

Optimum Risk Tanker (ORT) Design Report

A Systematic Approach to a TAPS Tanker Design

Presented by: Team 1

Shaun Aunchman Chris Brown Greg Hoffman Bill McShane Christine Sanchez

AOE 4065/4066 Ocean Design Fall 1999 – Spring 2000

Name / SNAME #	Specialization	Signature
Shaun Aunchman (13773)	Ship Structures	
Chris Brown	Team Leader/Hydrodynamics/ Hull	
(13772)	form	
Greg Hoffman (13795)	Power/Propulsion/Cargo Systems	
Bill McShane (13338)	Ship Synthesis/Weights/Editor	
Christine Sanchez (13788)	Ship Subdivision/Arrangements	

Requirement	Found in:	Page Number
Owners Requirements	Section 1 1	(Starts on)
Technical approach used to satisfying owners	Section 3.1	10
requirements		
Technical risks	Section 4.11.1	81
Table of principle ship characteristics	Section 3.3	19
Weight Estimate (Light ship condition, Full load	Section 4.8	57
departure, Arrival condition)		
Curves of Form	Section 4.9.1	60
Trim and intact stability calculations	Section 4.9	60
Damaged stability analyses	Section 4.9.3	73
Speed / Power analysis	Section 4.3	30
Electrical Load analysis	Section 4.4.3	37
Seakeeping analysis in Sea State 6	Section 4.10	78
Area / Volume analysis	Section 4.7	43
Manning estimate	Section 4.6	42
HM&E system description	Section 4.4	35
Propulsion plant trade off study	Section 3.1.3, Appendix 2	10, 86
Endurance fuel calculation	Appendix 5	125
Cost analysis	Section 4.11	79
Technical risk summary	Section 3.1.6	16
Draw	rings	
Lines Drawings with Principle Appendages	Drawing 100-001	
General Arrangements	Drawing 100-004	
Crew and officer berthing	Figure 4.7.3.3	47
Capacity plan	Table 4.7.3.1	46
Machinery Arrangement	Section 4.7.4 Drawing 200-001	55
Structural Midship Section	Drawing 100-002	

Contract Deliverables Requirements List (CDRL Key)

Executive Summary

FUEL DIL TANK P	8.0° M	NO. 8 BALLAST P	ND. 7 BALLAST P	NO. 6 BALLAST P	ND. 5 BALLAST P	ND. 4 BALLAST P	ND. 3 BALLAST P	NO. 2 BALLAST P	
	SLOP PTANK UP	ND 8. CARGD TANK P	ND 7. CARGD TANK P	ND 6. CARGD TANK P	ND 5. CARGD TANK P	NO 4. CARGO TANK P	ND. 3 CARGO TANK P	ND, 2 CARGO TANK P	NC I BALLAST -P NCI 1. CARGO TANK P
		ND 8. CARGD TANK S	ND 7. CARGD TANK S	ND 6. CARGD TANK S	ND 5. CARGD TANK S	ND 3. CARGD TANK S	ND. 3 CARGO TANK S	ND. 2 CARGO TANK S	NEI I. CARGE E TANK S A K NEI I BALLAST S
	1.0 341	ND. 8 BALLAST S	ND. 7 BALLAST S	NEL 6 BALLAST S	NOL 5 BALLAST S	NO. 4 BALLAST S	NO. 3 BALLAST S	NEL 2 BALLAST S	

	-		
LWL	295 m	100% Cargo Capacity m ³	134354
Max Beam	45.7 m	Endurance speed	
Depth	25.8 m	Endurance Range	10,000 nmi
Draft	18 m	Sustained speed at 90% MCR	17 knots
Displacement m ³	189568	Number of Engines	1@30560HP
Lightship Weight	45780 DWT	Crew Size	26
C _B	0.756	Construction cost	\$148 Million
С _Р	0.752	Total Onwership Cost	\$251 Million
C _X	0.994	Risk	0.0054 m [°]

Principle Characteristics

As techniques are developed to extract more oil from the Trans-Alaskan Pipeline System (TAPS) than originally anticipated, and the existing fleet of crude oil tankers plying this trade approach the end of their service life, a need is realized for replacements for this fleet. This paper proposes a state of the art replacement design for the TAPS trade. The replacement design must have a low probability of oil outflow, and incorporate high efficiency systems.

A low cost, low risk Very Large Crude Carrier (VLCC) design is presented. The design includes increased subdivision and double hull spacing over the existing fleet. This ship is designed for a full load capacity of 125,000 DWT to meet the Puget Sound limitations on deadweight tonnage.

This design represents the state of the art in minimum risk crude oil transportation. With double side and double bottom widths far in excess of the operational fleet, risk of oil outflow is drastically reduced over existing designs. Efforts have been made to provide maximum crew comfort in order to increase productivity. Corporate America has realized the importance of employee welfare, yet the maritime transportation industry has been slow to catch on. A high 90% MCR speed of 16.3 knots provides the owner/operator with flexibility to come to terms with the demands of port schedules and the North Pacific. This high transit speed is accompanied by increased fuel efficiency and seakeeping over traditional design.