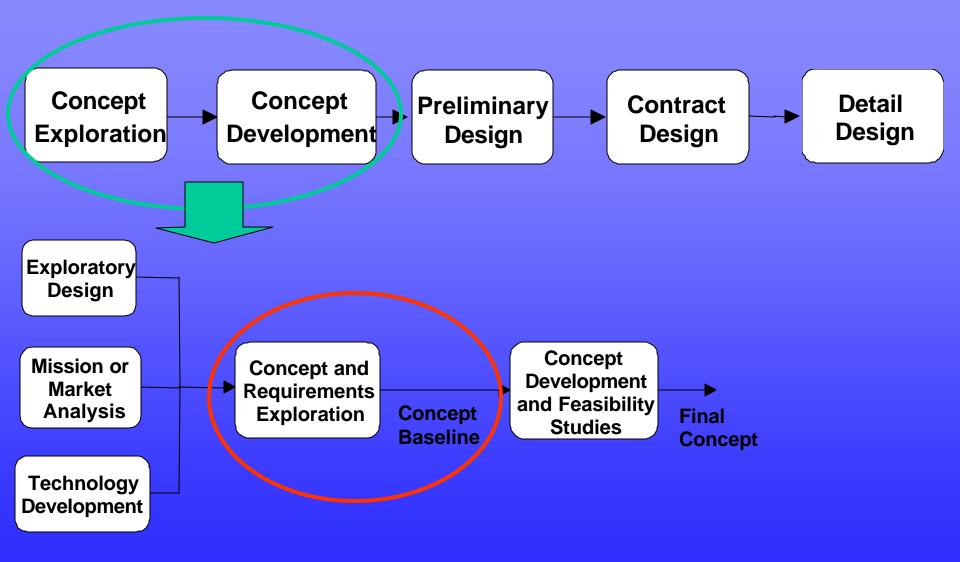
Center for Innovation in Ship Design

Concept Exploration and Development Using Multi-Objective and Multi-Disciplinary Optimization

> Unmanned Combat Air Vehicle Carrier (CUVX) Agile Surface Combatant (ASC) Littoral Warfare Submarine (LWSS)

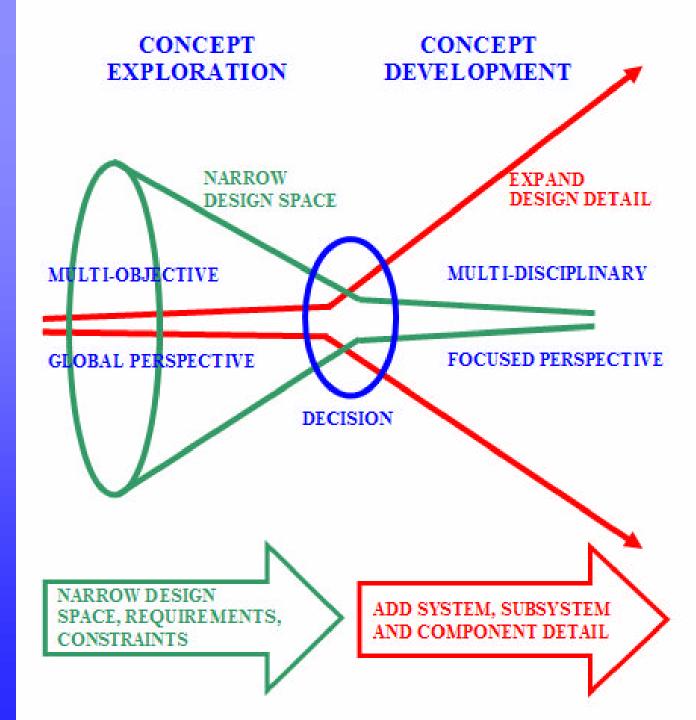
Perspectives

- Research
- Education
- Application
- Process!

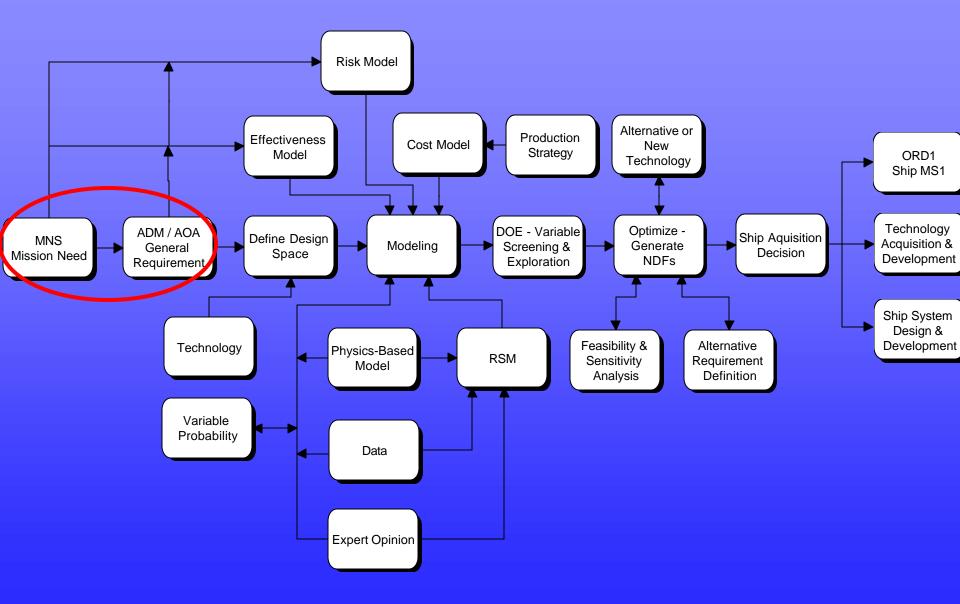


Research Objectives

- A consistent format and methodology for making affordable multi-objective (3) acquisition decisions and trade-offs in non-dominated design space
- Practical and quantitative methods for measuring mission effectiveness
- Practical and quantitative methods for measuring risk
- An efficient and robust method to search design space for optimal concepts with a range of probabilities of success - uncertainty
- An effective framework for transitioning and refining concept development in a multidisciplinary design optimization (MDO).
- Use the results of first-principle analysis codes at earlier stages of design.



Scope

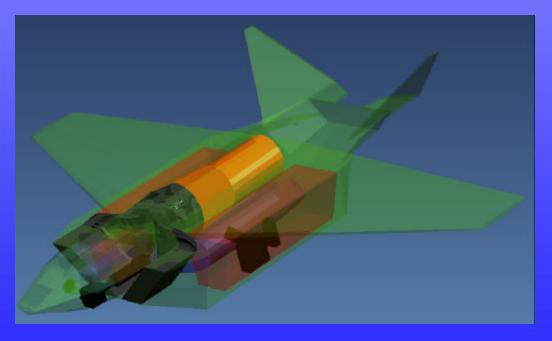

Design Strategy

Concept Exploration Process (Preparation, Preparation)

- Define Mission CONOPs, POE, ROCs, scenarios
- Technologies/Trades hullform, power and propulsion, combat systems, automation
- Standards and Specs
- Design Space
- Metrics Effectiveness, Cost, Risk
- Build ship synthesis model, select modules
- Multi-objective Optimization (Hands off!)
 - No magic!
 - No imagination!
 - Success depends on "Preparartion"!
- Select baseline design(s) from non-dominated frontier

Concept Exploration Process

CUVX Mission Need


- Current assets for ISR and First Day of War time-sensitive warfighting:
 - Land and carrier-based aircraft and UAV's
 - Cruise missiles from US submarines and surface ships
 - Space-based and long-range aircraft assets
- These assets:
 - Are costly
 - Put many personnel in harms way
 - Have limited numbers for seaborne positioning and rapid employment
- The Unmanned Combat Air Vehicle (UCAV-N) is a transformational technology with the potential to address these problems
- **UCAV-N** requires a support platform. Material alternatives include:
 - CVNs support manned and unmanned aircraft
 - Surface ship specifically designed or modified to support UAVs and UCAVs Alternatives include:
 - Convert existing LHD or LHA class ships
 - Design and build a modified-repeat LHD or LPD-17
 - Design and build an entirely new class of UCAV carrier (CUVX)

UCAV (VT UCAV-N)

- VT UCAV-N
 - ISR
 - SEAD
 - Strike
 - HARM (high-speed anti-radiation missile)
 - AIM-120 AMRAAM Slammer
 - JDAM (Joint Direct Attack Munition)
- Dimensions (folded):
 - 9.2 m wingspan x 9.7 m long x 4.4 m high
- Dimensions (unfolded):
 - 13.7 m wingspan x 9.7 m long x 3.6 m high
- Weight: 12 Mtons

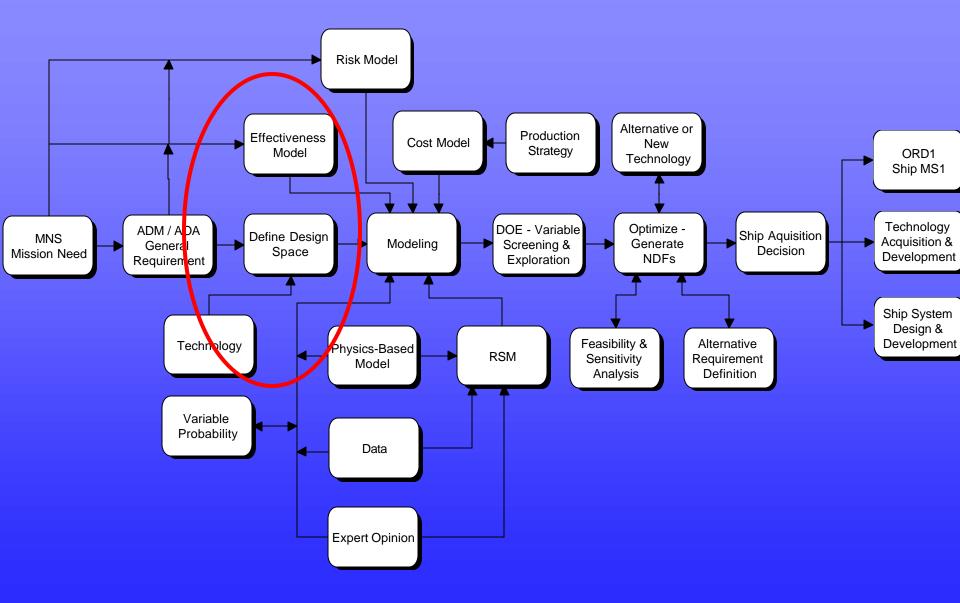
Acquisition Decision (ADM)

- Authorized Concept Exploration of two CUVX material alternatives
 - Modified-repeat LPD-17
 - New CUVX ship design
- Guidance
 - Support 20-30 UCAVs and UAVs, providing for takeoff and landing, fueling, maintenance, weapons load-out, planning and control
 - Provide own defense with significant dependence on passive survivability and stealth
 - Minimize life cycle cost through the application of producibility enhancements and manning reduction
 - Minimize personnel vulnerability in combat through automation
 - Average follow-ship acquisition cost shall not exceed \$500M (\$FY2005), not including aircraft.
 - 30 ships, IOC 2012
 - CUVX concepts will be explored in parallel with UCAV-N Concept Exploration and development using a Total Ship Systems Engineering approach.

CUVX CONOPS

- Operate in littoral areas, close-in, depend on stealth, with high endurance, minimum external support, and low manning
- Providing for aircraft takeoff and landing, fueling, maintenance, weapons load-out, planning and control
 - UAVs surface, subsurface, shore, and deep inland surveillance, reconnaissance and electronic warfare\
 - LAMPS Anti-Submarine Warfare (ASW) and Anti-Surface Ship Warfare (ASUW) defense
 - UCAVS initial/early conflict Suppression of Enemy Air Defenses (SEAD), Strike and mining
- Operate independently or in conjunction with small Surface Attack Groups
- Capable of performing unobtrusive peacetime presence missions in an area of hostility, and immediately respond to escalating crisis and regional conflict
- Likely to be forward deployed in peacetime, conducting extended cruises to sensitive littoral regions
- Provide own defense with significant dependence on passive survivability and stealth
- Post-conflict continue to monitor all threats
- First to arrive and last to leave the conflict area

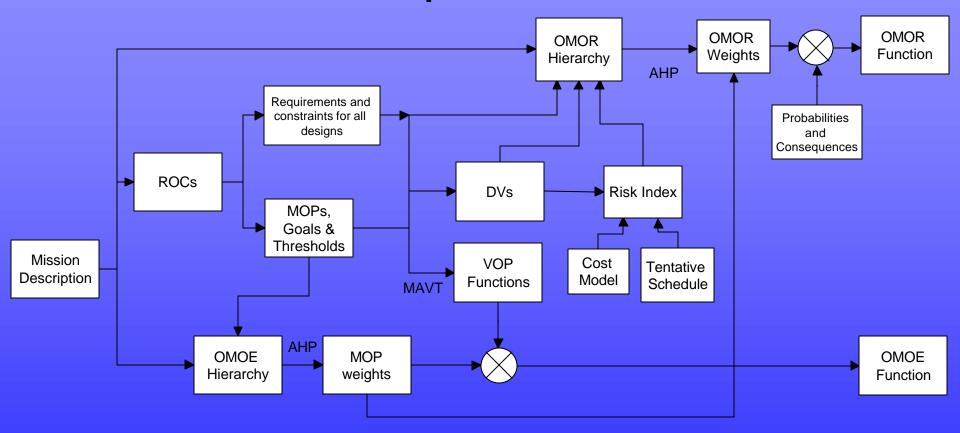
CUVX Mission Types


- Pre-conflict
 - Intelligence, Surveillance and Reconnaissance (ISR)
- Conflict
 - Continue ISR
 - SEAD
 - Mining
 - Pre-position and support UCAVs for time-sensitive air and missile strikes (HARM and JDAM)
 - SPECOPS
 - ASW / ASuW / with LAMPS
- Post-conflict
 - Continue ISR

Mission Scenarios (ASC)

Day	Mission scenario for MCM
1-21	Small ASC squadron transit from CONUS
21-24	Port call, replenish and load MCM modules
25-30	Conduct mine hunting operations
29	Conduct ASuW defense against small boat threat
31-38	Repairs/Port Call
39	Engage submarine threat for self-defense
41	Engage air threat for self defense
39-43	Conduct mine hunting operations
43	Unrep
44-59	Join CSG/ESG, continue mine hunting and mapping
60+	Port call or restricted availability

Concept Exploration Process



Effectiveness Metric

- Inputs affecting overall mission effectiveness metric:
 - defense policy and goals
 - threat
 - existing force structure
 - mission need
 - mission scenarios
 - modeling and simulation or war gaming results
 - expert opinion
- Master war-gaming model?
 - Many runs / regression
 - Series of probabilistic scenarios
 - Accuracy depends on modeling the detailed interactions of a complex human and physical system and its response to a broad range of quantitative and qualitative variables and conditions including ship MOPs
- This extensive modeling capability does not yet exist for practical applications! – Alternative?

OMOE and OMOR Development Process

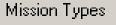
$OMOE = g[VOP_i(MOP_i)] = \sum w_i VOP_i(MOP_i)$

Analytical Hierarchy Process (Saaty, 1996) + Multi-Attribute Utility Theory (Keeney and Raiffa 1976) = Multi-Attribute Value (MAV) function (Belton, 1986) or Weighted Utility Function

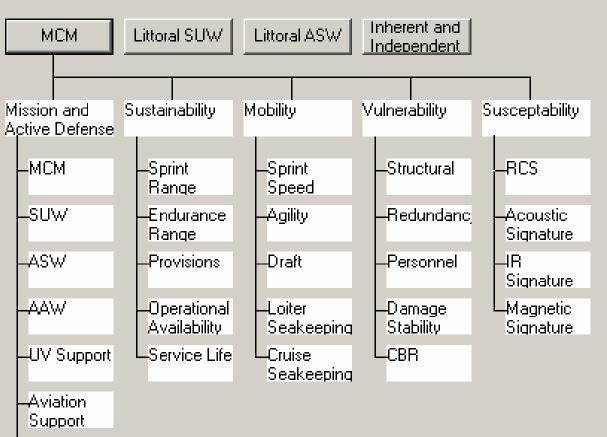
∇T ROCs > MOPs > G & Ts > DVs

ROC	Primary MOP or Constraint	Threshold or Constraint	Goal	Related DV
MOB 1 - Steam to design	MOP10 - Sprint range	1000 nm	1500 nm	DV1 - Hull form, DV2 - Displacement
capacity in most fuel efficient	MOP11 - Endurance range	3500 nm	4500 nm	DV1 - Hull form, DV2 - Displacement
manner	MOP13 - Sprint speed	40 knots	50 knots	DV 7 - Propulsion System alternative
MOB 3 - Prevent and control	MOP16 - Structural vulnerability	Aluminum hull	Steel hull	DV4 - Hull material type
damage	MOP17 - Personnel vulnerability	100	50	DV9 - Manning and automation factor
	MOP18 – Damage stability	Catamaran	Trimaran	DV1 – Hull form
	MOP20 - RCS	7000 m3	2000 m3	DV3 – Deckhouse volume
	MOP21 – Acoustic signature	Mechanical	IPS	DV7 – Propulsion System alternative
	MOP22 – IR Signature	LM2500+	ICR	DV7 – Propulsion System alternative
	MOP23 – Magnetic signature	Aluminum	Steel	DV4 – Hull material type
		No Degaussing	Degaussing	DV8 – Degaussing system
MOB 3.2 - Counter and	MOP19 - CBR	No CPS	Full CPS	DV6 - Collective Protection System
control NBC contaminants and				Type
agents				
MOB 5 - Maneuver in	Required all designs			
formation				
MOB 7 - Perform seamanship,	Required all designs			
airmanship and navigation				
tasks (navigate, anchor,				
mooring, scuttle, life boat/raft				
capacity, tow/be-towed)				
MOB 10 - Replenish at sea	Required all designs			
MOB 12 - Maintain health	Required all designs			
and well being of crew				
MOB 13 - Operate and sustain	MOP11 – Endurance range	3500 nm	4500 nm	DV1 – Hull form
self as a forward deployed unit				DV2 – Displacement
for an extended period of time				DV7 - Propulsion System alternative
during peace and war without	MOP12 – Provisions	14 days	24 days	DV18 – Provisions Duration
shore-based support				

CUVX Design Space


	Description	Metric	Range	Increments
1	Hull form	type	General monohull, LPD-17, WPTH	3
2	Prismatic coefficient	ND	.68	20
3	Max section coefficient	ND	.999	9
4	Displacement to length ratio	lton/ft2	50-90	20
5	Beam to Draft Ratio	ND	3-5	20
6	Length to Depth Ratio	ND	6-8	20
7	Aircraft launch deck?	y/n	0,1	2
8	Deckhouse volume ratio	ND	.053	25
9	AAW system	alternative	1,2	2
10	LAMPS helos	#	2,4	2
11	Endurance range	nm	4000,8000,12000	3
12	Stores duration	days	60,90,120	3
13	Propulsion system	alternative	1-14	14
14	Ship manning and automation factor	ND	.5-1.0	5
15	Hull structure type	type	Conventional, ADH	2
16	CPS	extent	None, partial, full	3
17	UAVs	Ħ	5-20	15
18	UCAVs	<i>#</i>	10-30	20
19	Aviation manning and automation factor	ND	.5-1.0	5
20	Ship aircraft fuel	MT/UCAV	3060.	10
21	Ship aircraft weapons	MT/UCAV	515.	10

OMOE Hierarchy


Focused MCM in CSG/ESG or ASC Squadron Operations

Mission Capability Catagories/Mission Capabilities

-Watercraft Support

MARG

9

8 7

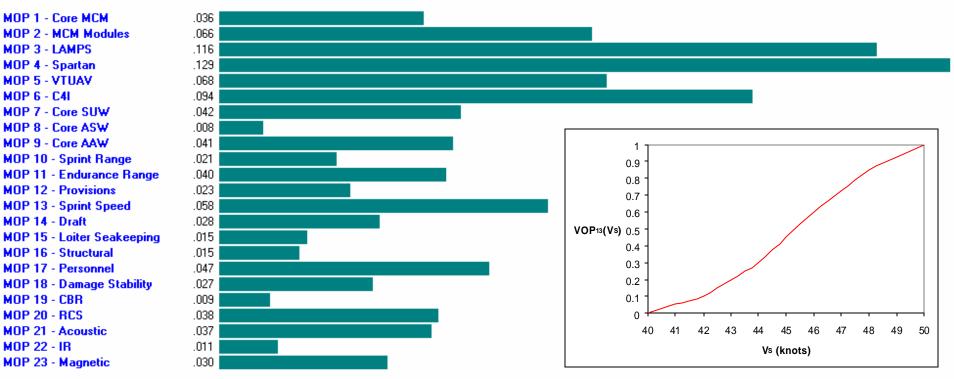
Pairwise Comparison

MOP 1 - Core MCM					
Compare the relative importance with resp	ect to: MCM Mission \ Mission ar	nd Active Defense \ MCM			
MOP 2 - MCM Modules					
		MOP 1 - Ca MOP 2 - M	MOP 3 - LA MOR	P 4 - Sp MOP 5 - VT	MOP 6 - C4
MOP 1 - Core MCM		2.1		2.0 2.0	1.0
MOP 2 - MCM Modules			3.0	3.0 3.0	
MOP 3 - LAMPS				3.0 2.0	
MOP 4 - Spartan MOP 5 - VTUAV				3.0	2.0 1.0
MOP 5 - C4I		Incon: 0.04			1.0
Questionaire					
How do the following Missio	n Types compare? qual 3 = moderate 5 = strong	7 - ucrustrena - 9 - cu	trazma		
	-			CBG	
SAG <u>9</u> 8	7 6 5 4 3 2	1 2 3 4 5 6	789	CDG	
SAG 98	7 6 5 4 3 2	1 2 3 4 5 6	789	MARG	
SAG 98	7 6 5 4 3 2	1 2 3 4 5 6	789	MCG	
CBG 98	7 6 5 4 3 2	1 2 3 4 5 6	789	MARG	
CBG 98	7 6 5 4 3 2	1 2 3 4 5 6	789	MCG	

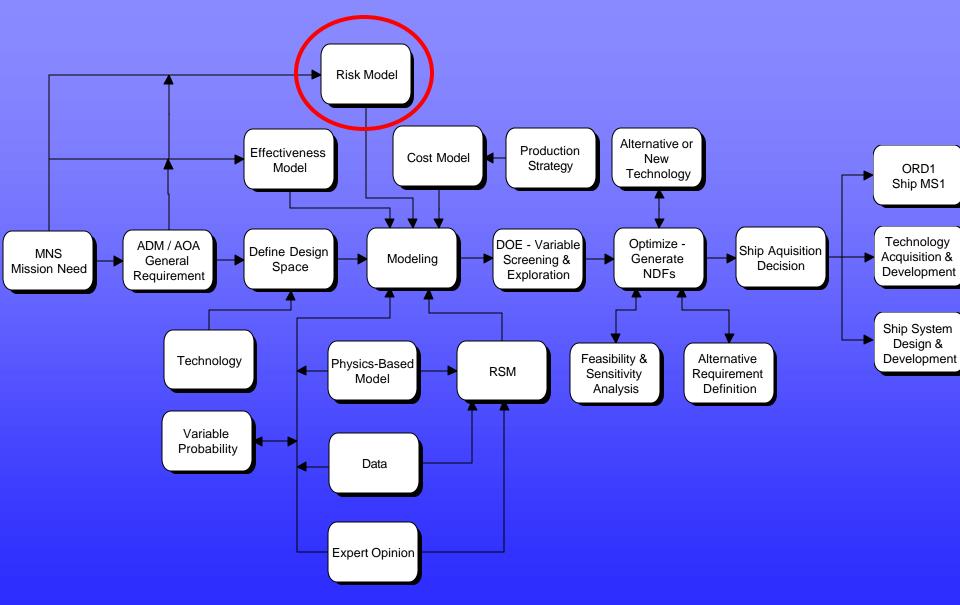
6 5 4 3 2 1 2 3 4 5 6 7

MCG

8


9

Synthesis with respect to:


Goal: Maximize Overall Measure of Effectiveness (OMOE)

Overall Inconsistency = .04

 $OMOE = g[VOP_i(MOP_i)] = \sum_i w_i VOP_i(MOP_i)$

Concept Exploration Process

RISK OBJECTIVE ATTRIBUTE (OMOR)

- Understand technology alternatives, ship requirements, schedules and cost estimates. Set effectiveness and performance metrics, goals and thresholds
- Select ship design variables (DVs) and process variables (PVs)
- Identify potential risk areas and events associated with each design and process variable option. Build a risk register (spreadsheet)
- Assign probabilities (P) and consequences (C) to each risk event.
- Calculate a risk rating (R) for each Risk.
- Define the overall measure of risk (OMOR) function

$$OMOR = W_{perf} \sum_{i} \frac{W_i}{\sum_{i} W_i} P_i C_i + W_{cost} \sum_{j} P_j C_j + W_{sched} \sum_{k} P_k C_k$$

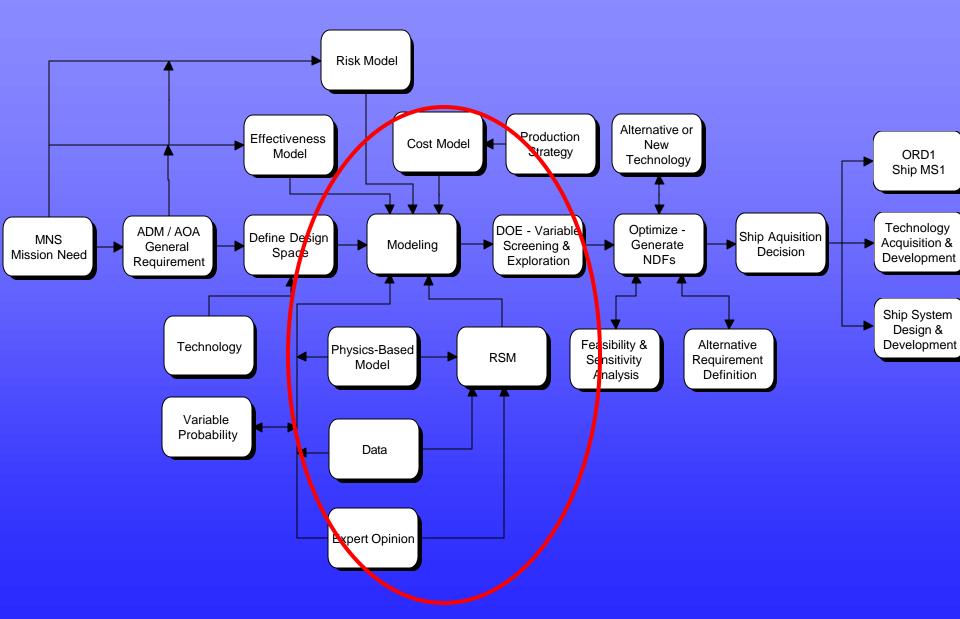
Critical Risk Areas (DoD 5000)

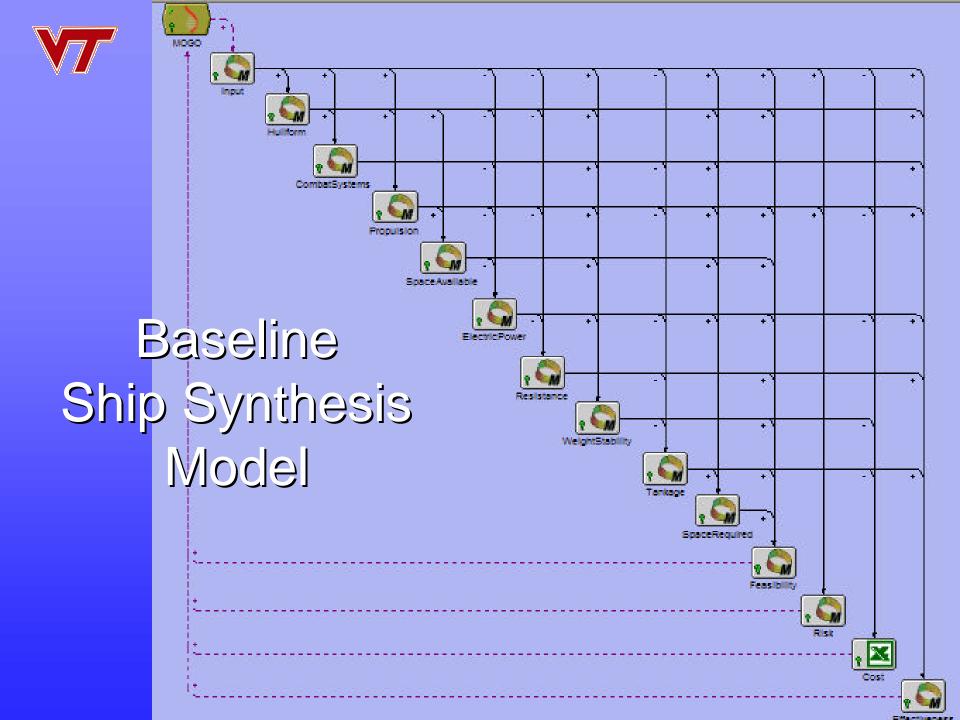
Risk Area	Significant Rinks
Threat	 Uncertainty in threat accuracy. Sensitivity of design and technology to threat. Vulnesability of system to threat and threat countermeasures. Vulnesability of program to intelligence penetration.
Requirements	 Operational requirements not properly established or vaguely stated. Requirements are not stable.
Design	 Status of system development. Requirement for increased skills. Reliance on immature technology or "exotic" materials to achieve performance. Status of software design, coding, and testing.
Test & Evalua- tion	 Test planning not initiated early in program (Phase 0). Testing does not address the ultimate operating environment. Test procedures do not address all major performance and suitability specifications. Test facilities not available to accomplish specific tests, especially system-level tests. Insufficient time to test thoroughly.
Sim ulation	 M&S are not verified, validated, or accredited for the intended purpose. Program lacks proper tools and modeling and simulation capability to assess alternatives.
Technology	 Success depends on unproved technology for success. Success depends on achieving advances in state-of-the-art technology. Technology has not been demonstrated in required operating environment. Technology relies on complex hardware, software, or integration design.
Logistics	 Inadequate supportability late in development or after fielding, resulting in need for engineering changes, increased costs, and/or schedule delays. Life-cycle costs not accurate because of poor logistics supportability analyses.
Production/ Facilities	 Production not sufficiently considered during design. Inadequate planning for long lead items and vendor support. Production processes not proven. Prime contractors do not have adequate plans for managing subcontractors. Sufficient facilities are not readily available for cost-effective production. Contract offers no incentive to modernize facilities or reduce cost.
Concurrency	 Immature or unproven technologies will not be adequately developed before production. Concurrency established without clear understanding of risks.
Capability of Developer	 Developer has limited experience in specific type of development. Contractor has poor track record relative to costs and schedule. Contractor has experienced loss of key personnel. Prime contractor relies expessively on subcontractors for major development efforts. Contractor requires significant capitalization to meet program requirements.
Technology Cost/Funding	 Realistic cost objectives not established early. Excessive life-cycle costs due to inadequate treatment of support requirements. Funding profile is not stable from budget cycle to budget cycle.
Schedule	 Schedule does not reflect realistic acquisition planning. Resources are not available to meet schedule.
Technology Management	 Proper mix (experience, skills) of people not assigned to PMO or to contractor team. Effective risk assessments not performed or results not understood and acted on.

Measure of Consequence

Level	Given the Risk is Realized, What Is the Magnitude of the Impact?							
Lever	Performance, C _i	Schedule, C _k	Cost, C _j					
0.1	Minimal or no impact on specific MOP	Minimal or no impact on total ship design or produc- tion schedule	Minimal or no impact on total objective cost					
0.3	Acceptable with some reduction in margin	Additional resources re- quired; able to meet need dates	<5% increase					
0.5	Acceptable with signifi- cant reduction in margin	Minor slip in key mile- stones; not able to meet need date	5-7% increase					
0.7	Acceptable; no remaining margin	Major slip in key milestone or critical path impacted	7-10% increase					
0.9	Unacceptable	Can't achieve key team or major program milestone	>10% increase					

Probability of Risk Event

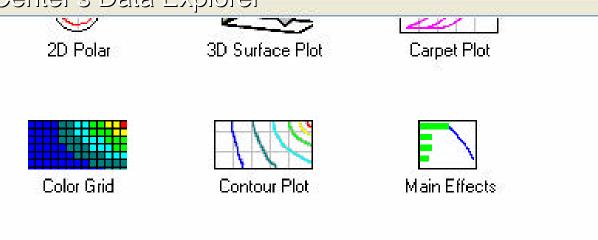

Likelihood Level	Description
0.1	Remote
0.3	Unlikely
0.5	Likely
0.7	Highly likely
0.9	Near Certain

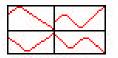


CUVX Risk Register

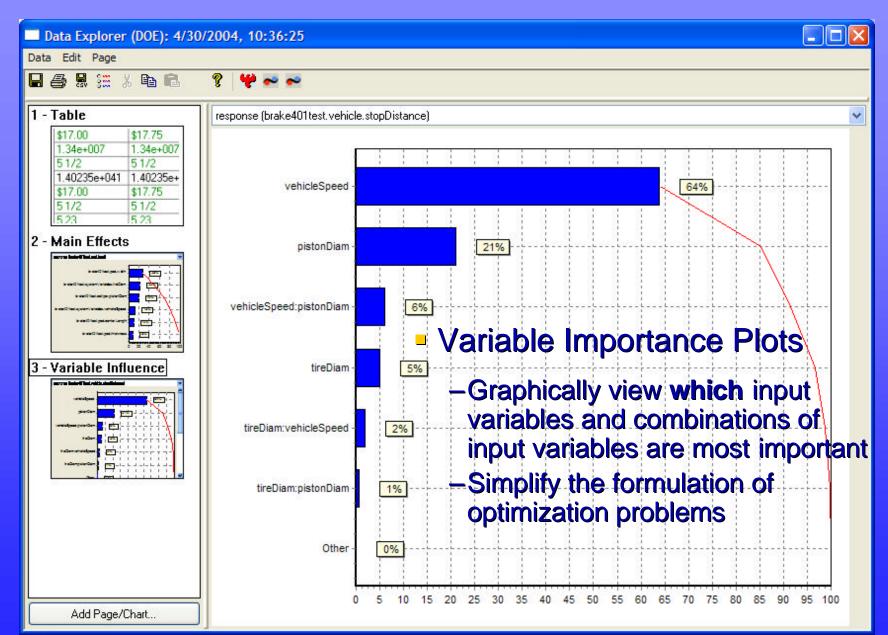
SWBS	Risk Type	Risk ID	DV#	DV Description	DV Value	Risk Event E _i	Risk Description	\mathbf{P}_{i}	<u>C</u> i	<u>R</u> i
Armament	Performance	1	DV_{10}	Peripheral VLS	1	Failure of PVLS EDM test	Will require use of VLS or RAM with impact on flight deck and hangar deck area and ops	0.3	0.5	0.15
Hull	Performance	2	DV_1	WPTH hull form	2	Unable to accurately predict endurance resistance	Will over-predict endurance range.	0.2	0.3	0.06
Propulsion	Performance	З	DV_{20}	Integrated power system	>5	Development and use of new IPS system	New equipment and systems will have reduced reliability	0.4	0.4	0.16
Hull	Performance	4	DV_1	WPTH hull form	2	Unable to accurately predict sustained speed resistance	Will over-predict sustained speed.	0.2	0.5	0.1
Hull	Performance	5	\mathbb{DV}_1	WPTH hull form	2	Unable to accurately predict WPTH seakeeping performance	Seakeeping performance will not be acceptable	0.5	0.5	0.25
Hull	Performance	б	\mathbb{DV}_1	WPTH hull form	2	Unable to accurately predict WPTH extreme motions and stability	Damaged stability performance will not be acceptable	0.7	0.7	0.49
Hull	Performance	7	D∛8	Separate launch deck	1	Concept doesn't work preventing simultaneous launch and recovery for SEAD mission	Unforeseen problems with dedicated launch deck (launch, fuel, weapons)	0.4	0.8	0.32
Hull	Performance	8	D∛8	Separate launch deck	1	Concept doesn't work preventing simultaneous launch and recovery for Strike mission	Unforeseen problems with dedicated launch deck (launch, fuel, weapons)	0.4	0.9	0.36
Propulsion	Schedule	9	DV ₂₀	Integrated power system	>5	Development and integration of new IPS system will be behind schedule	Unexpected problems with new equipment and systems	0.3	0.3	0.09

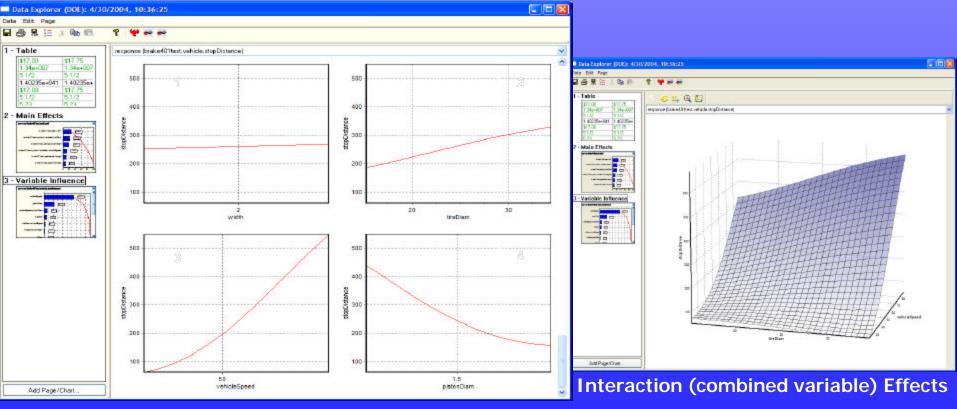
Concept Exploration Process





MC Design Space Visualization


- Developed using Boeing's Design Explorer Technology
- Gain a better understanding of design space
 - Increase insight into the effects of key parameters
 - Develop better designs, simplify models
- Generate dataset using one of ModelCenter's trade study tools
- Add Page
 Access toolset from ModelCenter's Data Explorer
 - Variable Influence Profiler
 - Variable Importance Plots
 - Main Effects Plots
 - Interaction Effects Plots
 - Prediction Profiler


Variable Influence Profiler

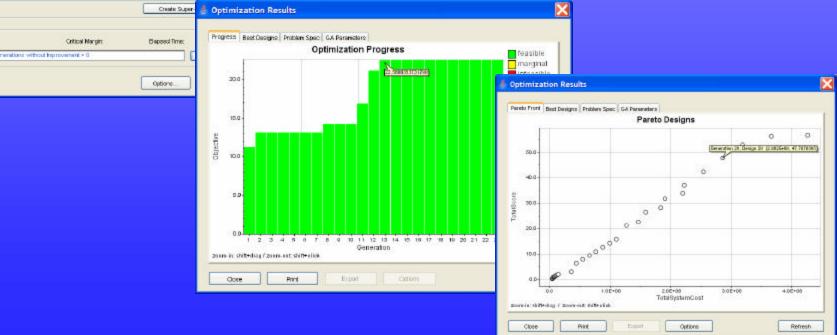
MC Design Space Visualization

MC Design Space Visualization

- Main and Interaction Effects Plots
 - Graphically view how input variables affect a selected output variable
 - Determine design trends
 - Locate regions in the design space that contain promising solutions

Main (single variable) Effects

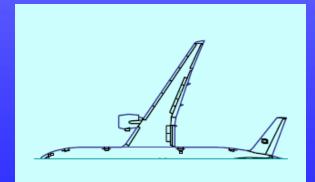
Optimization Progress

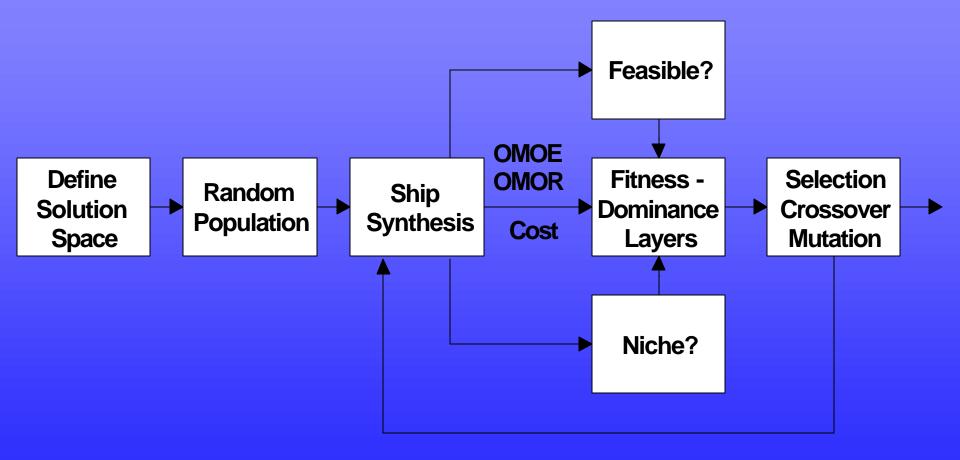

Objective(s):

OK

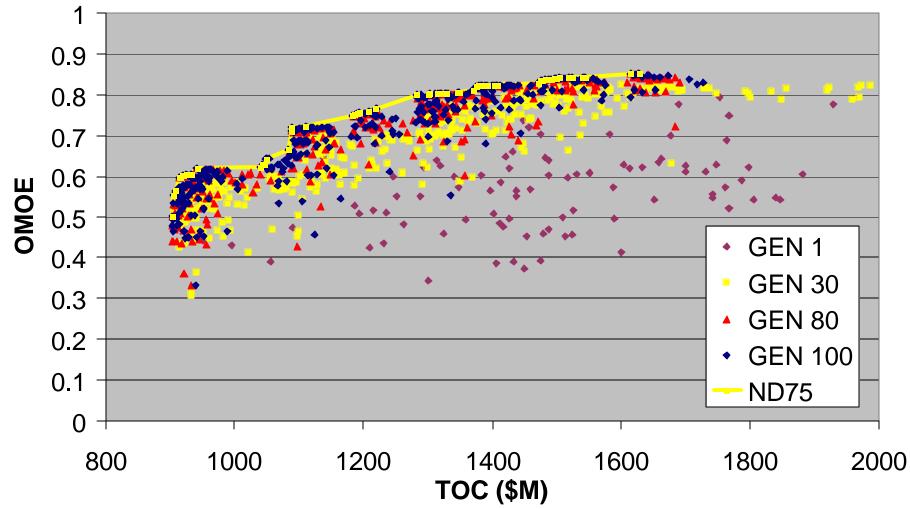
Evolutionary-Based Optimization

nizer Help							
bjective Definition							
			alue			Goel	
Objective		Y	anc	-	19000000000000000	nininite V	
Madel CostModel TatalSy/ Madel Sceneria TatalSca				3	0.3183524	navinite ¥	- 62
Constraint	Value		Lower Bou	ind	Upper Bound		
							_
lexign Variables							
lenige Variablics Variable		Type	Volat	Start Value	Lower Bo Up	oer Bou Eilt	
	orType	Type discrete	Ville High Aperture			per Bou Ent	2
Variable			High Aperture		1	per Boy Ent	?^

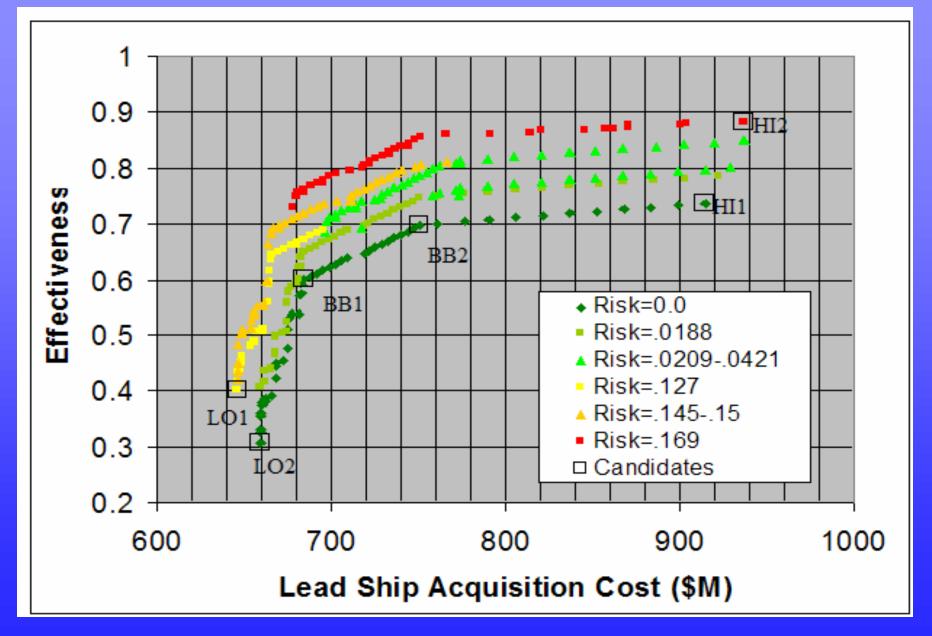

- Global optimization scheme
- Discrete and continuous design variables
- Single objective optimization
- Multi-objective optimization trade-off studies

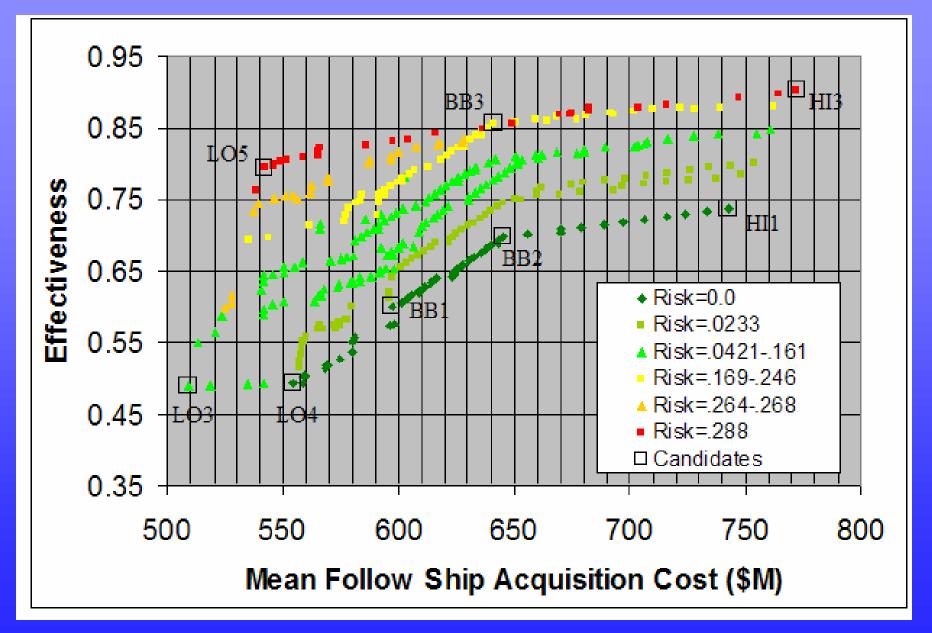

MC Design Optimization Future Releases

- Boeing's Design Explorer Optimization Tools
 - A unique global search optimization algorithm that intelligently uses
 - DOE, Surrogate models, Gradient-based techniques
 - Designed for computationally expensive analysis codes and noisy design spaces
 - Make critical market decisions faster
 - Evaluate numerous alternatives to identify the best design
 - Boeing evaluated 27,000 designs in the same amount of time it used to take for 25 designs



Multi-Objective Genetic Optimization (MOGO)

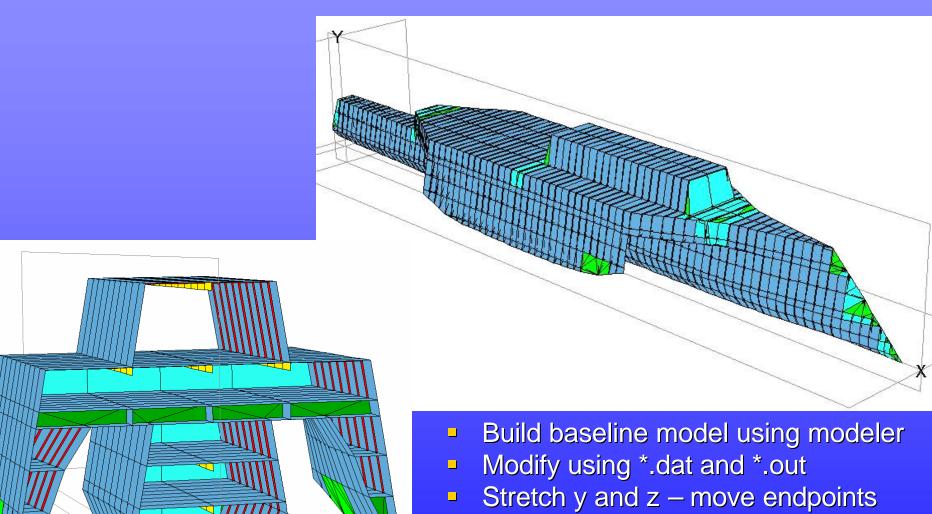




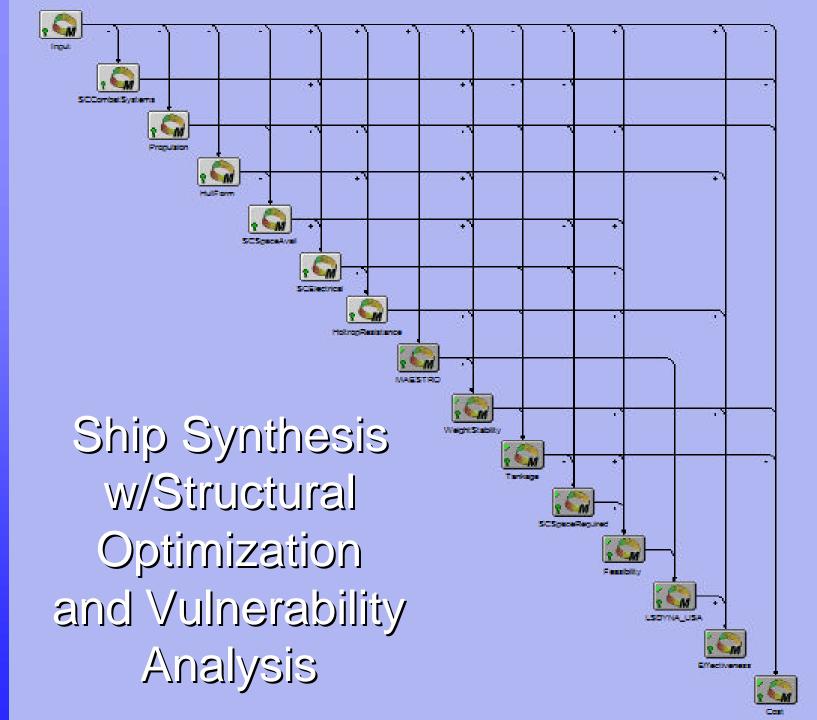
CUVX NDF 1

CUVX NDF 2

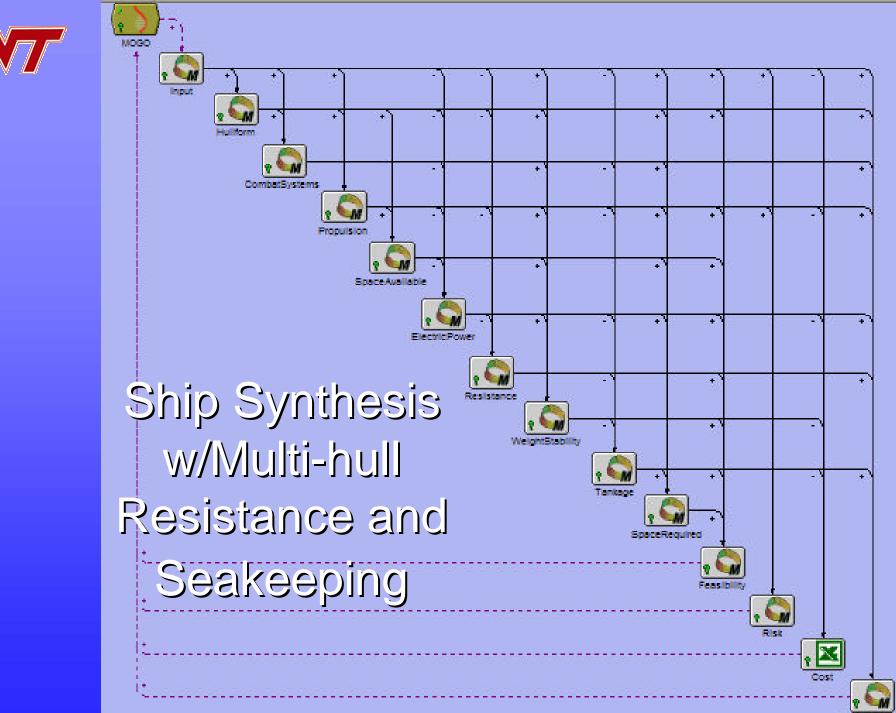
Current Projects


- Structural Optimization Module (MAESTRO)
- Vulnerability Analysis Module (LSDYNA)
- Multi-hull Resistance and Seakeeping (SWAN)
- Submarine Design
- Non-Dominated Trade-off Space
- OMOE Validation
- LHA(R) OMOE
- LHA(R) ASSET Synthesis
- Uncertainty Analysis and POS

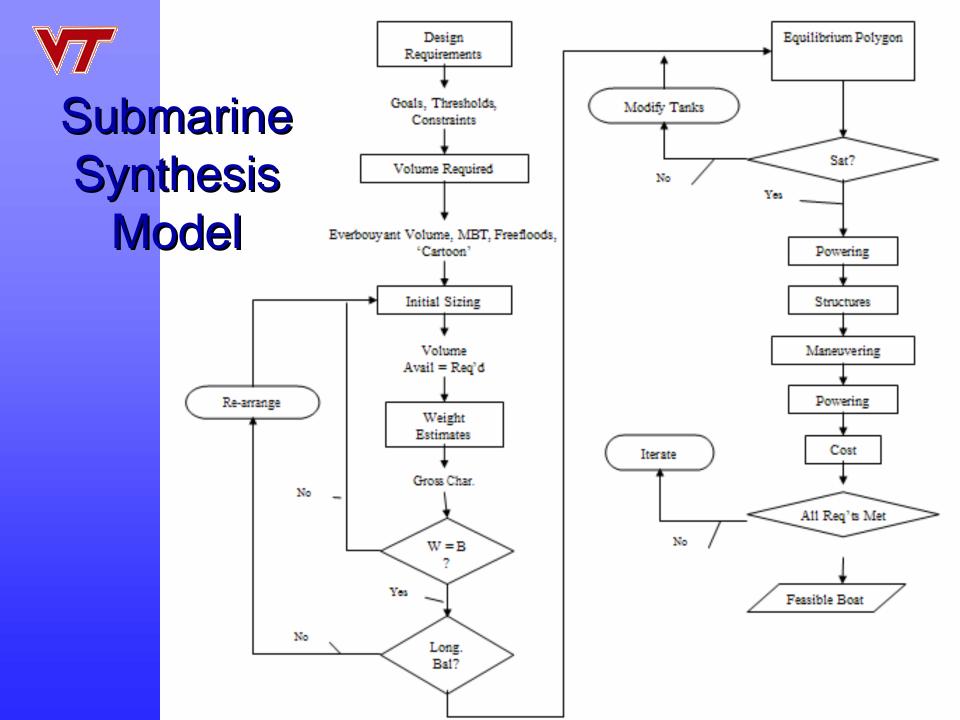
Ship Synthesis w/Structural Optimization



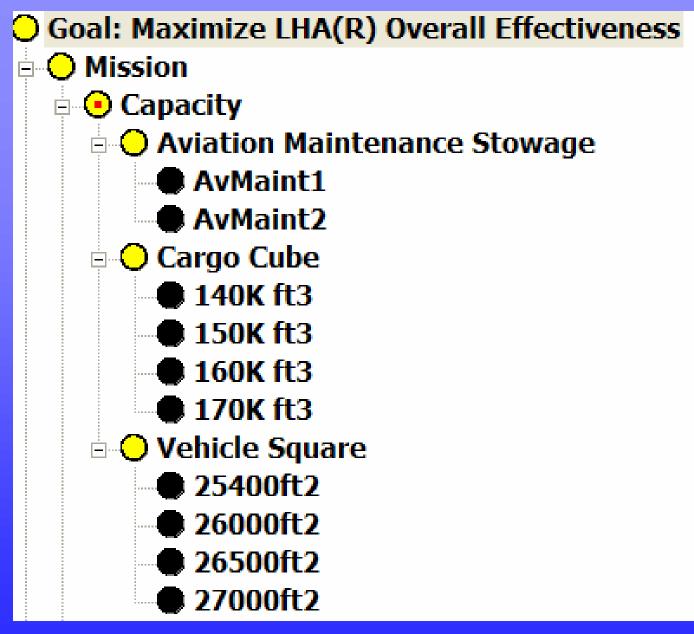
MAESTRO Structural Optimization



- Stretch z add parallel midbody
- MAESTRO optimizer
- MAESTRO weight



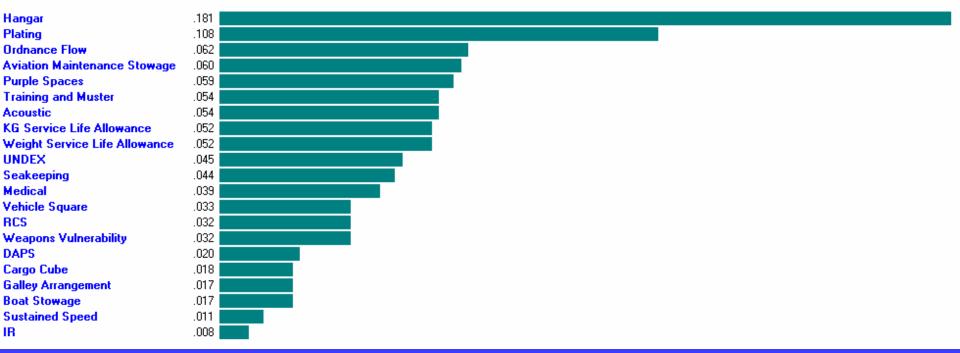
SSLW(X) – Team 3 Littoral Warfare Submarine



LHA(R) OMOE (Top Level)

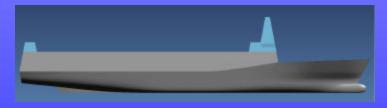
Goal: Maximize LHA(R) Overall Effectiveness 🗄 🔘 Mission 🖻 🕒 Capacity Aviation Maintenance Stowage 🗄 💛 Cargo Cube • Vehicle Square 🗄 😶 Operational 🗄 🔘 Medical 🗄 🔵 Hangar Training and Muster • O Purple Spaces Ordnance Flow Mobility Sustained Speed 🗄 😑 Seakeeping Survivability Susceptability • Vulnerability 🗄 💛 Ownability 🗄 😑 KG Service Life Allowance • Weight Service Life Allowance 🗉 🕒 Galley Arrangement 🗄 🕒 Boat Stowage

LHA(R) Mission/ Capacity



LHA(R) Results

Synthesis with respect to:


Goal: Maximize LHA(R) Overall Effectiveness

Overall Inconsistency = .01

Questions?

Dr. Alan Brown Department of Aerospace and Ocean Engineering email brown@aoe.vt.edu