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Outline

• Objective
• 3-D scenario - separation growth
• 2-D airfoil geometry
• Flow analysis methodology

– Grid generation
– FLOMG
– Turbulence models

• Results for “wing-drop” airfoil
• Comparison with similar airfoil
• Cambered vs. uncambered results
• Conclusions
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Objective

The objective of this study, in consideration of the sudden separation

increase involved in wing drop, was to determine if the incorporated

2-D airfoil exhibits abnormal shock sensitivity. The goal was to

determine if this particular transonic airfoil is prone to abrupt shock

movement, resulting in increased regions of separation.
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Three-dimensional Flow

• 3-D data indicates
separation jumps
forward

• Isobars indicate
region of unswept
flow

M = 0.8
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Two-dimensional Airfoil

• NACA 65A series airfoil (generated using LADSON)

• t/c = 5.7%

• Leading-edge and trailing-edge deflections
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Codes
Provided by Dr. Charlie Swanson of NASA Langley

• Grid Generating
– GAIR - defines surface points

– HYPERG - hyperbolic grid generator

– PRINTN - organizes points for visualization

• Flow Analysis
– FLOMG - 2-D flow analysis code using solutions of  unsteady

Euler or Navier-Stokes equations
• based on central differencing and Runge-Kutta time stepping

• multistage scheme with multiple grids

• multigrid routines adapted from Jameson’s Euler code

– PLTCON - post processing code for visualization in Tecplot®
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Grid Specifications

• 480 cells around
the airfoil and in
the wake

• 64 cells normal to
the airfoil surface

• Resolution
– with this many

cells the solution
varied little with
resolution
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Convergence in FLOMG
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Turbulence Models

• Two turbulence model options for FLOMG
– Baldwin-Lomax

– Johnson-King

•  Previous studies favor J-K for pressure calculations
– Johnson-King results more closely match experimental data

– Baldwin-Lomax has displayed inaccuracy in predicting the
shock location

• Convergence limited with Johnson-King model
– Results from NACA 65A airfoil failed to converge at higher

Mach numbers using Johnson-King turbulence model

– Baldwin-Lomax model produced converged results for Mach
numbers above 0.8.
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Turbulence Models cont.

• Data obtained using
both turbulence models

• Pattern in shock
movement is
comparable

• Due to similar shock
behavior, the Baldwin-
Lomax model was
considered adequate for
this investigation
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Accounting for 3-D Effects

• Can not run 2-D
analysis at same
conditions as 3-D case

• Matching Cl and
pressure distribution
requires lower Mach
number and AOA

• Adjusted 2-D
conditions to operate
in vicinity of the 3-D
pressure distribution

• For this study:
– Mach from 0.7 to 0.8

– AOA from 0o to 2o
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Results

• NACA 65A005.7 airfoil
– Constant Mach, increasing AOA

– Constant AOA, increasing Mach

• Airfoil comparison with NACA 65A003.5
– Constant Mach, increasing AOA

• Device Effectiveness on Shock Movement
– Comparison between cambered and

uncambered NACA 65A005.7
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CP and Cf vs. AOA
NACA 65A005.7

 M = 0.7, Re = 22.752 million
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CP and Cf vs. AOA
NACA 65A005.7

 M = 0.725
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CP and Cf vs. AOA
NACA 65A005.7

 M = 0.75
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CP and Cf vs. AOA
NACA 65A005.7

 M = 0.775
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CP and Cf vs. AOA
NACA 65A005.7

 M = 0.8
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CP and Cf vs. Mach
NACA 65A005.7

 AOA = 0o
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CP and Cf vs. Mach
NACA 65A005.7

 AOA = 2o
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Attached and Separated Flow
 Over the Flap

• Skin friction plots show separation occuring at the same location for
various conditions

• Streamtraces show the separation region just behind the hinge line

• Flow is pushed upward as the separation region grows
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Comparative Airfoil

• Data for NACA 65A005.7 is inconclusive
– No sign of abrupt shock movement

– Separation confined to trailing-edge flap

• Compare results to similar airfoil from a wing that does not exhibit
wing drop characteristics
– NACA 65A003.5 (t/c = 3.5%)

– Different device deflections
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CP and Cf vs. AOA
M = 0.75
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CP and Cf vs. AOA
M = 0.775
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Conclusion for Comparison

• Behavior of the shock for the two airfoils is
similar except that it happens at different
Mach numbers. This is most likely the
result of the difference in thickness.
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Cl vs. AOA
NACA 65A005.7
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Device Deflection Effectiveness

• Shock behavior at hinge
line raises curiosity
– Confines separation to

the flap surface

– Opposes shock behavior
of 3-D wing

• Wish to determine the
impact of device
deflections on shock
movement
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Cambered and Uncambered
 Airfoils

• Previous results compared to uncambered (undeflected) NACA
65A005.7 airfoil

• Symmetric airfoil requires higher AOA to produce similar Cl values
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CP and Shock Movement vs. AOA
for Symmetric Airfoil

M = 0.8

Cl = 0.98

Cl = 1.18
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Cambered and Uncambered
Streamline Comparison
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Conclusions

• Two-dimensional shock moves in the opposite direction as that of the
Three-dimensional wing

– Separation phenomenon which pushes the shock forward on the 3-
D wing is not present on the 2-D airfoil

• Without 3-D effects the separation bubble is confined to the region aft
of the hinge line at low AOA’s

• The NACA 65A005.7 airfoil does not exhibit any tendency to abrupt
shock movement, forward or rearward

• In the 2-D case a deflected trailing edge minimizes the adverse effect
of the separation region on the inviscid flow, thus preventing the shock
from being pushed forward

• The abrupt shock movement forward is a 3-D effect


