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(ABSTRACT) 

 

Errors of computational simulations in design of a high-speed civil transport (HSCT) are 

investigated. First, discretization error from a supersonic panel code, WINGDES, is considered. 

Second, convergence error from a structural optimization procedure using GENESIS is 

considered along with the Rosenbrock test problem.  

A grid converge study is performed to estimate the order of the discretization error in the 

lift coefficient (CL) of the HSCT calculated from WINGDES. A response surface (RS) model 

using several mesh sizes is applied to reduce the noise magnification problem associated with the 

Richardson extrapolation. The RS model is shown to be more efficient than Richardson 

extrapolation via careful use of design of experiments.  

A programming error caused inaccurate optimization results for the Rosenbrock test 

function, while inadequate convergence criteria of the structural optimization produced error in 

wing structural weight of the HSCT. The Weibull distribution is successfully fit to the 

optimization errors of both problems. The probabilistic model enables us to estimate average 

errors without performing very accurate optimization runs that can be expensive, by using 

differences between two sets of results with different optimization control parameters such as 

initial design points or convergence criteria.  

Optimization results with large errors, outliers, produced inaccurate RS approximations. 

A robust regression technique, M-estimation implemented by iteratively reweighted least squares 

(IRLS), is used to identify the outliers, which are then repaired by higher fidelity optimizations. 



 

 iii

The IRLS procedure is applied to the results of the Rosenbrock test problem, and wing structural 

weight from the structural optimization of the HSCT. A nonsymmetric IRLS (NIRLS), utilizing 

one-sidedness of optimization errors, is more effective than IRLS in identifying outliers. 

Detection and repair of the outliers improve accuracy of the RS approximations. Finally, 

configuration optimizations of the HSCT are performed using the improved wing bending 

material weight RS models.  
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Chapter 1  Introduction 
 

1.1 Motivation 
 

Computational simulations have become essential elements in engineering. Recent 

advances in computational simulations have been supported by improvements in computational 

modeling and numerical algorithms, which were made affordable by growing computer power 

and software technology [1]. Effective utilization of computational simulation in place of 

expensive and time-consuming experimental tests enables engineers to achieve better designs 

with reduced cost and design cycle time. Since most important decisions are made in the early 

phases of the design process when much of the key information is uncertain, it is important to 

reduce the lack of information at the early design phase [2].  So, there are increasing needs to use 

high-fidelity analyses in the very early stages of the design process.  

In multidisciplinary design optimization (MDO) [3], the design task is approached as an 

optimization problem by considering various disciplines simultaneously. It is a systematic 

approach to exploit the interactions between different disciplines in the early design phases. 

Efforts to use higher fidelity tools, such as computational fluid dynamics (CFD) and finite 

element analysis (FEA), in MDO are being actively pursued. For example, Knill et al. [4] used 

CFD for drag calculations in the conceptual design of a high-speed civil transport (HSCT). 

Raveh et al. used CFD analysis for aeroelastic analysis and design of an aircraft wing [5]. 

Sobieszczanski-Sobieski et al. [6] performed, with the help of parallel computing, optimization 

of a car body using a finite element model of 390,000 degrees of freedom. Balabanov et al. [7], 

[8], used FEA-based structural optimization to improve the prediction of the wing weight of an 

HSCT over weight equations based on historical data. 

Although capabilities of computational simulations have been increased to simulate real 

world phenomena more accurately, there remain many possible sources of error. In particular, 

discretization errors are fundamental for all methods where discretized models are used to 

replace continuum mathematical models [9]. In many cases, discretization errors show some 

systematic behavior. On the other hand, computational simulations often produce high frequency 

noise due to incomplete convergence, discretization error, or round-off error accumulation [8], 
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[9], [10], [11]. Even when the magnitude of the noise error is small from a perspective of single 

analysis, the high frequency error may cause trouble for gradient-based optimization methods. 

Furthermore, the errors may result in outliers, simulation results lying outside of the trend of 

other nearby results, and countermeasures are required. 

Because of the importance of using accurate simulation results in the design process, 

there are growing needs to verify computational simulations [9], [12]. It is very difficult to 

determine the accuracy of simulation results or to detect any erroneous results when the 

simulation procedures are complicated and computationally expensive. Nonetheless, if 

computational simulation is to be considered seriously for use in real design tools, as current 

engineering environments require, the uncertainties of computational simulations should be 

estimated and controlled to be within a reasonable level. 

 

1.2 Review of the Literature 
 

Traditional engineering design approaches are deterministic. Idealized models and input 

parameters are assumed to be accurate. Afterwards, safety factors can be introduced to address 

the unavoidable uncertainties in the model and environments. Also, in the traditional design 

optimization, engineers try to single out the best design point, i.e., a search for the global 

optimum. Afterwards, post optimality analysis may provide sensitivity information with respect 

to design changes.  

In reality, the knowledge that engineers have about the design problem is imperfect and 

incomplete. Uncertainty is ubiquitous in measurement data, simulation models, design 

parameters, and the operational environment of the product. Robust design techniques [2], [13], 

have emerged as a new design paradigm. In MDO, the robust design concept becomes an 

essential element when economic or manufacturing factors are to be included in design decisions 

[14], [15]. 

In the framework of robust design, effects of uncertainties are incorporated into the 

evaluation of candidate designs, which provide additional information to aid the engineer’s 

decision. First, the uncertainty sources are identified. In engineering applications the identified 

uncertainties are often modeled via probability distributions [16] or fuzzy sets [17]. Probabilistic 
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models and fuzzy set models describe different aspects of uncertainty [18]; probabilistic models 

mainly describe random variability in parameters such as material property variations, while 

fuzzy set models are used to describe mainly vagueness, such as uncertainty in choosing among 

alternatives. 

There are mainly two approaches to estimation of uncertainty of a system: the extreme 

condition approach and the statistical approach. The extreme condition approach seeks the 

bounds of system output: the anti-optimization technique [19] and interval analysis [20] are two 

examples. The statistical approach finds the probability of failure/success of the system and 

frequently requires data sampling to construct a cumulative distribution function of the output 

through uncertainty propagation. Monte Carlo [21] simulation is a brute force technique using 

random sampling that might be prohibitively expensive. To reduce the cost of Monte Carlo 

simulation, surrogate models for the expensive analysis have often been used, such as response 

surface approximations [16]. More efficient sampling techniques have been developed such as 

Latin hypercube sampling [22] and Taguchi’s orthogonal array [23]. Also, fast probability 

integration techniques have been developed [24],[25]. 

Simulation errors are one of the major uncertainty sources in the robust design 

framework. However, limited work has been done to address design uncertainties due to errors of 

computational simulations. It appears that the error estimation of computational simulations has 

been treated as a different issue than design uncertainty [26], [27]. A serious problem is that 

there is no standard terminology for uncertainties. ‘Uncertainty’ appears in many different 

contexts in the literature, mixed with several related words like variability, imprecision, 

vagueness, or error [28], [29], [30]. In experimental measurements, error usually means the 

difference of the measurement from the true value, while uncertainty can be defined as an 

estimate of the error [31]. In computational simulation fields, it seems that error and uncertainty 

are used interchangeably, and the choice between error and uncertainty depends on the author’s 

preference. This confusion in the terminology is partly because idealized computational models 

are used in place of physical experiments. 

Gu et al. [32] classified simulation errors as bias error and precision error. Bias error is 

usually deterministic and consists of approximation error in the analytical model and 

algorithmic error in the numerical model. The precision error means the variability of input 
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parameters and is probabilistic. The definitions are helpful in identifying error sources, but they 

are not intended for a complete taxonomy of simulation uncertainty.  

Recently, Oberkampf et al. [33], [34] suggested a comprehensive framework for 

uncertainties in computational simulations. Their work was to identify uncertainty sources in 

each stage of modeling and simulation. They used three categories for the sources of the total 

uncertainty: variability, uncertainty, and error. Variability is the inherent variation associated 

with the system or environment, which is irreducible. Uncertainty is defined as the potential 

deficiency in any phase or activity of the modeling process that is due to ‘lack of knowledge’. 

Uncertainty can be reduced when more information is obtained. For example, in the range 

calculation of an aircraft, if we know only approximately the specific fuel consumption of the 

engine, because it is under development, it causes uncertainty in the predicted range of the 

aircraft. Once the exact specification of the engine is known, the uncertainty is reduced or 

removed. Error is defined as a recognizable deficiency in any phase or activity of modeling and 

simulation that is not due to lack of knowledge; error can be recognized upon examination. Error 

includes spatial and temporal convergence error, round-off error accumulation, and iterative 

convergence error. Variability, uncertainty, and error, identified in each stage of modeling and 

simulation, constitute the total uncertainty and propagate into the system, resulting in 

uncertainties of the system output. Batill et al. [35] applied the framework to characterize the 

uncertainties in MDO. 

Oberkampf et al.’s framework is useful in two aspects. First, it provides a well-defined 

terminology for uncertainty sources organized into detailed classification. Second, it is a 

comprehensive framework including each phase of modeling and simulation. They define six 

phases: conceptual modeling, mathematical modeling, programming activities, discretization and 

algorithm selection, numerical solution, and solution representation. In the current work, we will 

focus on simulation error according to the above framework. For application problems, we will 

consider errors from an aerodynamics simulation and a structural optimization procedure. It is 

important to note that error is a part of the total uncertainty according to the framework, and may 

have random properties. 

Once the uncertainty sources are identified and their effects are estimated, it is possible 

that different measures are taken according to variability, uncertainty, or error, to reduce the total 

uncertainty. Only a few studies have been done on design uncertainty analysis regarding 
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simulation errors. For discretization error, Richardson extrapolation has been widely used [9], 

[36], [26]. Recently, there have been efforts to use response surface models to reduce the effects 

of discretization error on the robust design of a finite element bar [37], [38]. For modeling error, 

DeLaurentis and Mavris [39] used the beta distribution to model the error of low-fidelity stability 

derivative calculations, and performed robust design optimization of a supersonic transport with 

airplane stability considerations. Surrogate models of computational simulations may cause error 

in design optimization due to their modeling deficiencies. Papila and Haftka [40] analyzed 

response surface models to identify regions where large modeling errors of lower order 

polynomial models are expected.  

 Response surface techniques [41] build an approximation to output response via least 

squares fit based on experimental or simulation data at carefully selected design points. In MDO 

research it has become a popular surrogate model for higher fidelity analyses [4], [6], because 

with some initial investment to construct a database, expensive analysis can be replaced by a 

simple algebraic equation that is very inexpensive to evaluate. Another advantage of the response 

surface approximation is that it filters noise error typical of higher fidelity simulations [10], 

which may be troublesome to optimization. Researchers at Virginia Tech and the University of 

Florida have applied the response surface approximation to noisy data from structural 

optimization of a high-speed civil transport [8]. 

 Simulation results with large errors are of particular concern because they increase the 

total uncertainty in modeling and simulation. When many simulation results are available, 

response surface techniques can be used to identify erroneous simulations as bad data points, 

statistical outliers [42], and further investigation of those bad results may lead to identifying the 

causes of the errors. The standard least squares method used in response surface fitting is not 

robust to outliers; response surface fits may be greatly affected by a few bad data points. Robust 

regression techniques provide response surface fits with protection against outliers [43], [44]. 

Researchers at Virginia Tech and the University of Florida have applied robust regression 

techniques to data from structural optimization [45], [46], [47]. The structural optimization data 

contained bad optima due to convergence difficulties with the structural optimization. Robust 

response surface techniques successfully identified those bad results as outliers, and the accuracy 

of the response surface approximation was improved by repairing them. 
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1.3 Objective 
 

A high-speed civil transport (HSCT) design code [48], [49] has been developed by the 

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles of Virginia Tech. 

The HSCT is a good test bed for MDO research because successful designs of such a concept 

require close interaction between traditional disciplines. Most of the disciplinary modules of the 

code have the capability of variable-complexity modeling (VCM) [49], [50], [4], [8], where low, 

high, and possibly mid fidelity analysis are combined to reduce the cost of higher fidelity 

simulations. For example, low fidelity weight analysis uses weight equations of FLOPS [51] 

based on historical data. For more accurate estimation of wing structural weight, GENESIS [52] 

structural optimization based on finite element analysis is performed as a high-fidelity analysis.  

The objective of the present work is to estimate simulation errors in the HSCT design 

codes and develop countermeasures to reduce them. In most situations, error is difficult to 

determine because the true values are not known except for a few special cases of verification. 

To determine error, more accurate simulations or experiments are required, which can be very 

time consuming and expensive to perform. In modeling and simulation, estimation of error 

becomes more complicated because error can be caused at any phase of modeling and simulation 

[34]. Dealing with all of the error sources is beyond the scope of the present work, and we will 

focus on simulation errors associated with 1) the discretization and algorithm selection phase and 

2) the numerical solution phase.  

First, the simulation error of a supersonic panel code, WINGDES [53], [54], will be 

investigated. WINGDES is a wing analysis and design code based on linearized potential theory 

and the leading edge thrust concept. HSCT codes use WINGDES to calculated optimal wing 

camber distribution for structural optimization [55] to provide the aerodynamic load distribution. 

The supersonic panel method is also a basis for a refined analysis for the drag due to lift of the 

HSCT wing [56]. Because rectangular non-body fitted panels are used to model the wing 

planform, the panel solutions tend to be noisy. This is the reason we selected WINGDES for a 

study of simulation errors. A grid convergence study showed that discretization error is a major 

error component in WINGDES. Richardson extrapolation ([57], pp. 180-186) may be used to 

estimate the discretization error. Instead a response surface approach will be used to model the 



Chapter 1. Introduction                                                                                                                 7 

 

discretization error following Alvin [37] and Kammer et al. [38]. The response surface approach 

can be also computationally cheap, because a carefully designed experimental design may allow 

one to do fewer simulation runs than required for Richardson extrapolation. In addition, the noise 

filtering capability of a response surface fit may have an advantage over Richardson 

extrapolation for the noisy data from WINGDES. We will compare the response surface 

approach and Richardson extrapolation in predicting CL on refined panels. 

Second, errors from optimization failures will be studied. Sub-optimization problems are 

often solved to optimize substructure of a system and used as a computational simulation within 

a system level optimization. Optimization may produce incorrect results due to algorithmic 

weaknesses, local optima, or even user’s programming error. Many engineering optimization 

problems require iterative algorithms that may be difficult to converge to high precision due to 

computational cost. Errors from the Rosenbrock [58] test problem and structural optimization of 

the HSCT are investigated. Optimization errors appear as high frequency noise, and it is possible 

that they can be treated as random variables [59]. We will show that a probabilistic model 

enables us to estimate the magnitude of noisy errors from optimization problems. 

Outliers should be given close attention when surrogate models are constructed from 

computational simulations. The standard least squares fit for response surface approximation is 

not robust against outliers, although the response surface fit may filter out small amplitude and 

high frequency noise. Outliers may cause a poor response surface approximation. If an 

inaccurate response surface approximation is used as a surrogate model in system level 

simulation or design optimization, it increases the total uncertainty of the simulation and design. 

Therefore, it is important to identify the outliers in the data and repair them if possible [43], [45], 

[46], [47]. We will apply robust regression techniques to deal with the outlier problems of the 

Rosenbrock test problem and the structural optimization of the HSCT. 

 

1.4 Methodology 
 

To determine the error or quality of a single simulation is a difficult task. However, when 

many simulation results are available, such as when building a response surface model from a 

priori simulation runs, statistical tools can be used to estimate errors. Design of experiments 
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(DOE) [60] is a technique to choose sample points to be used to study the effects of independent 

variables on the response variables. It is well known that the characteristics of simulation error 

are different from those of experimental noise. For example, repeated numerical simulations for 

the same data normally give the same results, while repeated physical experiments do not. So, 

the use of duplicate points, which is common in experimental research, is avoided with 

numerical simulations. 

Discretization error is fundamental when discretized models of the system are solved. 

Discretization errors may involve systematic and noise components as well. Richardson 

extrapolation, which generates higher accuracy results from lower order results, tends to amplify 

the noise error. Response surface techniques can be used to model the discretization error by 

incorporating the mesh size. It was suggested that response surface models might be an efficient 

way to reduce discretization errors by using a carefully selected experimental design [37], [38].  

In addition, the noise filtering capability of the response surface model can be useful when noise 

error is present as well as systematic discretization error. 

It was suggested that it could be useful to use probabilistic models for high frequency 

simulation errors [59]. For example, it was found that the noise from the HSCT structural 

optimization is not systematic error. If we perform structural optimization for two slightly 

different HSCT configurations, the magnitude of error for one configuration does not enable us 

to predict the optimization error of the other configuration, because of the unexpected variation 

of the error. This is in contrast to systematic error such as modeling error, where the error usually 

varies continuously along design changes. Therefore, we may fit model probability distributions 

to error data via maximum likelihood estimates (MLE) [61]. In MLE, we seek the parameters of 

the distribution function to maximize the probability of the observed sample. The distribution fit 

has been widely used in simulation and modeling theory [62]. Several model distribution 

functions [62], [63], like Gaussian, exponential and Weibull, are considered. The fitted error 

distributions can be used to estimate the magnitudes of the simulation errors [59]. 

The computational simulations in the current work are intended to construct response 

surface approximations of the simulation codes. Response surface fits naturally filter out small 

amplitude high frequency noise error that might cause trouble with a gradient based optimizer. It 

should be noted that the mean square error of the response surface fit may be a good measure of 
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noise error in ideal situations, where the polynomial model is correct and the errors have zero 

mean with constant variance. 

Standard least squares fits for response surface approximations can be greatly affected by 

outliers, data points with large simulation errors. A robust statistical technique, known as M-

estimator [64], [65], can be used instead of the least squares. The M-estimation implemented by 

iteratively reweighted least squares (IRLS) [44], [66] gives robust fits resistant to outliers by 

downweighting and removing them from the fit. The small weighting values are indicators of 

outliers and the detected outliers might be repaired by more accurate simulation efforts. 

Repairing only the outliers can be computationally cheaper than performing more accurate, yet 

expensive, simulations for all of the data. 

In addition, optimization error tends to be one-sided [47], [59]. Optimization is typically 

an iterative process, and is rarely allowed to converge to high precision due to computational 

cost considerations. If optimization error occurs due to incomplete convergence, the calculated 

optimum will be greater than the true optimum in a minimization problem provided that the 

calculated optimum is feasible. If so, the error is expected to be positive. This implies that the 

mean of the error cannot be zero, and the symmetric weighting function used in the IRLS 

procedure can be improved by taking into account skewness of the error. We will demonstrate 

the approach of using a nonsymmetric weighting function [47] in IRLS procedures, which is 

denoted as NIRLS (nonsymmetric IRLS), for detecting outliers in structural optimization of 

HSCT design.  

 

1.5 Outline 
 

The design research group of the MAD Center at Virginia Tech has been developing 

multidisciplinary analysis and optimization programs for aerospace vehicles. Simulation errors 

associated with the design of a high-speed civil transport (HSCT) will be studied.  

In Chapter 2, a general description of the configuration optimization of an HSCT design 

will be presented along with a discussion of the analysis modules used in variable-complexity 

modeling. A simplified five variable problem is described which was used in the present 

research. Chapter 3 presents examples of simulation errors in the HSCT design problem. First, 
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the discretization error from a supersonic panel method is described. Then, the noise error from 

wing structural weight calculations using structural optimizations is presented.  

Statistical techniques used in the study are presented in Chapter 4 through Chapter 6. An 

overview of response surface techniques is presented in Chapter 4. Noise filtering capabilities of 

response surface models are discussed. Probabilistic models for noisy simulation errors will be 

presented in Chapter 5. Several candidate model distributions will be introduced for the noise 

error. The MLE to fit the model distributions to the data will be explained. The χ2 goodness-of-

fit test will be introduced as a formal test to check the agreements between the fit and data. 

Normally, estimation of the convergence error requires simulation using tightened convergence 

parameters, which can be expensive. A novel approach to estimating simulation errors without 

more accurate simulations is discussed, using the differences of two noisy simulation data from 

two different settings of program control parameters. In Chapter 6, a robust regression technique 

known as M-estimation is introduced. Iteratively reweighted least squares (IRLS) will be 

discussed along with various weighting functions. To make use of the one-sidedness of 

optimization error, a nonsymmetric weighting function is devised. 

In Chapter 7, errors from a supersonic panel code, WINGDES, are studied. Results of a 

grid (panel) convergence study are presented. Richardson extrapolation formulas of higher order 

accuracy are derived for finitely refined meshes. The response surface technique is used to model 

the discretization error and the results are compared to the estimations by Richardson 

extrapolation.  

Chapter 8 presents a test problem study of optimization error. Optimization failures of 

various optimization programs on the Rosenbrock function are discussed. The Weibull 

distribution is used for the probabilistic modeling of noise errors from optimization failures. The 

probabilistic models were used to estimate the magnitude of noise error. The IRLS techniques 

are used to identify optimization results with large errors. The improvements of the response 

surface model due to outlier repair are discussed. 

Estimation and reduction of errors from structural optimization of an HSCT will be 

presented in Chapter 9 and Chapter 10. Estimation of the optimization error via a probabilistic 

model will be presented in Chapter 9. The effects of convergence criteria on the optimization 

error will be discussed, and the most influential convergence criterion is identified. The 

distribution of error will be found by fitting the Weibull model to the convergence error via 



Chapter 1. Introduction                                                                                                                 11 

 

MLE. The usefulness of the probabilistic model will be demonstrated via an indirect distribution 

fit using differences of two simulation results. In Chapter 10, outlier detection results via IRLS 

techniques will be presented. To utilize the one-sidedness in the optimization error, a 

nonsymmetric weighting function is proposed over symmetric weighting functions.  The results 

show that the nonsymmetric IRLS (NIRLS) is more effective in pinpointing outliers than regular 

IRLS. The outliers are repaired via more accurate optimization runs, and effects of outlier repair 

on the accuracy of response surface approximation are discussed. HSCT configuration 

optimizations are performed to see the effects of the improvements of response surface models 

on the optimum designs. Finally, conclusions of this research are presented in Chapter 11. 



 

12 

Chapter 2  HSCT Configuration Design 

Optimization Problem 
 

2.1 Formulation of the Problem 
 

Researchers at the Multidisciplinary Analysis and Design (MAD) Center for Advanced 

Vehicles at Virginia Tech have developed a high-speed civil transport (HSCT) design procedure 

[4], [8], [49]. The HSCT is designed to carry 250 passengers at a cruise Mach number of 2.4 for 

a range of 5500 nautical miles. The idealized mission profile is composed of take-off, subsonic 

climb, supersonic cruise/climb, and landing segments. The HSCT is a good test bed for 

multidisciplinary design optimization (MDO) research because this type of aircraft requires close 

interaction among traditional disciplines to meet the challenging requirements. The takeoff gross 

weight (WTOGW) is selected as the objective function to be minimized, which is a combined figure 

of merit of the aircraft. Since the takeoff gross weight can be expressed as a sum of fuel weight 

and dry weight, the aerodynamic drag is reflected by the fuel weight and the structural efficiency 

is indicated by the dry weight. Also, the takeoff gross weight can be correlated to the life cycle 

cost of the aircraft in that the dry weight indicates the acquisition cost while the fuel weight 

reflects the operational cost. 

The general HSCT model [8], [67] is parameterized by 29 design variables (Table 2.1). 

Of these, 26 describe the geometry, two the mission, and one the thrust. This provides a realistic 

description of the complex geometry with a relatively small number of design variables and 

allows us to investigate a wide variety of aircraft configurations. The geometry variables consist 

of nine for the wing planform, five for the airfoil shape, and eight for the fuselage geometry. See 

Figure 2.1 for the configuration variables to define the geometry of the airplane. The starting 

cruise altitude and the cruise climb rate are the two mission variables. The optimization has up to 

sixty-eight inequality constraints (Table 2.2), including geometry, performance, and 

aerodynamics related constraints. 

In the current study we used a simplified version of the HSCT problem, following Knill 

et al. [4], with five design variables. The five design variable case includes fuel weight, Wfuel, 
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and four wing shape parameters: root chord, croot, tip chord, ctip, inboard leading edge sweep 

angle, ΛILE, and the thickness to chord ratio for the airfoil, t/c (see Figure 2.2). Note that 

traditional variables such as leading edge sweep angle are used instead of the coordinate of the 

leading edge break point to enable a compact definition. In the five variable case, fuselage, 

vertical tail, mission and thrust related parameters are kept unchanged at the baseline values. 

Table 2.3 shows the values and ranges of the five design variable problem along with other 

variables fixed at the baseline values. In the simplified problem, the stability derivative related 

constraints are dropped because the tail size is kept unchanged at the baseline value. The list of 

constraints used in the simplified problem is marked out of the 68 constraints in Table 2.2. The 

primary reason for the simplification was to avoid an excessive amount of computation when 

building response surface models for high dimensional problems. In addition, using the 

simplified problem reduced the problem of modeling deficiency of lower order polynomials. 

However, the simplification does not necessarily mean that the current study of the simulation 

error is restricted to low dimensional problems. 

 

2.2 Analysis Methods and Tools 
 
2.2.1 Aerodynamic Analysis 

 

Variable complexity modeling (VCM) [49], [50], [56] combines lower and higher fidelity 

analysis codes to alleviate the computational burden of using high-fidelity codes exclusively in 

design optimization. The HSCT code adopted the VCM approach; there are a series of analysis 

codes of different fidelity levels intended for the same job.  For example, three methods are 

available for supersonic wave drag calculation: a modified version of Eminton’s code of low 

fidelity [68], Harris’s wave drag code of mid-fidelity [69], and Euler CFD analysis of high-

fidelity [4]. For the drag due to lift calculation, the analytic method by Cohen and Friedman [70] 

of low fidelity, and a supersonic panel program ([56], pp. 41-49) of mid-fidelity based on 

Carlson’s Mach box method with attainable leading edge thrust concept [53], [54], are available. 

For supersonic skin friction drag, an algebraic method was used [71], [72]. 
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2.2.2 Weight and Structural Analysis 

 

The takeoff gross weight of the HSCT is estimated using weight equations from the 

Flight Optimization System (FLOPS) program based on historical data. However, a study by 

Huang [73] found that the FLOPS weight equations are inaccurate for HSCT type aircraft, for 

which few historical data are available, particularly in estimating the wing bending material 

weight (Wb) as a function of the wing planform shape. Consequently structural optimization was 

adopted to obtain more accurate Wb by Balabanov et al. [8]. GENESIS [52] structural 

optimization software by VR&D was used with a finite element (FE) model. The structural 

optimization is a sub-optimization for the system level configuration design. In practice, the 

structural optimizations are performed a priori for many aircraft configurations and a response 

surface model of Wb was constructed as a function of the configuration design variables. 
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Table 2.1: Twenty-nine configuration design variables for HSCT. 
Number Name of design variables 

Planform Variables 
1 Wing root chord, croot 
2 LE break point, x,  LEbx 
3 LE break point, y,  LEby 
4 TE break point, x,  TEbx 

5 TE break point, y,  TEby 
6 LE wing tip, x, LEtx 
7 Wing tip chord, ctip 
8 Wing semi span, b/2 

Airfoil Variables 
9 Location of max. thickness, (x/c)max-t 
10 LE radius, RLE 
11 Thickness to chord ratio at root, (t/c)root 
12 Thickness to chord ratio LE break, (t/c)break 
13 Thickness to chord ratio at tip, (t/c)tip 

Fuselage Variables 
14 Fuselage restraint 1 location, xfus1 
15 Fuselage restraint 1 radius, rfus1 
16 Fuselage restraint 2 location, xfus2 
17 Fuselage restraint 2 radius, rfus2 
18 Fuselage restraint 3 location, xfus3 
19 Fuselage restraint 3 radius, rfus3 
20 Fuselage restraint 4 location, xfus4 
21 Fuselage restraint 4 radius, rfus4 

Nacelle, Mission, and Empennage Variables 
22 Inboard nacelle location, ynacelle 
23 Distance between nacelles, ∆ynacelle 
24 Fuel weight, Wfuel 
25 Starting cruise altitude 
26 Cruise climb rate 
27 Vertical tail area 
28 Horizontal tail area 
29 Engine thrust 
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Table 2.2: Constraints for the HSCT design. 

Number Constraint Description Used in the five 
variable problem 

1 Range ≥ 5500 n.mile √ 
2 Required CL at landing speed ≤ 1 √ 

3-20 Section Cl ≤ 2 √ 
21 Landing angle of attack ≤ 12°  
22 Fuel volume ≤ half of wing volume √ 
23 Spike prevention √ 

24-41 Wing chord ≥ 7.0 ft. √ 
42-43 No engine scrape at landing α  
44-45 No engine scrape at landing α, with 5° roll  

46 No wing tip scrape at landing  
47 Rudder deflection for crosswind landing ≤ 22.5°  
48 Bank angle for crosswind landing ≤ 5°  
49 Takeoff rotation to occur ≤ 5 sec  
50 Tail deflection for approach trim ≤ 22.5°  
51 Wing root T.E. ≤ horizontal tail L.E.  
52 Balanced field length ≤ 11000 ft.  
53 TE break scrape at landing with 5° roll  
54 LE break ≤ semi span √ 
55 TE break ≤ semi span  

56-58 (t/c)root, (t/c)break, and (t/c)tip ≥ 1.5%  
59 Xfus1  ≥ 5 ft.  
60 Xfus2 - Xfus1 ≥ 10 ft.  
61 Xfus3 - Xfus2 ≥ 10 ft.  
62 Xfus4 - Xfus3 ≥ 10 ft.  
63 300 ft - Xfus4 ≥ 10 ft.  
64 Ynacelle ≥ side of fuselage  
65 ∆Ynacelle ≥ 0  
66 Engine-out limit  

67-68 Maximum thrust required ≤ available thrust  
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Table 2.3: The simplified version of the HSCT design with five configuration variables. 

HSCT configuration design variable 
(Total 29 variables) 

Values and Ranges 
for the five variable 

problem 

Used for the five 
variable problem 

Planform Variables 
Root chord, croot 150-190 ft. v1 
Tip chord, ctip 7-13 ft. v2 

Wing semi span, b/2 74 ft.  
Length of inboard LE, sILE 132 ft.  

Inboard LE sweep, ΛILE 67o– 76o  v3 
Outboard le sweep, ΛOLE 25o  

Length of inboard TE, sITE Straight TE  
Inboard TE sweep, ΛITE Straight TE  

Airfoil Variables 
Location of max. thickness, (x/c)max-t 40%  

LE radius, RLE 2.5  
Thickness to chord ratio at root, (t/c)root 1.5-2.7% v4 

Thickness to chord ratio LE break, (t/c)break (t/c)break = (t/c)root  
Thickness to chord ratio at tip, (t/c)tip (t/c)tip = (t/c)root  

Fuselage Variables 
Fuselage restraint 1 location, xfus1 50 ft.  
Fuselage restraint 1 radius, rfus1 5.2 ft.  

Fuselage restraint 2 location, xfus2 100 ft.  
Fuselage restraint 2 radius, rfus2 5.7 ft.  

Fuselage restraint 3 location, xfus3 200 ft.  
Fuselage restraint 3 radius, rfus3 5.9 ft.  

Fuselage restraint 4 location, xfus4 250 ft.  
Fuselage restraint 4 radius, rfus4 5.5 ft.  

Nacelle, Mission, and Empennage Variables 
Inboard nacelle location, ynacelle 20 ft.  

Distance between nacelles, ∆ynacelle 6 ft.  
Fuel weight, Wfuel 350000-450000 lb. v5 

Starting cruise altitude 65000 ft.  
Cruise climb rate 100 ft./min.  
Vertical tail area 548 ft.2  

Horizontal tail area 800 ft.2  
Engine thrust 39000 lb.  
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Figure 2.1: Design variables of the 29 variable HSCT design. 
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Figure 2.2: Design variables of the five variable HSCT design. 
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Chapter 3  Examples of Simulation Errors in 

HSCT Design 
 

Errors can occur in many different phases in computational simulations. Oberkampf et al. 

[33], [34] defined six phases of computational simulations to categorize many error sources: 

conceptual modeling, mathematical modeling, programming activities, discretization and 

algorithm selection, numerical solution, and solution presentation. In the current study, we will 

focus on discretization error and numerical solution error. In this chapter, two computational 

simulations, supersonic aerodynamics and structural optimization, in the HSCT code will be 

presented along with description of their error characteristics. 

 
3.1 Supersonic Aerodynamic Analysis Using WINGDES 
 

A supersonic panel method [54] known as a Mach box method is used in the HSCT code. 

WINGDES [53] is a subsonic/supersonic wing analysis and design code based on linearized 

potential theory and the attainable leading edge suction concept. WINGDES is used to calculate 

optimal camber distribution for the structural optimization of HSCT. For a thin wing lying in the 

plane of z = 0, the linearized potential equation is written as  
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where φ is the perturbation velocity potential, 12 −= ∞Mβ , and zc is the z coordinate of the 

camber line including the angle of attack. The solution of Eq. 3.1 is given in [74] as  
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where the integral region τ is the area included by the forward Mach cone from (x, y). Note that 

the Cauchy principal value theorem is used for singular points (see Ref. [75]) in the area integral. 

To replace Eq. 3.2 by a numerical summation, a rectangular grid system is used as shown 

in Figure 3.1, taken from Ref. [54]. The panel size is decided by the number of spanwise panels 

in the wing half span, ny, because the number of chordwise panels, nx, is proportional to ny since 

the aspect ratio of the panels is fixed such that ∆x = β∆y, or 

 

2/b

nL
n y

x β
≈ ,      (3.3) 

 

where L is the chordwise distance from the front-most leading edge and the rear-most trailing 

edge of the wing planform, and b is the wing span. In practice, more panels are used than 

illustrated in Figure 3.1, and ny is 40 by default in the HSCT code.  

The integral region for point (x, y) is shown as the shaded region in Figure 3.1. Because 

the solution at (x, y) depends on only the upstream region, ∆Cp can be calculated sequentially 

from the apex of the wing leading edge. When mesh halving is used by doubling ny, the number 

of panels for WINGDES is increased by four times (= 22). Because ∆Cp is calculated for each of 

the panels by considering the effect of the panels in the zone of dependence, the computational 

time is expected to increase by 16 (= 24) times. Table 3.1 lists CPU times per WINGDES run on 

a SGI Origin 2000 workstation. For the default panel system with ny = 40, the computational cost 

is negligible. However, the cost increased rapidly, and the CPU time was increased by 12.0, 15.3, 

and 18.0 times by successive mesh halving, and takes more than 16 minutes for ny = 320.  

It was reported that the results of the Mach box method are noisy with respect to the wing 

planform change of an HSCT [67], because the non-body fitted rectangular grid system caused 

non-smooth changes of the analysis panel model. WINGDES was used to calculate the lift 

coefficient (CL) of the HSCT by considering only the wing. Figure 3.2 shows the calculated CL at 

M = 2.4 with an angle of attack of 0.04 radian (≈ 2.292 deg.), as the wing tip chord (v2 of the five 

variable problem) changes from 7 through 13 ft. with other variables being fixed at the reference 

values. Due to the computational cost, only 21 data points are used for ny = 320 in Figure 3.2, 
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while we computed 101 data points for ny = 40, 80, 160. Here, CL is from the pure panel solution 

without considering the effects of leading edge thrust. That is because we are interested in the 

error of the panel solution itself, while the leading edge thrust calculation in WINGDES uses 

only the leading edge region of the panel solution and involves several empirical smoothing 

routines.  

For the default panel of ny = 40, systematic discretization error was substantial while 

noise error was also present. Due to the systematic discretization error, CL was increased by 

about 0.001 (1.5%) from ny = 40 to ny = 320. The noise error was rapidly reduced when the panel 

system was refined by mesh halving such as ny = 80, 160, and 320. Compared to the noise error 

that is about 0.0001 (0.15%), the systematic discretization error is the main concern. From Figure 

3.2, both types of error are seen to decrease, as the panels are refined, although the convergence 

of the systematic error is slow. 

 

 

3.2 Structural Optimization 
 

A structural optimization procedure based on a finite element (FE) model is used to 

calculate the wing structural weight of the HSCT. The FE model developed by Balabanov [7], 

[8] used 40 design variables (see Figure 3.3), including 26 variables to control skin panel 

thickness, 12 variables to control spar cap areas, and two for the rib cap areas. Five load cases 

are considered for the structural optimization (Table 3.2). The loads applied to the structural FE 

model are composed of the aerodynamic and inertia forces. Inertia loads represent the combined 

effects of non-structural and structural weight. The HSCT code calculates aerodynamic loads for 

each of the load cases. A mesh generator by Balabanov [55] calculates the applied load at the 

structural nodes, and creates the input for GENESIS. The structural optimization is performed 

for each aircraft configuration. The objective function is the total wing structural weight (Ws) and 

wing bending material weight (Wb) is assumed to be 70% of Ws. In previous papers [45], [47], 

we calculated Wb by considering the skin elements that are not at minimum gauge. However, this 

procedure caused an additional noise error besides the error due to incomplete optimization, 
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which is our main concern in the paper. So, in this work we used the objective function itself, Ws 

instead of Wb, to characterize the error. 

The main concern of this study is the error of the structural optimization. Ws from the 

structural optimization contained substantial noise. Figure 3.4 shows Ws results for 21 HSCT 

configurations generated by linear interpolation between two extreme points in the HSCT design 

space. Design 1 corresponds to (1, –1, 1, –1, 1) and design 21 corresponds to (-1, 1, -1, 1, -1) in a 

coded form of the HSCT configuration variables. The original results are noisy and two data 

points lie well outside the trend. They are called statistical outliers. There were efforts [7] to 

reduce the noise error by changing the optimization algorithm or by improving the calculation of 

the optimal airfoil camber from WINGDES [7], [55]. However, substantial noise error still 

remained and the response surface technique was used to smooth the noise in the structural 

optimization data. When a standard least squares fit is used, a few outliers such as those in 

Figure 3.4 may have a large effect on the response surface approximations. We found that 

incomplete convergence of the optimization procedure was the main source of the noise [59]. 

Redoing the optimization runs using tightened convergence criteria successfully repaired the 

noisy results as seen in Figure 3.4. The details of this process will be discussed in Chapter 9. 
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Table 3.1: Computational time for supersonic aerodynamic analysis of HSCT using WINGDES 
according to panel step sizes. 

Number of spanwise panels in 
half span, ny 

CPU time per WINGDES run on a 
SGI Origin 2000, (seconds) 

40 0.3 
80 3.6 
160 55.0 
320 989.2 

 

 

Table 3.2: Load cases for the structural optimization of HSCT. 
Load Case Mach number Load factor Altitude (ft.) Fuel 

High speed cruise 2.4 1.0 63175 50% 
Transonic climb 1.2 1.0 29670 90% 

Low-speed pull-up 0.6 2.5 10000 95% 
High-speed pull-up 2.4 2.5 56949 80% 

Taxiing 0.0 1.5 0 100% 
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Figure 3.1: Panel system of WINGDES (from Ref. [54]). 

In this illustration, the number of spanwise panels in half span, ny, is 4, and the number of 
chordwise panel, nx, is 10. The aspect ratio of the panels is fixed for supersonic calculations 
because ∆x = β∆y.  
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Figure 3.2: Variation of lift coefficient, CL, with wing tip chord for various panel sizes (M = 2.4, 

α = 2.292°). 
The panels are refined both in spanwise and chordwise directions (see Eq. 3.3). It is clear that the 
numerical noise decays rapidly with increased number of panels. The systematic discretization 
error is substantially larger than the noise error. 
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Figure 3.3: Typical FE mesh for the structural optimizations. 

It shows six spar groups and thirteen skin groups for the upper surface. Each group is controlled 
by a design variable of the structural optimization. 
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Figure 3.4: Noisy results from HSCT structural optimization and repaired results using tightened 

convergence criteria. 
Structural optimizations are performed for 21 HSCT configurations generated by linear 
interpolation between two extreme points in the five variable HSCT problem. Design 1 
corresponds to (1, –1, 1, –1, 1) and design 21 corresponds to (-1, 1, -1, 1, -1) in a coded form of 
the HSCT configuration variables. 
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Chapter 4  Response Surface Methodology 
 

Response surface methodology (RSM) [41] is a branch of statistics used to study the 

effects of independent variables on a dependent variable, called the response. Design of 

experiments (DOE), analysis of variance (ANOVA), and regression analysis are the main 

elements of RSM. Typically, the independent variables are assumed to be non-random and under 

control of the experimenter, while the response is a random variable. 

Response surface (RS) techniques have gained popularity in the application of 

multidisciplinary design optimization due to their multiple merits. First, the disciplinary analysis 

code is run a priori to build a database, and can be separated from the optimizer. Thus, code 

integration problems due to proprietary codes are avoided by using RS approximations. Second, 

the database building process is well suited for use in a parallel computing environment. Third, 

the RS fit replaces the analysis code by a simple algebraic expression. Low order polynomials of 

the RS fit take very little computation time compared to analysis programs such as FEA and 

CFD. The RS surrogate models can be used very effectively in optimization or evaluation of 

design uncertainty. Lastly, the RS fit naturally filters out the high frequency noise typical with 

high-fidelity simulations. 

 

4.1 Design of Experiments 
 
Design of experiments (DOE) provides methods to select the combinations of 

independent variables for which experiments will be performed to build a database ([41], pp.79-

133). The experimenter wants to find an experimental design that is not only effective in that it 

captures all important relationships between the independent and response variables, but also 

efficient in that it requires a minimal number of experiments. In design optimization studies, the 

response variable may be the objective function or one of the constraints, and the response 

variable is modeled as a function of the design variables. The design variables are the 

independent variables in the DOE and have lower and upper bounds that constitute a hypercube 
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in which the optimum design is sought. Typically, each design variable is scaled such that it has 

the range of  [–1, +1] in standard DOE software to avoid numerical error in the calculation. 

One natural choice for the experimental design is to use all the vertices of the hypercube 

to cover all of the m-dimensional design space (m is the number of independent design 

variables). It is called the full factorial design (FF) of level two (-1 and +1), to which usually a 

linear polynomial model is fit. To use higher order polynomial models, the level of the 

experimental design is increased. If the midpoint of each variable is added to the lower and upper 

level, we have a full factorial design of level three to which a quadratic polynomial model can be 

fit. One problem associated with the full factorial design is that the number of experiments 

(computational simulations) increases rapidly as the number of design variables increases. In 

general, the full factorial design of level l requires lm data points, or experiments. For example, 

three level full factorial design for a 10 variable problem requires 310 = 59049 experiments. This 

is prohibitively large unless experiments take very little time and cost. This problem is known as 

the curse of dimensionality. There are alternatives to the full factorial design that require a 

smaller number of points, such as face centered central composite design (FCCC) and D-optimal 

design. See Appendix A for a description of the experimental designs. 

Originally RS techniques have been developed to fit experimental data from agricultural 

research. During the last decade, the RS techniques have gained popularity as surrogate models 

for computational simulations. Certain modifications are desirable in DOE for computational 

simulations. For example, use of replicates of design points is common in experimental studies, 

while it is not recommended in computational simulation where the results are deterministic in 

that the output (response) is the same with respect to the same input (independent variables). 

However, numerical simulations can be very sensitive to nominal changes of input or may 

produce different results depending on computer platforms. Therefore, it would be valid to say 

that computer simulations are not perfectly deterministic.  

 

4.2 Least Squares Fit 
 
Least squares (LS) fit is the standard way to fit a RS model equation to the data generated 

by the DOE approach. In engineering applications a quadratic model is often used for the RS fit. 

With n data points, the quadratic model for m independent variables is written as 
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where yi is the i-th observation of the response variable, xji is the j-th independent variable of the 

i-th observation, β’s are the model coefficients to be estimated, and εi is the random error 

assumed to have zero mean and constant variance σ2. In a matrix form, the linear regression 

model is 

 

εβ += Xy       (4.2) 
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Note that for the quadratic model, there are p = (m+1)(m+2)/2 parameters. X is an n×p matrix of 

the shape functions (monomials from the quadratic model) called the design matrix, ε is an n-

vector of noise error, and β is a p-vector of regression coefficients. For standard least squares, 

estimates of the expected value of y are calculated as 

 

,)(ˆˆ 1 yy TT XXXXX −== β      (4.3) 

 

and the residual error er is the difference between the actual data and the fit, 

 

.ŷyer −=       (4.4) 
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The root mean square error (RMSE), the unbiased estimate of σ, is 
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4.3 Analysis of Variance 
 
Techniques of analysis of variance (ANOVA) ([41], pp. 28-32) are similar to the 

sensitivity study of the response variables with respect to the independent variables. Many of the 

statistical procedures in response surface methodology depend on the relationship between the 

total and regression (model) sums of squares ([76], pp. 22-23). The relationship is  
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i.e., 

 
residualmodeltotal SSSSSS += .     (4.7) 

 
Equation 4.7 represents the following conceptual identity, 
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In this way, the usefulness of the regression model can be examined. The coefficient of 

the multiple determination R2 is defined as  
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R2 represents the proportion of variation in the response data that is explained by the model. 

From Eq. 4.6, we see that 0 ≤ R2 ≤ 1. One would expect a large value of R2 for a good RS model. 

However, a large value of R2 does not necessarily imply the regression model is a good one 

because adding variables to the RS model always increases R2 ([41], pp. 30-31). In addition, an 

acceptable R2 value may depend on the nature of the sample data such as accuracy or 

randomness ([76], pp. 37-39).  

ANOVA is also the basis of the variable selection scheme. Influential variables may be 

identified by analyzing the portion of the systematic variability of the response due to the change 

of each independent variable. Conversely, weak variables may be identified and removed from 

further analysis. A measure of the uncertainty of the regression coefficients is the partial t-test, 
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The t-statistic is essentially the ratio of the estimated coefficient to its standard error. Hence, 

coefficients with small t were not accurately estimated, and they are candidates to be removed 

from the model.  

 
4.4 Noise of Simulation Data and RS Fit 
 

Most computer simulations are deterministic unless pseudo random numbers are used. In 

terms of the response surface model of Eq. 4.2, it corresponds to that the data has a negligible 

random variability, i.e., ε ≈ 0. However, many computational simulation programs result in noisy 

results due to discretization of continuums, truncation error, round-off error, or incomplete 

convergence of iterative methods. 

When the simulation data is noisy, the response surface fit is expected to smooth out the 

noise and to find the true response. If the regression model (Eq. 4.2) is true, the residual error is 

due to random noise error. As a result, the root mean squares error, σ̂ , is a good estimate of the 

magnitude of the noise from the simulation. When the response surface model in Eq. 4.2 is not 

perfect as in many applications, RMSE is a sum of the noise error and the modeling error of the 

polynomial model. 
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Chapter 5  Probabilistic Modeling of Simulation 

Errors 
 

Practices of robust design classify the design variables into control variables and random 

variables [16]. The control variables are assumed to be under control of the engineers and non-

random, while the random variables have intrinsic variability. Usually the random variables are 

modeled via probability distributions, and the robust design approach seeks the set of control 

variables to minimize the risk due to variations of the random variables.  

Sometimes simulation errors are modeled as probability distributions for deterministic 

computer simulations. Probabilistic modeling of simulation errors may be based on the typical 

magnitude of errors of the computational simulation [77]. It might be justified by the fact that 

when one picks a design point randomly in the design space, the error is randomized due to the 

random sampling.  However, the probabilistic model is often used without any justification of the 

model based on data, by simply assuming that the error is following a distribution such as 

uniform, Gaussian, etc. For a better model of the simulation error, systematic examination of the 

error characteristics is necessary.  

 

5.1 Overview of Probabilistic Modeling of Errors 
 

Probabilistic models are more realistic for noise error than systematic error. Once the 

distribution of the simulation error is found, detailed information on the error can be obtained. 

Simulation and modeling theory [61], [62] provides techniques to find the distribution of 

simulation error from sample data. Our goal is to model the simulation error via probability 

distribution functions. The procedure can be summarized in four steps.  
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Step 1: Examine the sample data 

 

Do an exploratory examination of the sample data. Simple graphical tools such as a 

histogram or box plot can be useful [78] to observe the characteristics of the error. 

Possible questions are: 1) Is the error discrete or continuous? 2) Is the error systematic or 

noisy? 3) Is the error symmetric about the mean? 4) What is the typical magnitude of 

error? 5) Is the error homogeneous over the design space? 6) Are there any unusual data 

points of extremely large error? 7) Is the Gaussian model reasonable?  

 

Step 2: Select candidate model distributions 

 

According to the examination of Step 1, select a few candidate distributions that seem to 

fit the sample data well. In some cases, theories behind the sample data may suggest a 

certain model distribution. 

 

Step 3: Fit the model distribution to the sample data 

 

Usually a model distribution has one or more parameters to be estimated to fix the 

specific distribution from a distribution family. The model distribution is fitted to the 

sample data by finding the parameters that fit the data best. 

  

Step 4: Check how good the fit is 

 

The fitted distribution should be compared with the data to check the quality of fit. A few 

goodness-of-fit tests are available.  
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5.2 Model Distribution Functions 
 

Simulation and modeling theory provides various model distribution functions to be used 

as candidates for simulation errors [61], [62], [63]. Table 5.1 describes three distributions we 

have considered: Gaussian, exponential, and Weibull distributions. The Gaussian distribution is a 

symmetric bell shaped distribution that is very often used to model random variability. It is the 

distribution behind linear theory of statistics and has many appealing theoretical properties. The 

exponential and Weibull distributions are defined for nonnegative random variables and 

therefore are one-sided. For certain cases, the simulation error is expected to be nonnegative, and 

the one-sided model distributions are expected to work better than symmetric ones.  

Model distribution functions usually have a few parameters that define the distribution. 

For example, the Gaussian distribution has mean µ and standard deviation σ as parameters. 

Figure 5.1 shows the probability density function (PDF) of the Gaussian distribution for different 

standard deviations σ. The exponential distribution has only one free parameter β. The Weibull 

distribution has two parameters, the shape parameter α, and the scale parameter β. Figure 5.2 

shows the PDF of the Weibull distribution for various shape parameters α. Note that the Weibull 

distribution reduces to the exponential distribution when α = 1. One common application of the 

exponential and Weibull models is for modeling of time to failure [62]. See Appendix B for the 

interpretation of the Weibull distribution based on the concept of failure rate.  

 

5.3 Maximum Likelihood Estimate of Model Distribution 
 

We use maximum likelihood estimation (MLE) ([61], pp. 188-192) to fit the distribution 

to optimization error data. Let x be a random variable whose probability density function (PDF) 

f(x; β) is characterized by a single parameter β. Assuming that the sampled data xi (i = 1,…, n) 

are independently and identically distributed, the probability that the sample of size n consists of 

values in the small intervals, xi ≤ x ≤ xi+∆x, is given by the product 
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The xi ’s are fixed at the sample values, and l(β) is called the likelihood function: 
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For example, when f(x; β) is the exponential distribution function, 
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MLE seeks the parameter ß that maximizes the likelihood function, or equivalently its logarithm. 

For example, the log likelihood function of the exponential distribution is 
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From ( )( ) ( ) 0/log =∂∂ βl , the MLE solution can be shown to be the mean of the data. However, 

for more general distributions MLE may require the solution of a system of nonlinear equations. 

 

 

5.4 χ2 Goodness-of-Fit Test 
 

Once we get the MLE of the parameters, we check whether the data is consistent with our 

trial distribution with the χ2 (Chi-square) goodness-of-fit test ([61], pp. 192-198). To compute 

the χ2 test statistic, we subdivide the entire range of the fitted distribution into k adjacent 

intervals. For sample size n, the test statistic is calculated as 
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where Nj is the observed frequency in the j-th interval. pj is the expected probability of the j-th 

interval from the fitted distribution, and then npj is the expected frequency in the j-th interval. If 

the fit is good, (Nj - npj) will be small, and the test statistic χ2 will also be small. Therefore, a 

large value of the χ2statistic indicates that the data is inconsistent with the fitted distribution. The 

largeness of the test statistic is usually measured by comparing it to the χ2distribution with (k-1-

m) degrees of freedom (m is the number of parameters in the distribution) to which it will belong 

as n goes to infinity. This comparison is given in terms of a p-value, which is defined as the 

probability that the test statistic is greater than the calculated value when the fitted distribution is 

true. A p-value near one implies a good fit and a small chance that the data is inconsistent with 

the distribution. Conversely, a small p-value implies a poor fit and a high chance that the data is 

inconsistent with the distribution. 

 

5.5 Probability Plot 
 

For a sample of size n, xi (i = 1, …, n), an approximate cumulative distribution function 

can be constructed. First, the sample data is sorted in ascending order and x(i) denotes the i-th 

smallest data. Since the cumulative distribution function (CDF) F(x(i)) is defined as Prob(x ≤ x(i)), 

the empirical cumulative distribution function (ECDF) ([61], pp.181-183) is expressed as 

 

Fn(x(i)) = i/n.      (5.6) 

 

Obviously, i/n is an estimate of Prob(x ≤ x(i)) from the sample data. It is known that Fn(x(i)) 

converges to the CDF F(x) from which the xi’s are taken as the sample size increases to infinity. 

In practice, a slight modification is done for Eq. 5.6 to avoid the problem of making Fn = 1 for a 

finite x(n), 

 

Fn(x(i)) = (i-0.5)/n.      (5.7) 
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The probability plot ([61], pp. 181-188) compares the ECDF of a sample with the CDF of 

an assumed distribution. There are several kinds of probability plots. Here we discuss only one 

type, called a Quantile-Quantile plot (Q-Q plot). A quantile of order q is defined as F-1(q), where 

F-1 is the inverse function of CDF F(x); it is the value of x for which the cumulative density of x 

is q. For a Q-Q plot, the following n points are plotted, 

 

(F-1((i-0.5)/n), x(i))    (i = 1,…,n),    (5.8) 

 

which are pairs of the quantile of CDF and the corresponding quantile ECDF. If the assumed 

CDF is true, we expect that the pairs of the quantiles are the same for a large sample. Therefore, 

when we compare the sample data and the fitted distribution via MLE, we expect that the Q-Q 

plot will be close to a straight line of unit slope passing the origin if the fit is good. Any 

systematic deviation from the reference line indicates that the fit is not good. 

 

5.6 Indirect Fit of Error Distribution using Differences of 

Simulation Results 
 

Our objective is to find a probability distribution of error from a lower fidelity 

simulation. When MLE (see Section 5.3) is used to fit the error distribution, it is usually 

necessary to run higher fidelity runs to estimate the error of the lower fidelity runs. However, the 

high-fidelity method may be too expensive computationally, or sometimes high-fidelity 

simulations are not available. In these situations, we may be able to find the error distributions by 

fitting the differences between two results from different sets of program control parameters. 

Examples of program control parameters can be convergence criteria of iterative methods or 

initial design points in optimization. 

Assume that we have simulation results with two different sets of program control 

parameters. We denote the simulation results by y1 and y2 according to the program control 

settings used. The unknown true solution is common for y1 and y2, and will be denoted by yt. 
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Then the simulation errors with control parameters setting #1 and setting # 2 can be represented 

as random variables, s and t, respectively: 
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For example, if the error data follows the exponential distribution, s and t have the 

following probability distribution functions 
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The difference between the pair of y1 and y2 is equal to the difference between the errors, because 

the true solution yt is the same. That is,  

 

x = s - t = (y1 - yt) - (y2- yt)  = y1 - y2.     (5.11) 

 

The probability density of the differences of simulation results (in short, simulation differences) 

can be obtained as a convolution of the joint distribution [79] of g(s) and h(t), provided that s and 

t are independent each other: 
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This is a continuous distribution of the simulation difference x ∈ (-∞, ∞). Now we can fit the 

simulation difference, x, to the model function Eq. 5.12 via MLE. In the maximum likelihood 

approach we find parameters β1 and β2 that maximize the likelihood function 
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where f is defined in Eq. 5.12. This is an unconstrained optimization problem in two variables. 

Equivalently we can maximize the log likelihood function, 
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Table 5.1: Examples of model functions for continuous distribution. 
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Figure 5.1: Probability density functions for Gaussian with µ = 0 and various σ. 
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Figure 5.2: Probability density functions for Weibull with β = 1 and various α. 
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Chapter 6  Robust Regression Techniques and 

Outlier Detection 
 

The least squares fit in standard response surface methodology is not robust. If the 

database for the response surface fit contains simulation results with large errors, the least 

squares fit can be greatly affected by the bad data points. The objective of robust statistics [64], 

[65] is to provide alternative estimation techniques when standard assumptions for the model are 

not valid. For example, in multiple linear regression, the random error is assumed to have a 

constant variance with zero mean. Robust regression techniques are designed to give a 

reasonable fit when the error distribution is not homogeneous, and give estimates as good as the 

least squares fit when the error distribution is ideal. Also, robust regression techniques provide 

protection against outliers [43], [65], data points out of the main trend. It gives a robust fit for the 

data contaminated with outliers (bad simulation results) and enables us to identify those outliers, 

which may lead to further investigation of the cause of the error. 

 

6.1 Iteratively Reweighted Least Squares 
 

Among several robust regression methods we will discuss the M-estimator (maximum 

likelihood type) [64], [65]. It can be shown that the MLE is an M-estimator. For a more robust 

estimate of ß, we minimize a measure of the residuals ri: 
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Here, ρ is a function of the residual scaled by s, a known estimate of the standard deviation of ε. 

For example, in the case of the familiar least squares method, ρ(ξ) = ξ 2/2. A necessary condition 

for a minimum is 
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The ψ function is defined as the derivative of ρ 
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Then, a necessary condition for a minimum becomes 
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To write Eq. 6.4 in a form of weighted least squares, we define the weighting function as 
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Now, with r = (r1, …, rn)T, Eq. 6.4 becomes 
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Note that for ordinary least squares ψ(ξ) = ξ and w(ξ) = 1. 

For ordinary least squares, Eq. 6.6 is a linear equation for the coefficient vector β̂  

through the scaled residual r. However, in general Eq. 6.6 is a system of nonlinear equations, and 

iterative methods are required to obtain the solution. The most popular approach is iteratively 

reweighted least squares (IRLS), which is attributed to Beaton and Tukey [66]. Using the 

definition of residual in Eq. 6.1, the necessary condition of Eq. 6.6 is written as 

 

,)(ˆ)( yrr WXXWX TT =β     (6.7) 

 

which can be expressed as an iterative formula 
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Several possible weighting functions summarized in Table 6.1 and Figure 6.1, were 

considered here. We preferred Beaton and Tukey’s biweight function [66] to Huber’s minimax 

[80] because it gives zero weighting to the outliers and thus the outliers are distinctly identified 

(see Figure 6.1). s is calculated as |)ˆ(|5.1 ii
Xmedian β−y  as recommended by Myers [76]. The 

other function in Table 6.1, labeled as NIRLS, will be discussed later in Section 6.2. B in Table 

6.1 is a tuning constant depending on the characteristics of the error distribution. Myers [76] 

suggested limiting the tuning constant to a range of one to three. The shape of the weighting 

functions in Figure 6.1 clearly shows that they penalize outliers with zero or low weighting while 

giving a weighting of one or near one to inliers.  

Equation 6.9 is not guaranteed to converge to the global minimum of e( β̂ ). Because the 

IRLS results depend on the initial guess for the regressor coefficients, β̂ , we need a good initial 

guess of β̂ . With a non-redescending ψ function (Figure 6.2) like Huber’s minimax, Birch [81] 

proved that Eq. 6.9 is globally convergent to a unique solution, the global minimum of e( β̂ ). 

Therefore, to get the initial estimates of the regressor coefficients β̂ , we adopted Huber’s 

minimax function. Then the IRLS procedure using the biweight function was continued using 

these initial coefficients. The IRLS procedure with Huber’s minimax function converged faster; 

it took about 20 iterations for convergence while using the biweight required about 100 iterations 

for the data from structural optimization of the HSCT. 

The IRLS procedure is demonstrated for a one-dimensional example in Figure 6.3. The 

eleven data points were generated by adding some artificial errors to the true response of y = 0.8 

- 0.7x + 0.25x2. Two data points at x = 0.5 and 0.9 have particularly large errors and may be 
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called outliers. The least squares fit is distracted by the outliers and over-predicts the response. 

Robust regression techniques are expected to give a better fit than the least squares fit. The IRLS 

procedure using the biweight function is applied. The IRLS fit is seen to give a better prediction 

by giving zero weighting and effectively excluding the outliers from the fit. Note that outliers are 

identified by the IRLS procedure. In practice, we may want to investigate the cause of the 

outliers and efforts to repair them may be desirable. 

 

6.2 Nonsymmetric IRLS (NIRLS) 
 

Now we consider the NIRLS entry in Table 6.1. The usual IRLS procedure assumes 

symmetry of the error with zero mean error. However, for optimization data, the scaled residual 

ri is mostly positive for outliers (see Eq. 6.1), because they are caused by the failure of the 

optimization while seeking a minimum. For unconstrained optimization, any failure of 

optimization procedure will produce an optimum with one-sided error. Also, some of constrained 

optimization algorithms seek the optimum in feasible region, and premature convergence of 

optimization will produce one-sided error except that the optimizer cannot find a feasible design.  

To account for the skewed error in the outliers, we devised a nonsymmetric weighting 

function by combining the biweight and Huber’s weighting function, and labeled it as the NIRLS 

(nonsymmetric IRLS) weighting function. For the NIRLS weighting function shown in Figure 

6.1, data points with negative residuals are down-weighted according to Huber’s function, 

whereas points with positive residuals are down-weighted by the biweight function. In this way, 

NIRLS down-weights points with positive residual error more severely. NIRLS has been 

successfully applied to noisy data from structural optimization of the HSCT [47], and to low 

fidelity optimization data of cracked composite panels [82]. We will demonstrate the advantage 

of the nonsymmetric weighting function on the Rosenbrock test problem in Chapter 8 and 

structural optimization of the HSCT in Chapter 10. 

IRLS/NIRLS techniques effectively remove outliers from the fit by downweighting them. 

However, when only a few data points are used in a response surface fit due to consideration of 

computational cost, excluding outliers may be undesirable because it may lead to poor 

predictions where the outliers are located. Therefore, a better strategy is to repair the detected 

outliers by performing higher fidelity simulation runs if practical [46]. If the high-fidelity runs 
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are much more expensive than the lower fidelity runs, repairing only the outliers detected by 

IRLS/NIRLS may have a computational advantage over performing high-fidelity runs for all the 

runs. The general IRLS/NIRLS procedure described in this section is summarized in Figure 6.4.
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Table 6.1: Weighting functions of M-estimator. 
Name W(r) Range Tuning Constant 

Huber’s minimax [80] 
1 

H r -1 

r ≤ H 

r > H 
H = 1.0 

Beaton and Tukey’s 

biweight [66] 

(1-(r/B)2)2 

0 

r ≤ B 

r > B 
B = 1.0 or 1.9 

NIRLS 

H r -1 

1 

(1-(r/B)2)2 

0 

r ≤  -H 

-H < r ≤ 0 

0 < r ≤ B 

r > B 

H = 1.0 

B = 1.0 or 1.9 
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Figure 6.1: Various weighting functions of the M-estimator. 
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Figure 6.2: The corresponding ψ functions of the M-estimator. 



Chapter 6. Robust Regression Techniques and Outlier Detection                                                50 

 

 

x

y

IR
LS

w
ei

gh
tin

g

0 0.2 0.4 0.6 0.8 10.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Data
LS
IRLS
weighting

Outliers

 
Figure 6.3: One-dimensional example of outlier detection by IRLS. 
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Figure 6.4: Flow chart of the IRLS/NIRLS procedure for low fidelity optimization data. 
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Chapter 7  RS Modeling of Errors from 

Supersonic Aerodynamic Simulation 
 

 

Discretization error is fundamental to all simulations using a discretized representation of 

a continuum. In Section 3.1, we observed that the CL calculation from WINGDES had a 

systematic discretization error and low amplitude noise as well. It was seen that the noise error 

was small compared to the discretization error. Traditionally, Richardson extrapolation is used to 

get accurate estimates of the continuum solution from results on relatively coarse meshes. One 

important aspect of Richardson extrapolation is that it applies not only to solution values at mesh 

points, but also to a solution functional such as CL. However, Richardson extrapolation tends to 

magnify noise errors such as machine round-off errors and incomplete iteration errors (Ref. [9], 

p. 109-112). 

Alvin [37] applied response surface (RS) techniques to model the discretization error by 

incorporating mesh size, h, into the RS model. He showed that the RS approach effectively 

reduced discretization error in a finite element analysis of a one-dimensional bar, and it was 

noted that the RS model had computational advantage via careful use of design of experiments. 

Kammer et al. [38] used a rational polynomial function as a RS model to improve extrapolation 

results when coarser mesh results are used. We utilize their RS approaches to model the 

discretization error from WINGDES, and the RS approach will be compared to Richardson 

extrapolation. The results demonstrate again the computational advantages of the RS model for 

discretization error. Besides, we address several new aspects of the RS approach. First, we 

perform a grid convergence study for WINGDES to estimate the order of the discretization error. 

Second, the noise filtering capability of a RS fit may have an additional advantage over 

Richardson extrapolation. Third, an approach of fitting a RS model to the Richardson 

extrapolation results will be compared to the RS approach in terms of accuracy and 

computational cost. 
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7.1 Grid Convergence Study of WINGDES 
 

Figure 7.1 shows the grid convergence of CL from WINGDES for the reference HSCT 

configuration in the five design variable problem. Originally, the number of spanwise panels in 

the half span, ny, was 40. The reciprocal of ny is a measure of the mesh step size, h. Here we 

changed panel sizes widely, from a very coarse panel system of ny = 10, to 320 by increments of 

10. The panels are refined in both spanwise and chordwise directions such that the number of 

chordwise panels, nx, is proportional to ny (see Eq. 3.3). The circle symbols in Figure 7.1 

correspond to mesh halving cases, that is ny = 10, 20, 40, 80, 160, and 320. It is seen that the 

discretization error would be no greater than 0.002 for ny = 40, about 3% of CL. Because the 

theoretical convergence property of the supersonic panel method is not known, the order of error 

convergence should be estimated from the simulation results. In Richardson extrapolation, the 

discretized simulation is assumed to have error terms expressed in a polynomial of a step size h, 

 

)( 1+++= qq
h hOhyy α ,    (7.1) 

 

where yh is the discretized solution for the current value of h, y is the continuum solution, α is an 

unknown coefficient, and q is the order of the method [38]. Asymptotic error convergence is 

achieved when the higher order error term, O(hq+1), is small enough compared to the leading 

error term, αhq, and α does not change with h. 

If the error of yh is first order, i.e., q = 1, the response of yh according to step size, h, 

should be linear. Figure 7.1 indicates that the order of error convergence q is lower than one for 

CL from WINGDES because the slope of the grid convergence curve gets steeper as the mesh 

step size decreases. It is not unusual that low order panel methods show slow error convergence 

[83], [84]. If simulation results from three different step sizes are available, the order of 

convergence q can be estimated (Ref. [9], p. 131). If the mesh is refined by reducing the mesh 

size by half, using Eq. 7.1  

 

q
qq

qq

hh

hh

hh
hh

yy
yy

r 2
)4/()2/(

)2/(

4/2/

2/ =
−

−
=

−
−

= .    (7.2) 



Chapter 7. RS Modeling of Errors from Supersonic Aerodynamic Simulation                             54 

 

 

Therefore, 

 

 )2log(/)log(rq = .     (7.3) 

 

 

Table 7.1 shows estimates of q using three WINGDES results of mesh halving. It appears that 

asymptotic convergence is achieved after ny = 40 with q ≈ 0.5, and the error converges like h0.5.  

 

7.2 Higher Order Formulas using Richardson Extrapolation 
 

7.2.1 Extrapolation for h = 0 

 

Richardson extrapolation generates higher order formulas from a series of relatively 

coarse mesh results (Ref. [57], pp. 180-186). Numerical results of O(hq) can be expressed as, 

 

yh = y + α1 hq + H.O.T.,     (7.4) 

 

where H.O.T. represents higher order terms than hq. Note that the second leading error term is 

not necessarily hq+1 for CL from WINGDES because q is a non-integral number. If the mesh is 

refined by reducing the step size by half, i.e., mesh-halving, 

 

yh/2 = y + α1 (h/2)q +H.O.T.,     (7.5) 

yh/4 = y + α1 (h/4)q +H.O.T..     (7.6) 

 

A higher order formula is obtained by eliminating the leading error term, α1 hq. By subtracting 2q 

times Eq. 7.5 from Eq. 7.4,  
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where the superscript number in the parenthesis indicates that the order of the formula is higher 

than hq. By the same token, from Eq. 7.5 and Eq. 7.6, 
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Richardson extrapolation assumes that the errors are in the asymptotic convergence 

range. Caution should be taken because Richardson extrapolation will be inaccurate if the mesh 

step size is not small enough for the error to reach asymptotic convergence. Moreover, noise in 

data, typical in numerical simulations on discretized models, tends to be magnified by 

extrapolation (Ref. [9], p. 109-112). 

  

7.2.2 Extrapolation for Finite Mesh Sizes 

 

Richardson extrapolation is designed to extrapolate for y, the continuum solution. In 

practice, the continuum solutions are not known or are not calculable due to excessive 

computational cost. That makes it difficult to compare the accuracy of the extrapolation. For 

quantitative comparison of accuracy of extrapolation, Richardson extrapolation may be 

reformulated to predict results for finer, but still finite meshes. 

By solving Eq. 7.4 and Eq. 7.5 for y and α1, and substituting them into Eq. 7.6, we obtain 

a higher order formula for h/4, 
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Note that a parenthesis is used in the subscript of y(h/4)
(2) to indicate an extrapolation for a finitely 

refined mesh. To get an extrapolation for h/8, we need 

 

yh/8 = y + α1 (h/8)q + H.O.T..     (7.10) 
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By solving Eq. 7.5 and Eq. 7.6 for y and α1, and substituting them into Eq. 7.10, a higher order 

formula similar to Eq. 7.9 is obtained,  
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where (h/2, h/4) in the left hand side indicates that it is a higher order formula using solutions at 

h/2 and h/4. To get a higher order formula for h/8 using solutions at h and h/2, Eqs. 7.4, 7.5, and 

7.10 are combined,  
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7.3 RS Modeling of Discretization Error 
 

A RS model is built for pre-defined ranges of design variables, forming the design box. 

Typically, the design box encloses regions of interest, and the RS model is used to predict the 

response within the design box. On the other hand, prediction outside of the design box is not 

recommended because such extrapolation using a RS model may have a large error. Richardson 

extrapolation is used to predict the continuum solution because of the unaffordable cost of the 

discretized solution for very fine meshes. To apply Richardson extrapolation, asymptotic 

convergence of the error needs to be achieved, and the order of error should be known. If similar 

conditions are met, RS models can be used to extrapolate for the continuum solution.  

Experiments are performed on a few different mesh sizes, h, which are incorporated into 

a RS model. One possible advantage of the RS approach lies in its flexibility in selection of data 

points. A carefully designed experiment may use solutions of refined meshes only sparingly, 

while Richardson extrapolation requires a series of solutions at different mesh sizes for every 

design point.  
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7.3.1 Incorporating Discretization Error into the RS Model 

 
The RS approach is applied to a one-dimensional problem: CL from WINGDES for 

different wing tip chords (ctip). Following Ref. [38], a polynomial model, quadratic in x and order 

q in h, is proposed, 

 

,2
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210 εαααβββ ++++++= qqq
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where yh is the discretized solution of CL, ε is a random error, and the α’s and β’s are coefficients 

to be estimated. Linear interaction terms between h and x are included and the order of error 

estimated in Section 7.1, q = 0.5, was used in the model. Note that the continuum solution may 

be obtained by setting h = 0, 
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7.3.2 Comparison between Richardson Extrapolation and RS Approach 

 

Richardson extrapolation (RE) was used to predict continuum solutions of CL. Two cases 

of mesh fineness were tried as follows.  

 

• RE1: Richardson extrapolation from h, h/2 (ny = 40, 80) using Eq. 7.7  

• RE2: Richardson extrapolation from h/2, h/4 (ny = 80, 160) using Eq. 7.8 

 

For each case, RE is applied to CL for six HSCT designs of different ctip. Since a coarser mesh 

result and a finer mesh result are required to perform a Richardson extrapolation, there are 

twelve WINGDES runs for each case, six on coarser mesh and six on finer mesh (see Figure 

7.2). Next, the RS model (Eq. 7.13) was fit to each of the two experimental designs with the 

twelve data points used in RE approach. In addition, two experimental designs of less number of 

refined mesh results were tried to show computational advantages of the RS approach. 
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• RS1.12: RS fit to six points at h (ny = 40) and six points at h/2 (ny = 80) 

• RS2.12: RS fit to six points at h/2 (ny = 80) and six points at h/4 (ny = 160) 

• RS1.9: RS fit to six points at h (ny = 40) and three points at h/2 (ny = 80) 

• RS2.9: RS fit to six points at h/2 (ny = 80) and three points at h/4 (ny = 160) 

  

Figure 7.2 compares the results of the RE and the RS model. RE results show artificial 

noise for RE1 (Figure 7.2(a)), while the results of RS1.12 are smooth and look more reasonable. 

The poor results of RE1 are due to the noise in the data, particularly for ny = 40. As the panels 

were refined, the noise in the data was reduced. That may explain the relatively smooth results of 

Case RE2 (Figure 7.2(b)), using only refined panels of ny = 80 and 160. Except for some minor 

noise, predictions of CL by RE2 appear to be comparable to RS2.12. The results demonstrate the 

advantages of the RS model over Richardson extrapolation when simulation data is noisy. To fit 

the RS model, we don’t need all of the twelve data points used in RS1.12 or RS2.12. For the 

Cases RS1.9 and RS2.9 in Figures 7.2(c) and (d), even though three of the refined mesh results 

were dropped from the fit, RS fits still give reasonable predictions. Because a WINGDES run on 

the refined mesh via mesh halving is about sixteen times more expensive than on the coarse 

mesh, almost half of the computational time would be saved for RS1.9 compared to RS1.12, or 

RS2.9 compared to RS2.12. Although a quantitative comparison was not performed because 

continuum solutions were not known, it is seen that the RS model is useful to reduce the noise 

problem associated with RE, and may be computationally more efficient by carefully selecting 

simulation cases to be computed via design of experiments.  

To compare the accuracy of the methods quantitatively, RE and RS model were used to 

predict CL at a finitely refined mesh of ny = 320. The same combinations of mesh sizes used for 

prediction for h = 0 were used. New formulas have been derived for RE in Section 7.2.2, and 

Eqs. 7.12 and 7.11 were used for Cases RE1 and RE2, respectively. The RS models used to 

extrapolate the CL at h = 0, can be reused by simply setting h according to the mesh sizes. 

Figures 7.3(a) and (b) show that the RS prediction of CL is good, while RE magnified the noise 

for Case RE1. The magnification of noise got more serious with the RE prediction for h = 0 as 

seen in Figure 7.2 (a). When only three runs on finer meshes are used in the fit, the RS model 

still gave reasonable predictions of CL as seen in Figures 7.3(c) and (d). The values of CL at ny = 
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320 from WINGDES are listed in Table 7.2 along with the errors of RE, defined as CL (predicted 

by RE) – CL (data from WINGDES). RE1 had an average error of 5.052×10-5 due to the noise, 

while the average error of RE2 was only 1.555×10-5. 

Table 7.3 shows the errors in CL predictions by the RS model. The average error of 

RS1.12, 3.178×10-5, is substantially lower than that of RE1, 5.052×10-5. Note that the average 

error of RS1.9, 4.854×10-5, was lower than that of RE1, although only nine data points were used 

in the RS fit; the RS approach was better than RE in terms of both accuracy and efficiency, when 

the noisy data of ny = 40 was used in calculation. When the data is less noisy, RE and RS showed 

comparable average errors: 1.555×10-5 for RE2 and 1.532×10-5 for RS2.12. With fewer data 

points used in the fit, RS2.9 showed a higher average error of 2.543×10-5 than RE2. However, 

the loss of accuracy of the RS fits due to removing a few runs on finer meshes, is small in terms 

of the magnitude of the discretization errors seen in Figure 7.3. 

 

7.3.3 RS Fit to the Data from Richardson Extrapolation 

 

There might be a question concerning the RS approach; is the RS model of Eq. 7.13 

necessary? Alternatively, a simpler RS model may be fit to the Richardson extrapolation results, 

 

εβββ +++= 2
2108/ xxyh .     (7.15) 

 

This posterior RS approach will be denoted RSRE, and it is applied to the results of RE1 and 

RE2.  

 

• RSRE1: RS fit to RE results for h/8 (ny = 320) from h, h/2 (ny = 40, 80) 

• RSRE2: RS fit to RE results for h/8 (ny = 320) from h/2, h/4 (ny = 80, 160)  

  

Figure 7.4 compares the results of RS and RSRE. From Figures 7.4(a) and (b), we 

observe that RSRE1 and RSRE2 give almost the same results as RS1.12 and RS2.12, 

respectively. It is seen that the mean errors of RS1.12 and RS2.12 in Table 7.3 are the same as 

those of RSRE in Table 7.4, up to four significant figures. This is a little bit surprising for 
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RS1.12 where RS produced a smooth response in contrast to the noise in the RE results. That 

should be attributed to the fact that only two levels of h were used in the experimental designs. 

With only two levels of h, the RS fit does no noise filtering in h. In other words, the smooth RS 

results of RS1.12 were thanks to noise filtering in x, which can be fully achieved when fitting a 

RS model to RE data. If more levels of h are used in the fit, it is possible that the RS approach 

will have noise filtering in h, showing some advantage over RSRE. However, the RS approach 

still may have some computational advantage over the RSRE approach for which point-by-point 

RE should be performed beforehand. Figures 7.4(c) and (d) show that RS1.9 and RS2.9 give a 

reasonable CL prediction comparable to the RSRE approach, although three of the finer mesh 

results were not used in the fit. 

 



Chapter 7. RS Modeling of Errors from Supersonic Aerodynamic Simulation                             61 

 

 

 

Table 7.1: Estimates of order of error convergence of CL from WINGDES. 
 r q 

ny = 10, 20, 40 2.1459 1.102 

ny = 20, 40, 80 0.7097 -0.495 

ny = 40, 80, 160 1.4329 0.519 

ny = 80, 160, 320 1.3557 0.439 
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Table 7.2: Error in CL (ny = 320) prediction of the Richardson extrapolation. 
RE1 used Eq. 7.12 and RE2 used Eq. 7.11.   

Error in CL (ny = 320) prediction  Ctip 
(ft.) 

CL (ny = 320) 
Case RE1 

(Using ny = 40, 80) 
Case RE2 

(Using ny = 80, 160) 
7.0 0.0637429 -5.610×10-6 1.084×10-5 
8.2 0.0638953 -2.859×10-6 7.292×10-6 
9.4 0.0640406 3.033×10-5 -3.040×10-5 
10.6 0.0641707 -9.627×10-5 -2.463×10-5 
11.8 0.0643036 2.947×10-5 -4.712×10-6 
13.0 0.0644306 -1.386×10-4 1.543×10-5 

Average error 5.052×10-5 1.555×10-5 
 

Table 7.3: Error in CL (ny = 320) prediction of the RS model. 
RS model of Eq. 7.13 is used. 

Error in CL (ny=320) prediction  Ctip 
(ft.) 

CL  
(ny = 320) Case RS1.12 

(6 points in ny = 
40 and 6 points 

in ny = 80) 

Case RS1.9 
(6 points in ny = 
40 and 3 points 

in ny = 80) 

Case RS2.12 
(6 points in ny = 
80 and 6 points 

in ny = 160) 

Case RS2.9 
(6 points in ny = 
80 and 3 points 

in ny = 160) 
7.0 0.0637429 -8.287×10-6 -2.755×10-5 1.842×10-5 5.308×10-5 
8.2 0.0638953 3.560×10-6 -2.205×10-5 -9.580×10-6 -9.128×10-7 
9.4 0.0640406 -1.021×10-6 -2.782×10-5 -2.427×10-5 -3.195×10-5 
10.6 0.0641707 -1.395×10-5 -3.680×10-5 -1.757×10-5 -3.195×10-5 
11.8 0.0643036 -5.340×10-5 -6.712×10-5 -7.639×10-6 -1.908×10-5 
13.0 0.0644306 -1.104×10-4 -1.099×10-4 1.445×10-5 1.560×10-5 

Average error 3.178×10-5 4.854×10-5 1.532×10-5 2.543×10-5 
 

Table 7.4: Error in CL (ny = 320) prediction of the RS fit to the Richardson extrapolation results. 
RS model of Eq. 7.15 is used. RSRE1 is RS fit to RE1 of Eq. 7.12, and RSRE2 is RS fit to RE2 
of Eq. 7.11. 

Error in CL (ny = 320) prediction  Ctip 
(ft.) 

CL (ny = 320) 
Case RSRE1 

(Using ny = 40, 80) 
Case RSRE2 

(Using ny = 80, 160) 
7.0 0.0637429 8.275×10-6 -1.838×10-5 
8.2 0.0638953 -3.598×10-6 9.573×10-6 
9.4 0.0640406 1.011×10-6 2.428×10-5 
10.6 0.0641707 1.400×10-5 1.763×10-5 
11.8 0.0643036 5.338×10-5 7.627×10-6 
13.0 0.0644306 1.104×10-4 -1.442×10-5 

Average error 3.178×10-5 1.532×10-5 
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Figure 7.1: Grid convergence study of CL from WINGDES (M = 2.4, α = 2.292°). 

The panels are refined by increasing the number of spanwise panels in half span, ny, from 10 
through 320 by 10. The panels are refined in both spanwise and chordwise directions such that 
the number of chordwise panels, nx, is proportional to ny (see Eq. 3.3). Data points corresponding 
to mesh halving cases are circled. The reciprocal of ny is a measure of the mesh step size, h. It is 
seen that the error convergence is lower than first order because the slope of the convergence 
curve gets steeper as the mesh step size decreases.  
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(a) Cases RE1 and RS1.12. 
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(b) Cases RE2 and RS2.12. 
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(c) Cases RE1 and RS1.9. 
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(d) Cases RE2 and RS2.9. 

Figure 7.2: Comparison of CL prediction for h = 0 between Richardson extrapolation (RE) and 
RS model. 

RE1 and RE2 used Eq. 7.7 and Eq. 7.8, respectively. Eq. 7.13 was used for the RS model. For 
RS1.12, twelve points of CL (six at ny = 40 and six at ny  = 80) were used in the fit. For RS2.12, 
twelve points of CL (six at ny = 80 and six at ny = 160) were used in the fit. For RS1.9, nine points 
of CL (six at ny = 40 and three at ny = 80) were used in the fit. For RS2.9, nine points of CL (six at 
ny = 80 and three at ny = 160) were used in the fit. 
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(a) Cases RE1 and RS1.12 
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(b) Cases RE2 and RS2.12 

Ctip, ft.

C
L

7 8 9 10 11 12 13
0.0625

0.0630

0.0635

0.0640

0.0645

0.0650

data (ny=40)
data (ny=80)
data (ny=320)
RE (using ny=40, 80)
RS (9 points, using ny=40, 80)

Not used for RS fit

 
(c) Cases RE1 and RS1.9 
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(d) Cases RE2 and RS2.9 

Figure 7.3: Comparison of CL prediction for ny = 320 between Richardson extrapolation (RE) and 
RS model. 

RE1 and RE2 used Eq. 7.12 and Eq. 7.11, respectively. Eq. 7.13 was used for the RS model. For 
RS1.12, twelve points of CL (six at ny = 40 and six at ny  = 80) were used in the fit. For RS2.12, 
twelve points of CL (six at ny = 80 and six at ny = 160) were used in the fit. For RS1.9, nine points 
of CL (six at ny = 40 and three at ny = 80) were used in the fit. For RS2.9, nine points of CL (six at 
ny = 80 and three at ny = 160) were used in the fit. 
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(a) Cases RSRE1 and RS1.12 
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(b) Cases RSRE2 and RS2.12 
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(c) Cases RSRE1 and RS1.9 
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(d) Cases RSRE2 and RS2.9 

Figure 7.4: Comparison of CL prediction for ny = 320 between RS fit to the Richardson 
extrapolation results (RSRE) and RS model. 

RSRE1 and RSRE2 fit Eq. 7.15 to the results of RE1 (Eq. 7.12) and RE2 (Eq. 7.11), 
respectively. Eq. 7.13 was used for the RS model. For RS1.12, twelve points of CL (six at ny = 40 
and six at ny  = 80) were used in the fit. For RS2.12, twelve points of CL (six at ny = 80 and six at 
ny = 160) were used in the fit. For RS1.9, nine points of CL (six at ny = 40 and three at ny = 80) 
were used in the fit. For RS2.9, nine points of CL (six at ny = 80 and three at ny = 160) were used 
in the fit. 
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Chapter 8  Test Problem Study of Errors from 

Optimization Failures 
 

Most engineering optimization problems require iterative algorithms that may be difficult 

to converge to high precision due to computational cost. A sub-optimization problem is often 

solved within a system level optimization. For example, structural optimization was used to 

calculate optimal wing structural weight within the configuration optimization of the HSCT. 

Poor results from the nested sub-optimization may cause design uncertainties of the system. In 

this chapter, a simple test problem is used as an example of optimization errors. The statistical 

methods introduced in Chapters 5 and 6 will be used to estimate and reduce the optimization 

errors. 

 

8.1 Errors of Various Optimization Methods on the Rosenbrock 

Function 
 

Before addressing the HSCT problem, it is worthwhile to illustrate the convergence 

difficulties experienced by numerical optimization for a simple problem. Here we demonstrate 

the failure of some optimization algorithms for a simple unconstrained minimization problem, 

the generalized Rosenbrock function [58] in five dimensions: 
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The unconstrained minimization problem has a unique optimum x* = (1, 1, 1, 1, 1) at 

which f* = f(x*) = 0. We performed 500 runs from different initial points, which were randomly 

generated in the range of [0, 2]5, to check for any optimization failures. As a criterion of failure, 

we used f* > 0.0001 such that only runs with meaningful error, not due to finite convergence 

criteria of the optimization algorithm, are declared as failures. For the purpose of this 
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demonstration we used DOT [85], MATLAB [86], and the trust region routines from the PORT 

library [87], all with finite difference gradients. The results are summarized in Table 8.1. The 

fminu of MATLAB, an unconstrained minimization routine using the BFGS algorithm, failed to 

find the true optimum in seven out of 500 runs. DOT using a BFGS routine failed in 27 out of 

500 runs. All failures occurred at essentially the same point, x = (-0.962, 0.936, 0.881, 0.778, 

0.605). The condition number of the Hessian matrix at that point was about 2400, which is an 

indication of ill-conditioning of the design space. The trust region algorithm [88] in the PORT 

library is known to have robust convergence criteria, but the trust region routine DMNF with 

finite difference gradients failed in 488 out of the 500 cases, converging to a distinct point for 

each failure case. This unexpected failure was traced to a programming error on our part: the 

function calculating f(x) was not declared as double precision, while the double precision PORT 

library was used. The programming error caused loss of significant figures in the variables 

passed to the objective function routine from the PORT library, and resulted in premature 

termination of the optimization procedure. When the programming error was corrected, PORT 

had no failures.  

The Rosenbrock function example shows that optimization may produce a poor optimum 

due to algorithmic difficulties (i.e., DOT and MATLAB) or user’s programming errors (PORT), 

which is not an uncommon source of optimization error. In both cases, incomplete convergence 

produced one-sided optimization error with a bad result being always larger than the corrected 

result.  

 

8.2 Parameterized Rosenbrock function 
 

In the previous section, the Rosenbrock test function was used to demonstrate failures of 

optimization routines. Many optimization runs were performed using different initial points for 

the same Rosenbrock function. Often, a sub-optimization problem is solved within the system 

level optimization. For example, structural optimization is performed within the configuration 

optimization of the HSCT described in Chapter 2. To mimic the two levels optimization, we 

generalize the five dimensional Rosenbrock function by adding artificial parameters b to Eq. 8.1, 
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If we define 

 

);(min)( bxb
x

ffo ≡ ,      (8.3) 

 

there are two levels of optimization; b* is sought to minimize fo(b) in the upper level, and x* is 

sought to minimize f for a given b to find fo(b) in the lower level. b corresponds to the 

configuration design variables of the HSCT in the system level and x corresponds to the design 

variables of the structural optimization, the sub-optimization. Assume that we want to find b that 

minimizes fo(b), and we may want to build a response surface approximation of fo(b) with respect 

to b as we do for the optimal wing structural weight of the HSCT. 

We elected to change only b1, b2, and b3, while keeping b4 = 1, to make fo(b) have a 

unique minimum of zero at (b1, b2, b3 ) = (1, 1, 1). The ranges of bk’s are chosen to be between 

0.9 and 1.1. For a given set of bk’s, the parameterized Rosenbrock function is minimized from an 

initial design point x = (1.1, 0.9. 1.1, 0.9. 1.1). Figure 8.1 is a design line plot of fo showing the 

noisy response of fo(b1, b2, b3) when PORT with the programming error was used. It is a one-

dimensional cut of the fo response on eleven data points linearly interpolated between b = (0.9, 

0.9, 0.9) and b = (1.1, 1.1, 1.1). The true response corresponds to results of PORT without the 

programming error. We can see that PORT with the programming error gave satisfactory results 

for only two out of the eleven runs.  Define the optimization error  

 
t

o
e

o ffe −= ,      (8.4) 

 

where fo
e is the result of the erroneous PORT and fo

t is the result of the correct PORT. It is 

apparent that poor optimizations result in heavier designs and the optimization error is one-sided.  
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8.3 Estimation of the Optimization Error 
 

We found that the user’s programming mistake resulted in poor convergence in PORT 

optimization runs. The fact that optimization errors are noisy and one-sided leads us to use 

probabilistic modeling with appropriate candidate distributions. Once we find a probabilistic 

model of the error, it can be incorporated into a robust design study. Also, we will demonstrate 

that the probabilistic model is useful to estimate the average error of the optimization runs. 

To measure the error of PORT on the parameterized Rosenbrock function, we need 

sample optimization runs. We used 125 (= 5×5×5) data points from a full factorial experimental 

design of five levels in b. PORT with the programming error was performed to calculate fo for 

each of the 125 variants of the parameterized Rosenbrock function. Two sets of 125 data points 

were generated by using two different initial x’s: Case 1 using x0 = (1.1, 0.9, 1.1, 0.9, 1.1) and 

Case 2 using x0 = (0.9, 1.1, 0.9, 1.1, 0.9). Case 2 will be used to demonstrate the indirect 

approach of distribution fit in Section 8.3.3. Also, PORT without the programming error 

(denoted Case 0) was performed to calculate the error of Case 1 and Case 2 according to Eq. 8.4. 

The errors were large compared to the true fo, whose average is 0.00399; the average error of 

Case 1 and Case 2 was 0.00658 (164.9%) and 0.00505 (126.6%), respectively. The low fidelity 

optimizations of Cases 1 and 2 cost as much computationally as the high-fidelity optimization of 

Case 0 (Table 8.2). The average number of function evaluations of Case 0 was 199, which is 

comparable to 209 of Case 1 or 187 of Case 2. Some of the function evaluations might have been 

wasted for Case 1 and Case 2, because the programming error of the low fidelity cases results in 

less accurate gradients. 

 

8.3.1 Homogeneity of the Error Distribution 

 

We selected the Weibull distribution as a model for the optimization error of PORT. It is 

defined for a nonnegative random variable and has great flexibility (see Figure 5.2). The 

parameters of the model function are found by the maximum likelihood estimate (MLE). A basic 

assumption of the MLE fit introduced in Section 5.3 is that the data is independently and 
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identically distributed. For the optimization data of the parameterized Rosenbrock function, the 

dependence of the data may not be a problem, since the sampling was done by an experimental 

design without replicates. To check whether the error distribution is the same at different points, 

the optimization error, e, is plotted against the true fo in Figure 8.2(a) for Case 1 and Figure 

8.2(b) for Case 2. Although there seems to be a few outliers, homogeneity of the error 

distribution appears to be a reasonable assumption. The correlation between e and the true fo was 

low: 0.1635 for Case 1 and –0.0264 for Case 2. 

 

8.3.2 Results of Direct Fit of PORT Optimization Error 

 
A Weibull model was fit to the distribution of optimization errors of Case 1 and Case 2 

using the weibfit routine of MATLAB [89], and the results are summarized in Table 8.3. The two 

parameters of the Weibull model, a shape parameter α, and a scale parameter β, were estimated 

via MLE. From the estimated parameters, α̂  and β̂ , estimates of the mean ( fitµ̂ ) and standard 

deviation ( fitσ̂ ) of the error can be calculated using the formulas in Table 5.1. According to the 

p-values of the χ2 goodness-of-fit test, the fit to Case 1 was marginally rejected at the 0.05 

significance level, while the fit to Case 2 was reasonable. 

Recalling that the standard deviation is the same as the mean for the exponential 

distribution (when α = 1 in Weibull), fitσ̂  greater than fitµ̂  indicates that the optimization errors 

have greater scatter than the exponential model. The overall characteristics of the error can be 

identified using fitµ̂  and fitσ̂  from the MLE fit. On the other hand, the mean and standard 

deviation can be estimated directly from e by  
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In Table 8.3, fitµ̂  and fitσ̂ were compared with dataµ̂  and dataσ̂ . The agreement is good except for 

the standard deviation of Case 1, with 35.6% discrepancy.  

The histograms in Figure 8.3 compare the shape of the error distribution to the Weibull 

fit. The optimization error is nonnegative, and the probability for large error decreases rapidly to 
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zero. Although the fit to Case 1 was marginally rejected by the χ2 test, the frequencies predicted 

by the direct fit show a reasonable match with the data in Figure 8.3(a). The fit to Case 2 in 

Figure 8.3(b) describes the data pretty well. 

It should be noted that the above discussions about the results of χ2 tests and the 

corresponding p-values are not rigorous probability statements, because it is possible that the 

sample size n is not large enough for the asymptotic χ2 approximation to be accurate. 

Nevertheless, whether the true distribution is Weibull or not, the Weibull model does represent 

the data well and therefore may find usefulness in error modeling. 

 

8.3.3 Results of Indirect Fit of PORT Optimization Error 

 

The direct approach in Section 8.3.2 requires accurate optimization results to estimate the 

error. Sometimes, however, we do not have high-fidelity runs because we simply do not know 

how to improve the accuracy of the simulation. Assume that we do not know of the 

programming error that resulted in erroneous results from PORT. Then, we can use the pair of 

Cases 1 and 2 to estimate the error via the indirect fit (Section 5.6). Note that Case 2 uses a 

different initial x from Case 1. To reduce possible dependence of the errors between Case 1 and 

Case 2, the initial x of Case 2 was set such that each xi was opposite to that of Case 1. The 

correlation between e1 (error of Case 1) and e2 (error of Case 2) was small, -0.0371. 

The results of the difference fit using the Weibull model are shown in Table 8.4. Note 

that the distribution parameters α and β of Case 1 and Case 2 are simultaneously estimated. 

Because there is no closed form of the probability density of the difference for the Weibull 

model, Eq. 5.12 was numerically integrated using Gaussian quadrature (Ref. [57], pp. 222-228). 

See Appendix C for the details of the integration method. According to the χ2 test, the indirect fit 

was reasonable with a p-value of 0.4357. 

From results of the indirect fit, we can estimate the mean and standard deviation of the 

optimization error of the two cases involved (Table 8.5), which can be compared to the estimates 

from data using Eq. 8.5. The estimates for Case 1 were reasonable with 2.7% discrepancy for the 

mean (µ) and 6.1% discrepancy of the standard deviation (σ). The estimates for Case 2 were in 

closer agreement with a 2.0% discrepancy for µ and a 0.9% discrepancy for σ.  The results 
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demonstrate the usefulness of the probabilistic model for the optimization error. By 

incorporating the probability model into the indirect fit, we were able to estimate the error 

without obtaining accurate optimization results.  

Compared to the results of the direct fit (Table 8.3), the indirect fit gave more accurate 

estimates of µ and σ for this particular example. For example, the direct fit had discrepancies of 

5.2% and 35.6% for µ and σ, respectively in Case 1, while the discrepancies of the indirect fit 

were 2.7% and 6.1%, respectively. However, the result may not be generalized to other 

problems. In fact, we expect the direct fit to be as good as the indirect fit if the error data is 

accurately measured, because the sample size for the indirect approach is the same as that of the 

direct fit in MLE, while the number of parameters estimated is doubled.  

 

8.4 Detection and Repair of Erroneous Optimization Runs 
 

The robust regression techniques are demonstrated using SAS [90] statistical software to 

identify erroneous optimizations of PORT with the programming error. To construct a quadratic 

response surface approximation of fo(b1, b2, b3), 27 variants of the Rosenbrock function are 

generated by using a three level full factorial design in bk, (k = 1, 2, 3).  Two different weighting 

functions from Table 6.1 are compared: the biweight function (denoted IRLS) and the 

nonsymmetric weighting function (denoted NIRLS). The identified outliers having IRLS/NIRLS 

weighting less that 0.01 are repaired using the correct PORT optimization. 

Table 8.6 summarizes the results of outlier repair. Before outlier repair, the root mean 

square error (RMSE) of the quadratic response surface was 54.3% and the R2 value was only 

0.68. Because many data points suffered from poor optimization, an aggressive outlier search 

was performed using a lower value of the tuning constant B = 1.0. We defined big outliers as 

those showing 10% or greater error. 20 out of 27 data points satisfied this criterion. IRLS 

declared 9 points as outliers but only 7 of them were big outliers, while NIRLS detected 8 

outliers and all of them were big outliers. Note that the mean repair on the outliers by NIRLS is 

0.0213 while the mean repair on the outliers by IRLS is only 0.0124. By utilizing the one-

sidedness of the error, NIRLS is more successful than the symmetric weighting function of 

IRLS. The data points not declared as outliers will be called inliers. The ratio of average repairs 
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between outliers and inliers can be considered as a measure of success of outlier detection. For 

NIRLS the ratio was 7.02 compared to 1.91 of IRLS. The response surface fit is improved via 

IRLS repair, and there is still substantial improvement by NIRLS repair over IRLS repair; the 

RMSE is 45.5% for IRLS repair and 29.7% for NIRLS repair. When all 27 points were repaired, 

the RMSE was only 4.3% and the R2 was 0.9970. 

 

8.5 Effects of Outlier Repair on the Quality of the Optimum of RS 

Approximation 
 

The response surface approximations are compared in Figure 8.5 along the same design 

line used for Figure 8.1. Before outlier repair the response surface approximation over-predicts 

the true response because of the data points of positive error. With IRLS repair, the response 

surface prediction is improved but the trend of the response is not accurate. The response surface 

fit with NIRLS repair follows the true response closely. The response surface models are to be 

used to find the minimum of fo(b1, b2, b3). It is clear from the figure that the response surface fit 

with NIRLS repair will find a more accurate optimum fo
* than the response surface fit with IRLS 

repair. Table 8.7 summarizes the results of minimization of fo according to the response surface 

models used. When using the response surface fit without repair, the optimum of fo is located at 

the boundary of the design space of b, which have ranges between 0.9 and 1.1. Considering that 

the true optimum is located at the center of the design box, the original response surface 

approximation completely failed to capture the trend of the true response. It is seen that fo
* gets 

closer to the true optimum as more outliers are repaired. Comparing the accuracy at optima fo
*, 

the response surface model with IRLS repair under-predicts the response by 0.00257 = 0.00082 - 

(-0.00175) while the error of NIRLS is only 0.00046 = 0.00028 - (-0.00018). 
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Table 8.1: Failure of various optimization programs for the five dimensional Rosenbrock 
function. 

Software MATLAB 
(fminu) DOT PORT 

(DMNF) 

Algorithm BFGS BFGS Trust region 

Options - - 
With 

programming 
error 

Programming 
error corrected 

Number of failures 
out of 500 runs 7 27 488 0 

 

Table 8.2: Summary of PORT runs for 125 variants of the parameterized Rosenbrock function. 
Cases Case 0 Case 1 Case 2 

Algorithm Trust region Trust region Trust region 

Description Programming 
error corrected 

With programming 
error, 

x0 = (1.1, 0.9, 1.1, 0.9, 
1.1) 

With programming 
error, 

x0 = (0.9, 1.1, 0.9, 1.1, 
0.9) 

Average error of 
fo 

(% compared to 
the average of 

true fo) 

- 0.00658 
(164.9%) 

0.00505 
(126.6%) 

Average number 
of function 
evaluation 

199 209 187 
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Table 8.3: Fits of the Weibull model to the error from PORT optimization of the parameterized 
Rosenbrock function.  

Case 1 and Case 2 use different initial designs. fitµ̂  and fitσ̂  are estimates from the fit of the 

Weibull distribution, while dataµ̂  and dataσ̂  are estimates from the data using Eq. 8.5. The 
estimates of mean, µ, from the fit are in good agreement for both Cases 1 and 2. The estimates of 
the standard deviation, σ, is also reasonable for Case 2. The p-value of the χ2test indicates the fit 
is particularly good for Case 2. 

 Case 1 
x0 = (1.1, 0.9, 1.1, 0.9, 1.1) 

Case 2 
x0 = (0.9, 1.1, 0.9, 1.1, 0.9) 

dataµ̂  0.00658 0.00505 

fitµ̂  

(discrepancy w.r.t dataµ̂ ) 
0.00692 
(5.2 %) 

0.00496 
(-1.8 %) 

dataσ̂  0.00752 0.0110 

fitσ̂  

(discrepancy w.r.t dataσ̂ ) 
0.0102 
(35.6%) 

0.0102 
(-7.3 %) 

α (shape parameter) 0.6941 0.5297 
β (scale parameter) 0.005421 0.002744 

χ2 statistic 14.76 4.68 
p-value 0.0392 0.6989 
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Table 8.4: Results of the indirect fit for the optimization error of PORT. 
The p-value of the χ2test indicates that the fit is acceptable. 

Case 1 
α 

β 

0.8507 

0.006214 

Case 2 
α 

β 

0.5134 

0.002698 

χ2 statistic 4.84 

p-value 0.4357 
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Table 8.5: Comparison of the estimates of mean ( fitµ̂ ) and the estimates of standard deviation 

( fitσ̂ ) from indirect fit with dataµ̂  and dataσ̂ (see Eq. 8.5). 
The indirect fit gave good estimates of mean error for both Case 1 and Case 2. 

Cases Case 1 Case 2 

dataµ̂  0.00658 0.00505 

fitµ̂  from indirect fit 

(discrepancy w.r.t dataµ̂ ) 

0.00676 

(2.7%) 

0.00515 

(2.0%) 

dataσ̂  0.00752 0.0110 

fitσ̂  from indirect fit 

(discrepancy w.r.t dataσ̂ ) 

0.00798 

(6.1%) 

0.0111 

(0.9 %) 

 

Table 8.6: Results of outlier repair for the parameterized five dimensional Rosenbrock function. 

 B 

Number of 

outliers 

a/b/c* 

Mean of repair 

on outliers† 

Mean of repair 

on inliers‡ 

Ratio of mean 

repair on OL to 

IL 

RMSE 

(% to the 

mean fo) 

mean fo R2 

Before 

repair 
NA NA NA NA NA 

0.00748 

(54.3%) 
0.0138 0.6800 

IRLS 

repair 
1.0 9/7/20 0.0124 0.0065 1.91 

0.00439 

(45.5%) 
0.0096 0.8342 

NIRLS 

repair 
1.0 8/8/20 0.0213 0.0030 7.02 

0.00222 

(29.7%) 
0.0075 0.8658 

Full 

repair§ 
NA NA NA NA NA 

0.00023 

(4.3%) 
0.0053 0.9970 

*:  a ~ Number of detected outliers 
     b ~ Number of big outliers detected (estimated error is greater than 10%) 
     c ~ Total number of big outliers out of the 27 data points (estimated error is greater than 10%) 
†: (Sum of fo repair on outliers)/a 
‡: (Sum of fo repair on data points other than outliers)/(Total number of points - a) 
§: All 27 points repaired 
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Table 8.7: Results of optimization of fo(b1, b2, b3) from the parameterized Rosenbrock function 
using RS approximations before and after outlier repair. 

 

Without 

repair 

(Optimum O) 

IRLS repair 

(Optimum I) 

NIRLS repair 

(Optimum N) 

Full repair 

(Optimum F) 
Exact 

b1
* 0.9583 0.9922 1.0014 1.0057 1.0 

b2
* 1.1000 1.0591 0.9877 1.0072 1.0 

b3
* 0.9000 0.9965 1.0378 1.0060 1.0 

fo(b1
* , b2

* , b3
*) 

predicted by RS 
0.00066 -0.00175 -0.00018 -0.00007 - 

fo(b1
* , b2

* , b3
*) 

True 
0.00303 0.00082 0.00028 0.00005 0.0 
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Figure 8.1: Design line plot of the optimal values (fo) for the parameterized Rosenbrock function. 
Design 1 corresponds to bk’s at their lower limits and design 11 corresponds to bk’s at their upper 
limits. Noisy data are the results of PORT with a programming error, and the solid line is the true 
optima. 
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(a) Case 1 (correlation = 0.1635) 
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(b) Case 2 (correlation = -0.0264) 

Figure 8.2: Plots of optimization error versus estimated true fo. 
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(a) Case 1. 
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(b) Case 2. 

Figure 8.3: Comparison of histograms between data and direct fits of Weibull model. 
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(b) Case 2. 

Figure 8.4: Comparison of cumulative frequencies between direct fit and indirect (difference) fit 
of Weibull model. 
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Figure 8.5: Design line plot of optimal values (fo) for the parameterized Rosenbrock function 
predicted by quadratic RS approximations before and after outlier repair. 

(The true minimum of fo is located at design 6.) 
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Chapter 9  Estimation of Error from Structural 

Optimization 
 

 

The error from structural optimization of the HSCT resulted in unreliable estimates of the 

wing structural weight. The source of the error was investigated by using various convergence 

parameters. Convergence difficulties in optimization procedures would produce one-sided noise 

error. A probabilistic approach is used to model the noise error from structural optimization. The 

Weibull model successfully used for the Rosenbrock test problem will be applied.  

 

9.1 Effects of Convergence Control Parameters on the Optimization 

Error 
 

We found that the error of structural optimization depends on the convergence criteria, 

which are called control parameters in GENESIS. The noise in the optimum structural wing 

weight (Ws) of an HSCT was greatly reduced by adjusting the GENESIS settings. Control 

parameters in GENESIS can be categorized into move limit parameters, convergence criteria, 

and inner optimization control parameters. Since we are dealing with a convergence problem of 

optimization, it will be helpful to understand the program structure of GENESIS. There are two 

loops in GENESIS (Figure 9.1). In the outer loop, an approximation for the optimization 

problem is generated and this approximate problem is passed to the inner loop of a gradient 

based optimization. We used the modified method of feasible direction (MMFD) for the inner 

loop optimization. After convergence of the approximate problem, a new approximation is 

constructed at the optimum of the approximate problem. The approximation and optimization is 

continued until no further change of design variables, called soft convergence, or no further 

change of the objective function, called hard convergence, occurs. The optimization parameters 

affect the performance of optimization, error in the optimization results, and the computational 

cost. 
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To study the error in the optimal structural weight calculation of the HSCT, we used a 

mixed experimental design [45] designed to permit fitting quadratic or cubic polynomial models 

using the five HSCT configuration design variables. The experimental design has 126 points that 

consist of a face centered central composite design (FCCC) at levels of ±1 (43 points), another 

FCCC at levels of ±0.75 (42 points), a D-optimal design from a 6 level design (27 points), and an 

orthogonal array design [91] (14 points).  

GENESIS structural optimizations using six different sets of parameters were performed 

on each of the 126 points. Table 9.1 lists the description of the parameters and the actual values 

used in this study. Case A2 employs the default parameters provided by GENESIS. Case A3 and 

Case A5 are the same as Case A2 except that the parameter ITRMOP was increased to 3 and 5, 

respectively. ITRMOP controls the convergence of the inner optimization. For the approximate 

optimization to converge, the inner loop convergence criterion for change in the objective 

function must be satisfied ITRMOP consecutive times. The default value of ITRMOP is 2, and 

by increasing it, the inner iteration is forced to iterate further. In turn, this may force the outer 

loop to continue, because the so called soft convergence criteria −the change of design variables− 

are not met, which may have been satisfied if ITRMOP had been 2. This may result in significant 

improvement in the final design.  

After extensive experimentation with the optimization parameters and help from the 

developers of GENESIS, we found that ITRMOP was the most important for improving the 

accuracy of the optimization for our problem. Case B2 employs tighter move limits and 

convergence criteria than Case A2. It reflects our first attempt to improve the optimization 

results. Case B3 and Case B5 are the same as Case B2 except that ITRMOP is 3 and 5, 

respectively. The values of all the control parameters for the six cases are given in Table 9.1. The 

data of Ws of the six convergence settings on the 126 data points are listed in Appendix D. 

In order to visualize the behavior of the errors, Figures 9.2(a) and (b) show the Ws 

response for 21 HSCT designs generated by linear interpolation between two extreme points in 

the five variable HSCT problem. It is the same design line used for Figure 3.4 and design 1 

corresponds to (1,  -1, 1,  -1, 1) and design 21 corresponds to (-1, 1, -1, 1, -1) in a coded form of 

the HSCT configuration variables. It is clear from the figures that Case A2 and Case B2 

produced many runs with large errors, which were mostly positive. GENESIS seeks optimal 

design within feasible region because we use MMFD algorithm. There was no run for which 
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GENESIS failed to find a feasible design, and all of the erroneous optima were feasible. 

Therefore, the one-sided error in Ws calculated from GENESIS is attributed to convergence 

problem. By increasing ITRMOP, the noise in Ws was substantially reduced and the gain with 

ITRMOP = 5 over ITRMOP = 3 was small. To calculate the error for each case, we need to 

know the true Ws, which, strictly speaking, cannot be known due to the iterative procedure 

inherent in the optimization. Here we estimate the true Ws by taking the best of the six GENESIS 

runs we already did using different parameters.  

Table 9.2 shows the performance of each set of GENESIS parameters for all 126 design 

points. The optimization error was calculated by comparing Ws to the best of the six Ws’s 

available. Table 9.2 shows how many times each case produced the lowest weight, the best 

among the six Ws’s for 126 points. Case A2 and Case B2 never found the best results. With 

ITRMOP = 5, Case A5 and Case B5 achieved the best Ws 58 and 52 times respectively, almost 

half of the data each, and together nearly 90 % of the data. Sometimes Case A3 and Case B3 

came up with the best results, for 12 and 4 times, respectively.  

For the default GENESIS parameter (Case A2), the mean error was 4.86 %. It is seen that 

tightening the convergence criteria for ITRMOP = 2 (Case B2) actually had a detrimental effect 

since the mean error increased to 5.63 %. By using ITRMOP = 3 (Case A3 and Case B3), the 

mean errors were reduced to 0.546 % and 0.762 % respectively, about a tenth of the levels of the 

low-fidelity errors. With Case A5 and Case B5, the mean error was very small, less than 0.2%. In 

terms of computational cost, the high-fidelity optimization using ITRMOP = 5 required more 

than twice the CPU time of the low-fidelity optimization, ITRMOP = 2. 

In fact, the estimate of the true optimum by taking the best of six runs turned out to be 

very accurate, mostly thanks to the high-fidelity of Case A5 and Case B5. This was tested by 

doing nine additional GENESIS runs on 30 randomly selected HSCT configurations using Case 

B5 from different initial design variables. For these 30 configurations an average of 0.011% 

improvement was obtained. Therefore, we will denote the best of six Ws’s as ‘the estimate of true 

Ws’, and accordingly the error of Ws with respect to this value will be denoted as ‘estimated 

error’, et, of optimization. Our concern about uncertainly will be mainly for the low (ITRMOP = 

2) and mid-fidelity (ITRMOP = 3) cases. For the high-fidelity cases (ITRMOP = 5), the error 

appears to be negligible. 
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9.2 Estimation of Statistical Distribution 
 

9.2.1 Homogeneity of Error 

 

Our approach is to fit a model function to optimization error of various optimization 

convergence setups. A basic assumption behind the MLE fit is that the data is independently and 

identically distributed. For the optimization data at hand, there should be no problem concerning 

the independence of data, because the sampling was done by an experimental design without 

replicates. To check whether the error distribution is identical at different points, the estimated 

errors, et, were plotted against the estimated true Ws in Figure 9.3 for the absolute error (lb.) and 

in Figure 9.4 for the relative error (%). For example, with the absolute error of Case A2 in Figure 

9.3(a), the mean and variance of error appears to increase as Ws increases. A relatively high 

correlation coefficient of 0.5685 indicates the trend. Scaling the error by Ws may help to stabilize 

the increasing mean and variance along Ws. For the relative error of Case A2 in Figure 9.4(a), the 

distribution became more even, and the correlation coefficient was reduced to 0.3210. One may 

observe similar effects of relative error over absolute error for other cases. The figures lead us to 

expect that if the structural optimization process ends with premature convergence, the absolute 

error would tend to be larger for heavy designs. 

However, considering that highly influential points, such as the two outliers seen in 

Figure 9.3(b), tend to exaggerate the correlation coefficients, the assumption of homogeneous 

distribution may not be a bad assumption even for the absolute error. If the variation of 

distribution is important, the change of distribution may be modeled by the generalized linear 

model (GLM) [92]. In GLM the mean of the distribution is related to the regressor variables via a 

linear model, while the fit in our approach assumes the mean of the distribution is the same for 

different data points, which is a special case of GLM. Nonetheless, with the four distributions in 

Figure 9.3, the fit of a distribution should provide useful information about the overall behavior 

of the error. So we fitted model distributions to both absolute and relative errors. 
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9.2.2 Direct Fit of Estimated Error 

 

In Chapter 8 the Weibull model was successfully fit to the optimization error of the 

Rosenbrock function. Again, the Weibull model is selected to fit the estimated error et, from the 

structural optimization of the HSCT. The results of the direct fit are summarized in Table 9.3 for 

the absolute error, and in Table 9.4 for the relative error. A Weibull model fit routine, weibfit, 

from the statistical toolbox of MATLAB was used. See Appendix E for an example of the 

MATLAB code for the direct fit. For the absolute error, the p-values of the χ2 test indicate that 

the fits are reasonable for Cases A2, B2, and B3 with 5% significance level. For Case A3, the fit 

was marginally rejected. For Case A5 and Case B5, the high-fidelity cases with ITRMOP = 5, 

the fits were not satisfactory at all. In fact, for those high-fidelity errors, almost half of the et’s 

were zero, and the errors may be negligible. The Weibull fit of the relative error was not as good 

as the fit for the absolute error. For instance, the p-value of the fit to the relative error of Case B2 

was only 0.0327 compared to 0.8327 for the fit to the absolute error. This is unexpected since we 

observed that the distribution appears to be more homogeneous with relative error than with 

absolute error.  

Recalling that the standard deviation is the same as the mean for the exponential 

distribution (when α = 1 in Weibull), 
fitσ̂  greater than 

fitµ̂  in Table 9.3 indicates that the errors 

from the structural optimization have greater scatter than the exponential model. From the fits, 

overall characteristics of the error can be estimated in terms of the mean (
fitµ̂ ), and standard 

deviation (
fitσ̂ ) of the distribution. On the other hand, the mean and standard deviation can be 

estimated from et without fit by 
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In Table 9.3, 
fitµ̂  and 

fitσ̂  were compared with 
dataµ̂  and 

dataσ̂ , and the agreement is good for low-

fidelity errors and is reasonable for the mid-fidelity errors except for 
fitσ̂  of Case B3. 
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Table 9.3 and Table 9.4 are obtained from 126 data points. We expect that fewer points 

are required for a reasonable fit to estimate the mean and standard deviation of the error 

distribution. For a given sample size ranging from 10 to 150, we calculated 
fitµ̂  and 

fitσ̂  for 50 

sets of random numbers generated from a Weibull distribution with α = 0.7682 and β = 3915, 

which is the fitted value for et of Case B2. The mean (µ) and standard deviation (σ) of the 

distribution are 4572 lb. and 6023 lb., respectively. The mean and standard deviation of 
fitµ̂  are 

drawn in Figure 9.5(a) as dash-dot lines. Similarly the mean and standard deviation of 
fitσ̂  are 

shown in Figure 9.5(b). It appears that we need at least 50 points to get a good fit with 

reasonable accuracy. Also, Figure 9.5(a) shows that the mean and scatter of 
dataµ̂  are very close to 

those of 
fitµ̂ , but Figure 9.5(b) shows that 

fitσ̂ has a smaller scatter than 
dataσ̂  in terms of the 

standard deviation.  

The probability plot is a graphical tool to show the goodness of fit of distribution. We 

used the quantile-quantile plots, or so-called Q-Q plot (see Section 5.5). In the Q-Q plot, the 

percentiles of the data are plotted against the expected percentiles from the fit. If the fit is good, 

the scatter plot should appear as a straight line passing the origin with unit slope. Figure 9.6 

shows the Q-Q plots for the Weibull fit for et of the low and mid-fidelity optimizations. They 

show that the MLE resulted in a good fit for the majority of the data, while more or less ignoring 

the large error data. Figure 9.6(c) indicates a particularly good fit, which is in agreement with the 

results of the χ2 test. The histograms in Figure 9.7 compare the shape of the error distribution to 

the Weibull fit. The optimization error here is by definition nonnegative and the probability for 

large error decreases rapidly to zero. One can see that the fits match well with the data for the 

low-fidelity errors, Case A2 and Case B2, and the fits are reasonable for the mid-fidelity error 

cases, even for Case A3, although the fit was rejected by the χ2 test. This fact implies that the 

Weibull fit may be useful for Case A3 as well if we are mainly interested in the behavior of large 

error. 

Again, it should be noted that the above discussions about the results of χ2 tests and the 

corresponding p-values are not rigorous probability statements, since the sample size n may not 

be large enough for the asymptotic χ2 approximation to be accurate. However, the Weibull 

distribution was able to model the errors of two different optimization problems, the Rosenbrock 
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function and the structural optimization of an HSCT. That may be an indication that there are 

some common error processes in the optimization errors.   

 

9.2.3 Results of Indirect Fit of the Optimization Error 

 

In our data, Case A3 and Case B2 represent our efforts to reduce the error in Case A2 by 

tightening the inner loop convergence criterion or outer loop criteria. If either optimization 

results by Case A3 or Case B2 are available along with Case A2, we can estimate the error 

distributions from the differences. Note that we use two sets of different convergence criteria, 

while we used two cases of different initial designs for the Rosenbrock example. Similarly to 

what was done for the Rosenbrock problem, the probability density of the difference, f(x) in Eq. 

5.12, was numerically integrated using the Gaussian quadrature (see Appendix C for the details 

of the integration). Table 9.5 contains the correlation of et between the low and mid-fidelity 

optimizations, Cases A2, A3, B2, and B3. The correlation coefficient between Cases A2 and A3 

(0.2004), and Cases A2 and B2 (0.1983), indicate that it may be reasonable to treat them as 

independent. 

The difference fit was performed on the pair of (A2, A3), and then on the pair of (A2, 

B2). See Appendix F for an example of MATLAB code for indirect fit. In the previous section, 

the direct fit of the Weibull model showed better fits for the absolute error (Ws error in lb.) than 

for the relative error (Ws error in percentage). Therefore, Ws data in lb. was used for indirect fit 

and the results were compared to the direct fit to the absolute error.  The first pair consists of a 

low-fidelity and a mid-fidelity optimization while the second one engages two low-fidelity 

results. The results of the difference fit using the Weibull model are summarized in Table 9.6. 

According to the χ2 test, the fit was rejected for the pair of (A2, B3), but was reasonable for the 

pair of (A2, B2). From the difference fit using the Weibull model, we found the distribution 

parameters, α and β, for both cases in a pair simultaneously.  

As results of the indirect fit, we can estimate the mean and standard deviation of the 

optimization error of each of the two cases involved, and one can compare them with the et data. 

In Table 9.7, the results from the difference fit were compared to et data. The estimates by the 

indirect fit for Case A2 were in a reasonable range, -9.7% and -2.1% of discrepancies for 
fitµ̂  and 
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fitσ̂ with respect to the 
dataµ̂  and 

dataσ̂  based on et. However, the estimates for Case A3 were in 

disagreement with the et data, -72.1% discrepancy for 
fitµ̂  and –71.1% discrepancy for 

fitσ̂ . For 

the first pair, the inaccurate estimates for Case A3 may have been expected because the fit on the 

difference itself was poor. Figure 9.8 compares the direct and difference fits for the first pair in 

terms of cumulative frequencies. The difference fit for Case A2 is close to that of the direct fit as 

seen in Figure 9.8(a), although for Case A3 the difference fit does not match the direct fit well. 

Also, it would be meaningful to compare 
fitµ̂  and 

fitσ̂  from the difference fit with the estimates 

using the data used in the fit. For example, for the pair of Cases A2 and A3, we can calculate an 

‘approximate true Ws’ as the best of Ws(A2) and Ws(A3). Accordingly the ‘approximate error 

(ea)’ can be calculated with respect to the approximate true Ws, and then 
dataµ̂  and 

dataσ̂  are 

calculated by applying Eq. 9.1 to ea. It turned out, as noted from Table 9.7, that 
fitµ̂  and 

fitσ̂ are 

better than 
dataµ̂  and 

dataσ̂  based on ea for both Case A2 and Case A3. However, the estimates for 

Case A3 have big discrepancies with respect to 
dataµ̂  and 

dataσ̂  based on et. The results for the pair 

(A2, A3) indicate that when more accurate optimization results are available, the utility of the 

statistical model may be limited. 

For the second pair, Cases A2 and B2, the indirect fit gives much better estimates of 

mean and standard deviation than 
dataµ̂  and 

dataσ̂  based on ea, because ea is far from the true error 

because it is based entirely on the low-fidelity data of Cases A2 and B2. For example, the 
dataµ̂  

based on ea has a –44.1% discrepancy compared to –13.7 % of 
fitµ̂ for Case A2. Figure 9.9 shows 

the prediction by indirect fit is in a reasonable match with the direct fits for the second pair. If we 

compare the indirect fit for Case A2 between the first and the second pair, the first pair gives a 

little bit better fit than the second pair as seen in Figure 9.8(a) and Figure 9.9(a). However, it 

should be pointed out that the pair of (A2, B2) is computationally cheaper than the pair of (A2, 

A3), because it involves another low-fidelity optimization, Case B2, instead of the mid-fidelity 

optimization of Case A3. Overall we find that the Weibull model allows us to estimate well the 

mean and standard deviation of the error from two sets of low-fidelity optimizations. 

To find how many points are required for the difference fit, we performed difference fits 

for the pair of (A2, B2) for various sample sizes. Samples were randomly generated from the 126 

points with replacement, and the process was repeated 50 times for each sample size ranging 
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from 30 to 130. Figure 9.10(a) shows the mean and standard deviation of fitµ̂  for Cases A2 and 

B2, and Figure 9.10(b) is the mean and standard deviation of 
fitσ̂  for various sample sizes. Figure 

9.10 implies that at least 70 points are required for reliable fits. The required sample size is a bit 

larger than the direct fit presented in Figure 9.5, where samples were generated from a known 

Weibull distribution. That may be attributed to that the number of distribution parameters 

estimated is doubled in the difference fit since we are fitting two low-fidelity errors 

simultaneously. 
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Table 9.1: Sets of optimization control parameters in GENESIS. 
Category 

Name of 

Parameter 
Description 

Case 

A2 

Case 

A3 

Case 

A5 

Case 

B2 

Case 

B3 

Case 

B5 

DELP Fractional change allowed for properties 0.5 0.5 

DPMIN Minimum move limit for properties 0.1 0.00001 

DELX 
Fractional change allowed for design 

variables 
0.5 0.5 

DXMIN Minimum move limit for design variables 0.1 0.00001 

REDUC1 

To multiply all the move limits by this 

number if internal approximate problem is 

NOT doing well 

0.5 0.5 

Move Limits 

REDUC2 

To divide all the move limits by this 

number if internal approximate problem is 

doing well 

0.75 0.75 

CONV1 
Relative convergence criteria on objective 

function 
0.001 0.0001 

CONV2 
Absolute convergence criteria on objective 

function 
0.001 0.0001 

Outer loop 

convergence on 

objective 

function 

(Hard 

convergence) 
GMAX 

Maximum constraint violation allowed at 

optimum 
0.0001 0.0001 

CONVCN 
Relative criteria for change in design 

variables 
0.001 0.00001 

CONVDV Relative criteria for change in properties 0.001 0.00001 

Outer loop 

convergence on 

design variables 

(Soft 

convergence) 
CONVPR 

Allowable change in the maximum 

constraint 
0.001 0.00001 

Inner loop 

convergence 
ITRMOP 

Number of consecutive iterations that must 

satisfy the relative or absolute convergence 

criteria before optimization is terminated in 

the approximate optimization problem 

2 3 5 2 3 5 
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Table 9.2: Performance of structural optimization for various GENESIS parameter settings. 
Structural optimizations were performed for each of the 126 HSCT configurations using six 
different convergence settings. For each HSCT configuration, the best optimal structural weight, 
Ws, out of the six GENESIS runs was taken as the true optimum, and the optimization error was 
calculated with respect to the true optima.  

 Case A2 Case A3 Case A5 Case B2  Case B3 Case B5 

Number of points for which the 

best Ws was achieved 
0 12 58 0 4 52 

Mean of the estimated error, et  

(Percentage to the mean Ws) 

3931.0 lb. 

(4.860%) 

441.4 lb. 

(0.546%) 

161.8 lb. 

(0.200%) 

4552.8 lb. 

(5.629%) 

616.2 lb. 

(0.762%) 

32.7 lb. 

(0.040%) 

CPU time per GENESIS run on 

a SGI Origin workstation 

(seconds) 

78.1 117.6 156.7 61.4 109.0 143.3 
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Table 9.3: Quality of the fit of the Weibull model to the optimization error, et, for various 
convergence settings defined in Table 9.1. 

The comparisons of the mean, µ, of the fit and data indicate good agreement except for the most 
stringent convergence criteria, B5. The agreement is also good for the standard deviation, σ, for 
the less stringent convergence cases, A2, A3, and B2. The p-value based on the χ2 test implies 
good fit when it is close to one, and cases A3, A5, and B5 clearly fit poorly. 

 Error A2 Error A3 Error A5 Error B2 Error B3 Error B5 

dataµ̂  for et, lb. 3931 441.4 161.8 4553 616.2 32.7 

fitµ̂ , lb. 

(discrepancy w.r.t 
dataµ̂ for et) 

3850 

(-2.1 %) 

462.3 

(4.7 %) 

147.2 

(-9.0 %) 

4572 

(0.4 %) 

689.2 

(11.8 %) 

146.3 

(347.4 %) 

 
dataσ̂  for et, lb. 7071 1408 966.6 5991 1086 73.8 

fitσ̂ , lb. 

(discrepancy w.r.t 
dataσ̂  for et ) 

6894 

(-2.5%) 

1270 

(-9.8 %) 

1674 

(73.2 %) 

6023 

(0.5 %) 

1682 

(54.9 %) 

1695 

(2197 %) 

α (shape parameter) 0.5912 0.4348 0.2228 0.7682 0.4703 0.2214 

β (scale parameter) 2510 172.2 2.870 3915 305.8 2.724 

χ2 statistic 12.25 14.79 224.3 3.524 9.397 190.0 

p-value 0.0925 0.0387 0.0000 0.8327 0.2254 0.0000 
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Table 9.4: Quality of fit of the Weibull model to the relative optimization error scaled with 
respect to Ws. 

The estimates of the mean and standard deviation are good for less stringent cases A2, B2, and 
B3. The fits are not as good as the absolute error results in Table 9.3 particularly for Case B2, 
which was rejected by the χ2 test. 

 Error A2 Error A3 Error A5 Error B2 Error B3 Error B5 

dataµ̂  for et, % 3.99 0.394 0.098 6.08 0.733 0.046 

fitµ̂ , % 

(discrepancy w.r.t 
dataµ̂  for et) 

3.96 

(-0.8 %) 

0.468 

( 18.8 %) 

0.173 

( 76.5 %) 

6.10 

(0.3 %) 

0.768 

(4.8%) 

0.222 

(382.6 %) 

dataσ̂  for et, % 6.21 0.805 0.505 7.84 1.61 0.092 

fitσ̂ , % 

(discrepancy w.r.t 
dataσ̂  for et) 

6.07 

(-2.3 %) 

1.13 

(40.4%) 

2.11 

(317.8 %) 

8.09 

(3.2 %) 

1.74 

(8.1 %) 

2.60 

(2726 %) 

α (shape parameter) 0.6726 0.4730 0.2175 0.7636 0.4949 0.2209 

β (scale parameter) 3.007 0.2102 0.0028 5.1977 0.3767 0.0041 

χ2 statistic 16.06 24.63 228.6 15.27 9.2381 200.5 

p-value 0.0245 0.0009 0.0000 0.0327 0.2360 0.0000 
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Table 9.5: Correlation coefficients of the estimated errors (et, lb.) between different GENESIS 
parameter settings. 

 Case A2 Case A3 Case B2 Case B3 

Case A2 1 0.2004 0.1983 0.1559 

Case A3  1 0.0361 0.3967 

Case B2   1 0.1811 

Case B3    1 

 

 

Table 9.6: Results of the difference fits for the pair of (A2, A3) and the pair of (A2, B2). 
The (A2, A3) pair consists of a low-fidelity convergence setting (A2) and a mid-fidelity setting 
(A3), while the pair (A2, B2) consists of two low-fidelity settings. The p-value of the χ2 test 
indicates that the fit to the optimization difference was not good for the pair of (A2, A3),  while 
the fit was acceptable for the pair of (A2, B2). 

 Tightening inner 

loop convergence 

criterion 

Tightening outer 

loop convergence 

criteria 

Difference of Ws in the pair Ws(A2)-Ws(A3) Ws(A2)-Ws(B2) 

Parameters of distribution of optimization 

error for default convergence criteria 

α 

β 

0.553 

2105 

0.509 

1756 

Parameters of distribution of optimization 

error for tightened convergence criteria 

α 

β 

0.389 

34.3 

0.710 

3187 

χ2 statistic 25.1 7.33 

p-value 0.0001  0.1970  
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Table 9.7: Comparison of the estimates of mean (
fitµ̂ ) and the estimates of standard deviation 

(
fitσ̂ ) from indirect fit with the estimates from data (

dataµ̂  and 
dataσ̂ , see Eq. 9.1). 

fitµ̂  and 
fitσ̂ are compared with 

dataµ̂  and 
dataσ̂  from estimated error (et) based on the six 

optimization runs using various convergence settings. For the pair of (A2, A3), the difference fit 
gave good estimates of mean and standard deviation of the low-fidelity error (A2), but the 
estimates were not accurate for the mid-fidelity error (A3). For the pair of two low-fidelity 
optimizations, (A2, B2), the difference fit gave reasonable estimates of error for both A2 and B2. 
The estimates from approximate error (ea) based on the two optimization runs involved in the 
difference fit gave poor estimates of error compared to the difference fit because ea is not 
accurate with only two low-fidelity optimization results. 

 
Tightening inner loop 

convergence criterion 

Tightening outer loop 

convergence criteria 

Cases Error A2 Error A3 Error A2 Error B2 

dataµ̂  for et, lb. 3931 441.4 3931 4553 

fitµ̂  from difference fit, lb. 

(discrepancy w.r.t 
dataµ̂ for et) 

3550 

(-9.7%) 

123.3 

(-72.1%) 

3394 

(-13.7%) 

3981 

(-12.6%) 

dataµ̂  for ea, best of two, lb. 

(discrepancy w.r.t 
dataµ̂ for et) 

3535 

(-10.1%) 

46.1 

(-89.6%) 

2199 

(-44.1%) 

2821 

(-38.0%) 

dataσ̂  for et, lb. 7071.3 1407.8 7071.3 5991.0 

fitσ̂  from difference fit, lb. 

(discrepancy w.r.t 
dataσ̂  for et) 

6922 

(-2.1%) 

406.2 

(-71.1 %) 

7393 

(4.5%) 

5729 

(-4.4%) 

dataσ̂  for ea, best of two, lb. 

(discrepancy w.r.t 
dataσ̂  for et) 

6895 

(-2.5%) 

349.6 

(-75.2%) 

5545 

(-21.6%) 

5082.9 

(-15.2%) 
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Figure 9.1: Flow chart of GENESIS structural optimization software. 
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(b) 

Figure 9.2: Optimum structural weight response along a design line for different GENESIS 
parameters, (a) Case A2, A3, and A5, (b) Case B2, B3, and B5. 

Structural optimizations are performed for 21 HSCT configurations generated by linear 
interpolation between two extreme points in the five variable HSCT problem. Design 1 
corresponds to (1,  -1, 1,  -1, 1) and design 21 corresponds to (-1, 1, -1, 1, -1) in a coded form of 
the HSCT configuration variables. The structural optimization resulted in two runs of large error 
with the default convergence parameters (A2). Tightening the outer loop convergence criteria 
(B2) from the default did not improve the structural optimization and resulted in a very noisy 
response of the optimum wing structural weight. By tightening the inner loop convergence 
criterion (A3, A5, B3 or B5), the structural optimizations are much more consistent and much 
less noisy. 



Chapter 9. Estimation of Error from Structural Optimization                                                    102 

 

 

 

 

+

+

++

+

+

+
+

+
+

++

+

+

+
+

+

+

++

+

++
+++++

+
+++

+
+

+++
+

+
+ +++

+
+

++
+

+
+

++++

+

+

+

+ +
++++

+
+

+

+

++
++

+ +++

+

++
+

+ +

+

+

+

+

+ +

+

+

+
++

+

+
+

+
+

++ ++++

+

+ ++

+

++ ++ +

+

+
+

+
+

+ ++

+

+

++
+

Ws, true (lb)

E
rr

or
A

2
(lb

)

0 100000 200000 300000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

 

(a) Case A2 (correlation = 0.5685). 
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(b) Case A3 (correlation = 0.5089). 
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(c) Case B2 (correlation =0.0844 ). 
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(d) Case B3 (correlation = 0.3588). 

 

Figure 9.3: Plots of estimated error, et, versus estimated true Ws  (absolute error). 
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(a) Case A2 (correlation = 0.3210). 
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(b) Case A3 (correlation = 0.4326). 
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(c) Case B2 (correlation = -0.1321 ). 
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(d) Case B3 (correlation = 0.0412). 

 

Figure 9.4: Plots of estimated error, et, versus estimated true Ws (relative error). 
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(b) σ̂ . 

 

Figure 9.5: Comparison of µ̂  and σ̂  between Weibull fits and estimates from data according to 
the sample size. 

For a given sample size ranging from 10 to 150, 50 sets of pseudo random numbers were 
generated from a Weibull distribution (α = 0.7682, β  = 3915). The Weibull distribution has a 
population mean µ = 4572 lb. and standard deviation σ = 6023 lb., denoted as dashed lines. 
Then, µ and σ were estimated for each of the 50 sets by the two methods: estimates ( dataµ̂  and 

dataσ̂ ) using Eq. 9.1 and fitting the Weibull model ( fitµ̂ and fitσ̂ ). The two methods were 
compared (solid lines correspond to the estimates using Eq. 9.1 and dash-dot lines correspond to 
the Weibull fit method) in terms of the mean and scatter of the estimates. 
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(a) Case A2. 
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(b) Case A3. 
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(c) Case B2. 
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(d) Case B3. 

 

Figure 9.6: Q-Q plots of Weibull fit for distribution of the estimated error. 
Points above the line indicate that the data is from a distribution with a heavier tail than the fit. 
For example, the point circled in Case A2 indicates that the probability of having an error greater 
than 20000 lb. in the fitted distribution is equal to the probability of exceeding an error of 24000 
lb. in the data. 
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(b) Case A3. 
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(c) Case B2. 
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(d) Case B3. 

 

Figure 9.7: Comparison of histograms of et and direct fits of Weibull model. 
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(b) Case A3. 

 

Figure 9.8: Comparison of cumulative frequencies between direct fit and indirect (difference) fit 
of Weibull model (pair of Cases A2 and A3). 
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(a) Case A2. 
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(b) Case B2. 

 

Figure 9.9: Comparison of cumulative frequencies between direct fit and indirect (difference) fit 
of Weibull model (pair of Cases A2 and B2). 
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(b) σ̂ . 

Figure 9.10: µ̂  and σ̂ of the difference fit for the pair of (A2, B2) for various sample sizes. 
For each given sample size ranging from 30 to 130, 50 sets of data were generated from the 126 
data with replacement. One can observe that µ̂  and σ̂  have large scatter at small sample sizes 
particularly for A2, and stabilize as the sample size increases. 
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Chapter 10  Detection and Repair of Poorly 

Converged Structural Optimization Runs  
 

In the previous chapter we used probabilistic models to estimate the average error from 

structural optimization of the HSCT. In this chapter we will address the problem of structural 

optimizations with large error, outliers. In Chapter 8, robust regression techniques were used to 

identify outliers in optimization runs for the Rosenbrock test function, and we showed that 

outlier repair greatly improved the quality of the optimum of the response surface (RS) model 

based on the optimization data.  

The structural optimization was performed to build a response surface approximation for 

the wing bending material weight of an HSCT. If we use low-fidelity data contaminated with 

outliers such as Case A2 of Section 9.1, the RS fit can be inaccurate because the least squares fit 

is not robust, and eventually it may increase uncertainty in the system level design of the HSCT. 

One obvious solution is to use high-fidelity data, such as Case A5 of Section 9.1, to get an 

accurate fit. However, high-fidelity optimizations may be much more expensive than low-fidelity 

cases. We noted that high-fidelity structural optimization requires more than twice the CPU time 

than low-fidelity cases. Moreover, it is possible that the high-fidelity simulation is not available 

because we do not know how to improve the low-fidelity simulation. Hence, it may be more 

efficient to repair only the identified outliers by high-fidelity simulations rather than doing high-

fidelity simulations from the beginning, when high-fidelity runs are much more expensive than 

lower fidelity runs. 

 
10.1 IRLS Procedures for the Optimization Error: Symmetric and 

Non-symmetric Weighting Functions 
 

The IRLS procedure to identify poor optimizations was applied to the lower-fidelity 

HSCT structural optimization data, Case A2 and Case B2 (see Section 9.1). The SAS [90] 

statistical software was used to do the IRLS fit. See Appendix G for an example of the SAS input 

file for IRLS. A full quadratic polynomial model of a five dimensional design space was used for 
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the RS fit. The one-sidedness of the optimization error due to incomplete convergence led us to 

the nonsymmetric IRLS (NIRLS) using a nonsymmetic weighting function, which was compared 

to regular IRLS. The IRLS results depend on the shape of the weighting function. The tuning 

constant B acts like a threshold for outlier detection (see Table 6.1). A smaller B leads to a more 

aggressive outlier search; the allowable region around the RS for good points becomes narrower, 

and more points will be declared outliers. Two different values of the tuning constant B were 

tried. B = 1.0, the same value as for the Rosenbrock test function in Section 8.4, corresponds to 

an aggressive outlier search, while B = 1.9 corresponds to a moderate outlier search. For NIRLS, 

the tuning constant H controlling the weighting function for negative residuals was kept at 1.0, 

while B that controls the weighting function for the positive residuals was changed (see Table 

6.1).  

For the detected outlier points that have a weighting of less than 0.01, we corrected them 

by the estimated true Ws, which was calculated by taking the best of the two high-fidelity Cases 

(A5 and B5) and two low-fidelity cases (A2 and B2). The contribution from the mid-fidelity data 

(B3 and A3) to estimating true Ws would be small. The averages of the estimated errors are 

shown in Table 10.1, which shows almost the same magnitude compared to the results of Table 

9.2 that utilized all of the six cases.  

 
10.2 Results of Outlier Detection and Repair 

 
Table 10.2 presents a summary of the outlier detection and correction results for Case A2 

with IRLS and NIRLS. In the RS fit, we removed 11 points of extraordinarily heavy designs (Ws 

greater than 150000 lb., which is about triple the usual optimum designs) from 126 data points 

and used only 115 points, because we did not want to consider unreasonable designs. This 

approach of excluding design points with unreasonable results is known as the reasonable design 

space approach [8]. The identified outliers were repaired by the estimated true Ws. To assess the 

success in detection, all 115 points were also repaired, and the results are shown in the last row 

in Table 10.2. 

With a tuning constant B = 1.9, IRLS and NIRLS identified two different sets of 21 data 

points as outliers. Twelve out of the 21 points were common. The error in the outliers is 

calculated by comparing Ws(A2) to the repaired value. For comparison, we also repaired points 
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not flagged as outliers. For IRLS, the average correction was 7391 lb. for outliers compared to 

1516 lb. for inliers. NIRLS did a better job in finding outliers; the average correction was 8627 

lb. for outliers and 1240 lb. for inliers. The ratio between the average corrections of Ws for 

outliers and inliers can be considered as a measure of the success of outlier detection. For NIRLS 

the ratio was 6.96 compared to 4.88 of IRLS. 

Figure 10.1 shows the estimated error (i.e., Ws repair) of both of the detected outliers and 

inliers versus w, the weighting in IRLS. Big outliers are of particular concern. We defined big 

outliers as those showing 10% or greater error. Eleven out of 115 points satisfy this criterion, and 

ten out of these were detected by all approaches listed in Table 10.2. Figure 10.1(a) shows that 

IRLS left many moderate outliers undetected. By more aggressive detection with B = 1.0, IRLS 

declared 40 points as outliers, and Figure 10.1(b) shows that more of the moderate outliers were 

detected by decreasing B. Again, NIRLS was more effective in discriminating outliers from 

inliers with a ratio of errors of 5.87 compared to 4.27 for IRLS. The aggressive outlier search 

with B = 1.0 does find more outliers. However, it declares more points as outliers and the 

computational advantage of repairing only outliers may be reduced. For example, the number of 

outliers declared by NIRLS increased from 21 with B = 1.9 to 41 with B = 1.0. Taking the mean 

CPU hour of Case A2 as a single unit, our efforts to repair Case A2, requiring GENESIS runs of 

Cases A5, B2, and B5, costs about extra 4.6 units of CPU hour. Compared to obtaining accurate 

Ws for all data points using Cases A2, A5, B2, and B5, NIRLS repair costs about 33% and 47% 

CPU hours for B = 1.9 and B = 1.0, respectively.   

Table 10.3 and Figure 10.2 show results for Case B2. Again, nine data points of 

excessively heavy designs were excluded from the experimental design. There were 22 big 

outliers in the remaining 117 data points, indicating a higher level of noise than Case A2. The 

advantage of NIRLS over IRLS is clearly demonstrated by comparing the results when B = 1.0. 

NIRLS successfully detected all of the 22 big outliers and many moderate ones, while IRLS 

missed six of the big outliers. With more noise, the ratio of correction of Ws for outliers and 

inliers is 5.97 for NIRLS compared to 2.67 for IRLS with B = 1.0, indicating that NIRLS is more 

successful in homing in on points with large errors. Again, the aggressive outlier search detects 

more outliers but there is increased computational cost. Taking the mean CPU hour of Case B2 

as a single unit, our efforts to repair Case B2, requiring GENESIS runs of Cases A2, A5, and B5, 

costs about six extra units of CPU hour. Compared to obtaining accurate Ws for all data points 
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using Cases A2, A5, B2, and B5, NIRLS repair costs about 36% and 52% of CPU hour for B = 

1.9 and B = 1.0, respectively. 

Taken together, the results of Case A and Case B indicate that the IRLS procedures are 

useful for detecting points with large optimization errors, and that the NIRLS procedures are 

more reliable in this task, especially under conditions of greater noise. 

 
10.3 Advantage of Outlier Repair over Exclusion 

 
The IRLS procedure in itself achieves a better fit than the least squares by down-

weighting outlier points and excluding them from the fit. However, removing the outliers can 

result in a poor approximation in the region where these outliers are located [45]. Repairing these 

outliers, on the other hand, does not suffer from this problem. Figure 10.3 compares the Ws 

prediction by RS approximations along a design line connecting two detected outliers. It shows 

that the least squares results based on repaired data are better than IRLS without repair because 

the latter excluded those outliers from the fit. Therefore, it was decided to use the least squares 

fit to the repaired data to obtain improved RS approximations. 

 
10.4 Improvement of Wing Structural Weight RS Approximations 

Using Repaired Data 
  
A full quadratic RS model was fit to the original and repaired data of Case A2 using the 

least squares fit, and the accuracy measures are shown in the last two columns of Table 10.2. 

Before repair, the root mean square error (RMSE) was 6.0% of the mean Ws, and this was 

reduced to 3.2% by IRLS repair. Although more of the moderate outliers were repaired by 

NIRLS than IRLS, further improvement of the fit by NIRLS was small; the RMSE was 3.1%. It 

implies that the gain of outlier repair in terms of fit is saturated with IRLS. In fact the RMSE was 

slightly increased to 3.3% with full repair. That is because IRLS/NIRLS procedure identifies 

only offending data points against the fit, while full repair may move away non-offending points 

from the fit. Besides, this problem of the full repair may be attributed to that the repaired Ws 

response is not perfectly smooth as seen in Figure 3.4. Overall, about the half of the RMSE 
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before outlier repair is due to the error from incomplete convergence, and the rest may be 

attributed to the modeling deficiency of the quadratic model. 

For Case B2 in Table 10.3, the RMSE of the quadratic RS fits on Ws(B2) was reduced 

from 8.7% to 4.1% by IRLS repair, and reduced further to 3.2% by NIRLS repair. Note that six 

additional big outliers were repaired with NIRLS. Figure 10.4 compares the RS approximations 

before and after repair along the same HSCT designs used in Figure 9.2. The RS fit based on the 

uncorrected Ws (B2) over-predicted the response in the middle of the plot. For B = 1.9, as shown 

in Figure 10.4(a), the RS approximation based on data repaired by IRLS improved. Note that the 

RS approximation from NIRLS repair lies almost on top of that of IRLS. However, Figure 

10.4(b) indicates that NIRLS repair was slightly better than IRLS with B = 1.0 at the right region 

of the plot. These observations are in agreement with the results of RMSE of Table 10.3. In 

terms of accuracy of Ws RS fits, outlier repair by IRLS improved the RS approximations 

substantially, and further gain by NIRLS repair was relatively small. 

 
10.5 HSCT Configuration Optimization Using Improved Wb RS 

Approximations  
 

We performed HSCT configuration optimizations using the quadratic Wb RS fits obtained 

in the previous section. The effects of improvements of RS approximations by outlier repair on 

optimum HSCT designs were investigated. Note that Wb RS approximations were obtained by 

multiplying the Ws response surface approximations by a factor of 0.7 because we assumed that 

Wb was 70% of Ws. Table 10.4 contains the initial and optimal designs according to the RS 

models used. The initial design point was the center of the design box except that the fuel weight 

was increased to 430000 lb. to satisfy the range constraint at the beginning of the configuration 

optimization. The RS fit based on Case B2 data without outlier repair was first used to find the 

optimal HSCT configuration, called optimum O. Then, configuration optimizations starting from 

optimum O are performed using RS fits based on repaired data: IRLS repair with B = 1.9 (RSI), 

NIRLS repair with B = 1.9 (RSN), and full repair (RSF). The corresponding optimal HSCT 

designs were labeled as optimum I, N, and F, respectively. At the initial design, the estimated 

true Wb was 48633 lb. but the RS approximation without outlier repair, RSO, over-predicted Wb 
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with 12.0% error. By repairing outliers, the error was reduced to 7.4%, 5.1%, and 1.8% for RSI, 

RSN, and RSF, respectively.  

Comparing the RS prediction for a given optimum design (column), we observe that the 

predicted Wb’s decrease along RSO, RSI, RSN, and RSF. It is seen that the original RS 

approximation, RSO, has positive errors while RS fits with repair tend to have negative errors, 

which increase in magnitude along RSI, RSN, and RSF. For example, at optimum O, RSO has a 

positive error of 9.1%, but the errors became more negative along RSI, RSN, and RSF with –4.9%, 

-6.8%, and –7.3% errors, respectively. The same trend is observed for optima I, N, and F. This 

may be attributed to over-optimism of the optimizer; optimizers tend to exploit regions where the 

fits are erroneously optimistic, and converge to designs for which the RS approximations under-

predict the response. By intensive outlier repair such as NIRLS or full repair, Wb estimates by the 

RS fits are lowered, and then any exploitation of weakness of the RS approximations by the 

optimizer is fully experienced at the optimum.  

Therefore, a moderate outlier search such as IRLS may be conservative in the terms of 

the configuration optimization. It has a protective margin against over-optimism of the optimizer 

because the moderately corrected RS fit would slightly over-predict the structural weight over 

much of the design space. The errors of the RS approximation at optima support this conjecture. 

For optimum O, RSO over-predicted Wb with 9.1% error. For optimum I of IRLS repair, the error 

of RSI was only 0.4%, although RSI cannot be expected to show such accuracy in general because 

for other optima, RSI has errors around –5%. For optimum N of NIRLS repair, RSN under-

predicted the Wb with –3.2% error. Furthermore, for optimum F of full repair, RSF has –7.5% 

error. The take-off gross weight of the optima decreases as Wb predicted by RS approximations 

decreases with more outliers repaired.  

Table 10.4 contains the configuration variables at the optima, and the shape of the 

planform and airfoil are compared in Figure 10.5 for initial and optimal designs. Comparing 

optimum O, I, N, and F, they are very similar with the only significance being the fuel weight 

(v5), which decreases as a compensation of the decrease in predicted Wb. Accordingly, the 

objective function, WTOGW, decreases along optimum O, I, N, and F, and the range constraint was 

active for all the optima. 
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Table 10.1: Performance of structural optimization for various GENESIS parameter settings. 
 Case A2 Case A5 Case B2 Case B5 

Number of points for which the best Ws 

was achieved out of 126 points 
0 65 0 61 

Mean of the estimated errors by taking 

the best of four runs as true Ws 

(percentage of mean Ws) 

3925 lb. 

(4.85%) 

155.8 lb. 

(0.193%) 

4547 lb. 

(5.62%) 

26.8 lb. 

(0.033%) 
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Table 10.2: Results of outlier repair for Case A2. 

 B 

Number of 

outliers 

a/b/c* 

Mean of repair 

on 

outliers(lb)† 

Mean of repair 

on inliers(lb)‡ 

Ratio of mean 

repair on OL to 

IL 

mean Ws R2 

RMSE in lb. 

(% to the 

mean Ws) 

Before 

repair 
NA NA NA NA NA 74795 0.9652 

4520 

(6.0%) 

IRLS 

repair 
1.9 21/10/11 7391 1516 4.88 73445 0.9836 

2944 

(4.0%) 

NIRLS 

repair 
1.9 21/10/11 8627 1240 6.96 73220 0.9878 

2484 

(3.4%) 

IRLS 

repair 
1.0 40/10/11 5172 1211 4.27 72996 0.9891 

2367 

(3.2%) 

NIRLS 

repair 
1.0 41/10/11 5555 946 5.87 72815 0.9900 

2252 

(3.1%) 

Full 

repair§ 
NA NA NA NA NA 72206 0.9885 

2388 

(3.3%) 

*:  a ~ Number of detected outliers 
     b ~ Number of big outliers detected (estimated error is greater than 10%) 
     c ~ Total number of big outliers out of the 115 data points (estimated error is greater than 10%) 
†: (Sum of Ws repair on outliers)/a 
‡: (Sum of Ws repair on data points other than outliers)/(Total number of points - a) 
§: All 115 points repaired 
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Table 10.3: Results of outlier repair for Case B2. 

 B 

Number of 

outliers 

a/b/c* 

Mean of repair 

on 

outliers(lb)† 

Mean of repair 

on inliers(lb)‡ 

Ratio of mean 

repair on OL to 

IL 

mean Ws R2 

RMSE in lb. 

(% to the 

mean Ws) 

Before 

repair 
NA NA NA NA NA 77701 0.9297 

6755 

(8.7%) 

IRLS 

repair 
1.9 27/11/22 8694 3314 2.62 75695 0.9769 

3527 

(4.7%) 

NIRLS 

repair 
1.9 29/19/22 11379 2307 4.93 74881 0.9824 

3042 

(4.1%) 

IRLS 

repair 
1.0 49/16/22 7158 2680 2.67 74703 0.9828 

3052 

(4.1%) 

NIRLS 

repair 
1.0 52/22/22 8476 1419 5.97 73934 0.9902 

2335 

(3.2%) 

Full 

repair§ 
NA NA NA NA NA 73146 0.9879 

2578 

(3.5%) 

*:  a ~ Number of detected outliers 
    b ~ Number of big outliers detected (estimated error is greater than 10%) 
    c ~ Total number of big outliers out of the 117 data points (estimated error is greater than 10%) 
†: (Sum of Ws repair on outliers)/a 
‡: (Sum of Ws repair on data points other than outliers)/(Total number of points - a) 
§: All 117 points repaired 
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Table 10.4: Results of five variable configuration optimizations using Wb RS before and after 
outlier repair (Based on data of Case B2). 

 
Initial 

design 
Optima using Wb RS approximations 

  
Without repair 

(Optimum O) 

IRLS repair 

(Optimum I) 

NIRLS repair 

(Optimum N) 

Full repair 

(Optimum F) 

WTOGW (lb.) 784923 788157 779512 775931 771693 

RSo, 

Without repair 

 

54492 

(Error* = 

12.0%) 

39912 

(Error = 

9.1%) 

39941 

(Error = 

9.5%) 

39873 

(Error = 

9.6%) 

39900 

(Error = 

9.6%) 

RSI, 

with IRLS 

repair 

52222 

(Error = 

7.4%) 

34792 

(Error = 

-4.9%) 

36601 

(Error = 

0.4%) 

36442 

(Error = 

0.1%) 

34695 

(Error = 

-4.7%) 

RSN, 

with NIRLS 

repair 

51124 

(Error = 

5.1%) 

34088 

(Error = 

-6.8%) 

34071 

(Error = 

-6.6%) 

35235 

(Error = 

-3.2%) 

33892 

(Error = 

-7.0%) 

RSF, 

With full 

repair 

49499 

(Error = 

1.8%) 

33895 

(Error = 

-7.3%) 

33859 

(Error = 

-7.2%) 

33678 

(Error = 

-7.5%) 

33686 

(Error = 

-7.5%) 

Wb 

(lb.) 

 

best of four 

GENESIS runs 
48633 36574 36473 36397 36414 

0.01 × (v1, ft.) 1.7 1.82000 1.81619 1.81382 1.81081 

0.1 × (v2, ft.) 1.0 1.01932 1.01929 1.01913 1.01910 

1.0 × (v3, deg.) 71.5 67.4904 67.5588 67.4791 67.5157 

100 × (v4, %) 2.1 2.12321 2.12528 2.12585 2.12664 

0.00001 × (v5, lb.) 4.3 4.14019 4.09583 4.07589 4.05421 

*: percentage error in Wb prediction by RS with respect to the best of four GENESIS runs. 
vi, (i = 1,…,5): configuration design variables at the calculated optima of the HSCT. 



Chapter 10. Detection and Repair of Poorly Converged Structural Optimization Runs            120 

 

 

 

Weighting, w

E
st

im
at

ed
er

ro
r

of
W

s
(%

)

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

Outlier
Inlier

 
(a) IRLS, B = 1.9. 

Weighting, w
E

st
im

at
ed

er
ro

r
of

W
s

(%
)

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

Outlier
Inlier

 
(b) IRLS, B = 1.0. 

Weighting, w

E
st

im
at

ed
er

ro
r

of
W

s
(%

)

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

Outlier
Inlier

 
(c) NIRLS, B = 1.9. 

Weighting, w

E
st

im
at

ed
er

ro
r

of
W

s
(%

)

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

Outlier
Inlier

 
(d) NIRLS, B = 1.0. 

 

 

Figure 10.1: Estimated error for the detected outliers and inliers for Case A2.



Chapter 10. Detection and Repair of Poorly Converged Structural Optimization Runs            121 

 

 
 
 

Weighting, w

E
st

im
at

ed
er

ro
r

of
W

s
(%

)

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

Outlier
Inlier

 
(a) IRLS, B = 1.9. 

Weighting, w
E

st
im

at
ed

er
ro

r
of

W
s

(%
)

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

Outlier
Inlier

 
(b) IRLS, B = 1.0. 

Weighting, w

E
st

im
at

ed
er

ro
r

of
W

s
(%

)

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

Outlier
Inlier

 
(c) NIRLS, B = 1.9. 
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(d) NIRLS, B = 1.0. 

 

Figure 10.2: Estimated error for the detected outliers and inliers for Case B2. 
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Figure 10.3: Comparison of RS approximations between outlier repair and outlier exclusion on a 
design line connecting two identified outliers by IRLS. 

IRLS removes outliers from the fit by downweighting them (IRLS outlier exclusion). 
Alternatively, the identified outliers may be repaired and least squares fit can be used to the 
repaired data (IRLS repair). Accurate Ws data from GENESIS runs are plotted for the 21 HSCT 
configurations generated by linear interpolation between the two identified outliers (design 1 and 
21). The plot indicates RS with outlier repair is more accurate than RS with outlier exclusion in 
the region where the outliers are located. 
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(a) Case B2, B = 1.9. 
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(b) Case B2, B = 1.0. 

Figure 10.4: Effects of outlier repair on the Ws RS approximations. 
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Figure 10.5: Comparison of optimum designs using Wb RS approximations without and with 
outlier repair (based on data of Case B2). 
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Chapter 11  Conclusions 
 

The goal of this work was to apply statistical techniques to estimate and reduce errors of 

the computational simulations used in the design of an HSCT. First, discretization error from a 

supersonic panel method, WINGDES, was considered. Second, errors in wing structural weight 

calculated from a structural optimization procedure using GENESIS were analyzed along with 

the Rosenbrock test problem. The noisy optimization errors were modeled via probability 

distributions. A robust regression technique, IRLS, was used to identify optimization runs with 

large errors and to improve the RS fit on the optimization data.  

A grid convergence study showed that CL calculated from WINGDES was subject to 

discretization error that converged like h0.5. Richardson extrapolation was not accurate because it 

magnified the noise in CL data. A RS model using several mesh sizes reduced the noise problem 

associated with the Richardson extrapolation. In addition, the RS approach was compared to 

posterior response surface fit to Richardson extrapolation, and was shown to be efficient in 

estimating the discretization error by using carefully selected experimental designs. 

Probabilistic models were applied to optimization errors due to incomplete convergence. 

The Weibull model was successfully fit to the optimization errors for the Rosenbrock test 

function and structural optimization of the HSCT. The minimum sample size for a reliable 

estimate of average error was around 50. An indirect approach using differences between two 

optimization results was proposed. The indirect fit enabled us to estimate the average errors of 

low-fidelity optimizations without performing high-fidelity optimizations that can be expensive. 

The results demonstrated the usefulness of the probabilistic model of the optimization error. As a 

result, we obtained a data-driven probability model of the simulation errors, which can be easily 

utilized in robust design studies. 

A robust regression technique, M-estimation implemented by the IRLS algorithm, was 

applied to the Rosenbrock problem to identify optimization runs with large errors, outliers. We 

elected to repair the outliers by performing higher fidelity optimization runs, because excluding 

data points may reduce the accuracy of the RS model. For the Rosenbrock problem, outlier repair 

efforts substantially improved the quality of the optimum of the RS model. Then we devised 

nonsymmetric IRLS (NIRLS) with a nonsymmetric weighting function, to utilize the tendency of 
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one-sidedness of the optimization errors. It was shown that NIRLS was more reliable than IRLS 

in identifying outliers from optimization results.  

Structural optimization data with large errors resulted in inaccurate RS models of the 

wing bending material weight (Wb). The IRLS/NIRLS procedure was also applied to identify and 

repair the outliers. Again, NIRLS was more effective than IRLS in identifying outliers. In terms 

of RS fit, IRLS repair substantially improved the accuracy of the RS model, while further 

improvements by NIRLS were relatively small. HSCT configuration optimizations were 

performed using Wb RS models before and after outlier repair. The results indicated that the 

system optimizer exploited the modeling error of the RS model, and the moderate outlier repair 

of IRLS was a conservative choice compared to NIRLS repair in the HSCT design problem. 
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Appendix A Design of Experiments 
 
A.1 Full Factorial Design 
 

For experimental design, allowable range of each independent variable is defined by 

lower and upper bounds. In full factorial designs, equally spaced levels of each variable are 

combined to generate enough data points to create a response surface model (Ref. [41], pp. 79-

123). Figure A.1 shows the three level full factorial (FF) design in three dimensional design 

space, which is sufficient for a quadratic polynomial model. In an m-dimensional design space, l-

level full factorial design requires lm data points. When a three level FF design is used, the largest 

possible number of design variables would not be greater than ten because 310 = 59049, unless 

the experiments (computational simulations) are very cheap.  

 
Figure A.1: Three level full factorial design of three dimensions.   

 
A.2 Centered Composite Design (CCD) 
 

To fit a quadratic model with a reasonable number of design points, central composite 

design (CCD) can be used (Ref. [41], pp. 297-340). The CCD consists of two level full factorial 

design, a center point, and star points located in the direction of each face of the hypercube. Face 
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centered central composite design (FCCC) is a special case of CCD, for which the star points are 

located on the center of each face of the hypercube. Figure A.2 shows a FCCC in three 

dimensional design space.  The CCD model can be used to fit a quadratic model and requires 2m 

+ 2m + 1 experiments. For example, 1045 experiments (computational simulations) are needed in 

a ten dimensional design space compared to 59049 for the FF design. 

star points

center point

factorial points

 
Figure A.2: Face centered central composite design of three dimensions. 

 
A.3 D-optimal Design 
 

For a higher dimensional problem, FCCC still requires too many experiments. D-optimal 

design (Ref. [41], pp. 363-393) provides a systematic way to select a subset of design points 

from a pool of design points such as FF or FCCC. A D-optimal experimental design is a 

collection of design points in a design space that minimizes the variance of the estimated 

regression coefficients. There are several desirable properties of D-optimal designs [93]. 

 
• The variance in the estimated coefficients is minimized. 

• The maximum variance of any predicted value, ŷ , is minimized. 

• | XTX | is invariant to the scaling of x.  

 
Typically, optimization methods are used to select design points from a pool of data points.
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Appendix B Failure Rate of the Weibull 

Distribution 
 

In the context of failure test problems such as measuring the lifetime of light bulbs, it is 

useful to consider a function that gives the probability of failure during a very small time 

increment, assuming that no failure occurred before this time. This function known as the failure 

rate [62], or conditional failure function, is expressed as 

 

)(1
)(

)(
tF

tf
t

−
=φ  ,     (B.1) 

 

where f(t) and F(t) are the probability density and cumulative distribution functions for the time 

to failure. Consequently, φ(t)dt can be interpreted as the conditional probability that failure will 

occur during the period between t and (t+dt), on condition that there was no failure until time t. 

For the Weibull distribution, the failure rate becomes 

 
1)( −−= αααβφ tt .     (B.2) 

 

Figure 5.2 shows the Weibull density functions with β =1 and various values of α. The 

corresponding failure rates are shown in Figure B.1. Note that when α = 1, the failure rate is 

constant, and the Weibull model is reduced to the exponential distribution. For α < 1, the failure 

rate decreases asymptotically to zero along t, but with α > 1, the failure rate increases to infinity 

from zero. For example, a manufacturer of light bulbs may want to know the expected lifetime of 

their products by measuring the time to failure. Increasing failure rate implies that old light bulbs 

have greater chance of failure than newer ones, whereas decreasing failure rate indicates that old 

light bulbs are more unlikely to fail maybe because most of the problems occur at the beginning 

of the lifetime of light bulbs. Constant failure rate indicates that the probability of failure does 

not depend on how long the light bulbs have been in use. 
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Figure B.1: Failure rate for Weibull distribution with β  = 1 and various α.
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Appendix C Numerical Integration of Joint 

Probability Distribution of the Weibull Models 
 

For the indirect approach using differences between two simulation results, the 

probability density function (PDF) of the difference is obtained via integration of Eq. 5.12. The 

integration has a closed form solution for exponential models. However, for Weibull models, 

there is no closed form solution and numerical integration is required. If random variables s and t 

are modeled as Weibull,  
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Now, Eq. 5.12 is written as 
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and 
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Note that the integrand of Eq. C.2 or Eq. C.3 has a singularity at the lower bound of the 

integration, when α1 < 1 for Eq. C2 or α2  < 1 for Eq. C3. A technique of change of variable 



Appendix C. Numerical Integration of Joint Probability Distribution of the Weibull Models    141 

 

(Ref. [94], p. 163) was utilized to remove the singularities. For Eq. C.2, we change the variable 

of integration, s, by introducing ξ such that 
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Now, Eq. C.2 is rewritten as 
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Similarly, by introducing 
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Eq. C3 is rewritten as 
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Since the singularities are removed, Eqs. C.5 and C.7 can be numerically integrated. Eqs. 

C.5 and C.7 are improper integrals due to the infinite range. In numerical integration, the upper 

bound of integration is set to be sufficiently large to guarantee that the contribution of the range 

cut off is negligible. Gaussian quadrature of degree of precision three was performed on 100 

subintervals logarithmically distributed. The MATLAB source codes for numerical integration 

are included in Appendix F. 
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Appendix D Experimental Design of HSCT and 

Ws Data 
 

This table contains observation numbers (ID), HSCT configuration design variables (vi) 

in a coded form, and Ws data according to convergence settings of GENESIS (see Table 9.1). 

 
  ID           v1              v2             v3              v4              v5        Ws(A2)         Ws(A3)        Ws(A5)         Ws(B2)         Ws(B3)          Ws(B5) 

  1 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 106332.40 105457.10 105545.20 106094.60 105608.50 105607.50 
  2 -1.0000 -1.0000 -1.0000 -1.0000  1.0000 167000.50 119731.40 119708.40 130862.10 119878.90 119689.30 
  3 -1.0000 -1.0000 -1.0000  1.0000 -1.0000  52039.14  51355.46  51194.86  56694.88  51272.82  51244.04 
  4 -1.0000 -1.0000 -1.0000  1.0000  1.0000  58139.32  57835.40  57739.08  58019.96  57846.68  57796.78 
  5 -1.0000 -1.0000  1.0000 -1.0000 -1.0000 190725.50 194565.80 191812.00 187808.40 187481.30 182697.10 
  6 -1.0000 -1.0000  1.0000 -1.0000  1.0000 234341.00 225817.00 220917.00 217070.40 217563.60 215875.20 
  7 -1.0000 -1.0000  1.0000  1.0000 -1.0000  89058.14  83702.04  83488.70  86268.12  84671.00  83487.62 
  8 -1.0000 -1.0000  1.0000  1.0000  1.0000 104526.00  96904.66  97306.20  99919.14  99438.82  96857.64 
  9 -1.0000  1.0000 -1.0000 -1.0000 -1.0000 109287.30 104564.60 104378.00 104537.90 105553.90 104354.80 
 10 -1.0000  1.0000 -1.0000 -1.0000  1.0000 124378.50 117463.50 117577.90 117568.80 118104.40 117437.50 
 11 -1.0000  1.0000 -1.0000  1.0000 -1.0000  50933.34  50631.46  50548.68  55400.02  50961.22  50643.84 
 12 -1.0000  1.0000 -1.0000  1.0000  1.0000  57014.02  57004.92  56915.02  60542.10  56972.50  56956.66 
 13 -1.0000  1.0000  1.0000 -1.0000 -1.0000 203871.00 200829.80 199567.60 204194.80 202037.20 199517.60 
 14 -1.0000  1.0000  1.0000 -1.0000  1.0000 263923.40 235927.40 239247.20 237663.40 236686.40 236512.20 
 15 -1.0000  1.0000  1.0000  1.0000 -1.0000  90722.86  88296.52  87747.98  88677.62  89304.80  87748.90 
 16 -1.0000  1.0000  1.0000  1.0000  1.0000 102593.50 102595.10 101940.70 113878.40 104394.80 101935.30 
 17  1.0000 -1.0000 -1.0000 -1.0000 -1.0000  66092.94  65497.42  64124.26  76944.06  70750.98  64139.26 
 18  1.0000 -1.0000 -1.0000 -1.0000  1.0000  84773.64  69416.90  69334.50  88443.62  69527.42  69560.20 
 19  1.0000 -1.0000 -1.0000  1.0000 -1.0000  42375.82  42402.96  42374.24  42388.44  42374.74  42374.58 
 20  1.0000 -1.0000 -1.0000  1.0000  1.0000  45668.54  45442.28  45380.18  45489.02  45386.28  45383.38 
 21  1.0000 -1.0000  1.0000 -1.0000 -1.0000 101277.90  90567.38  90351.54  91465.70  90695.50  90350.30 
 22  1.0000 -1.0000  1.0000 -1.0000  1.0000 107276.10 104907.00 104411.00 106736.90 104990.00 104396.60 
 23  1.0000 -1.0000  1.0000  1.0000 -1.0000  53731.12  51620.70  51606.92  51609.00  51609.52  51606.86 
 24  1.0000 -1.0000  1.0000  1.0000  1.0000  57268.46  57245.26  57245.22  57747.56  57291.00  57292.04 
 25  1.0000  1.0000 -1.0000 -1.0000 -1.0000  64612.34  64646.06  64398.98  68080.40  64823.10  64472.42 
 26  1.0000  1.0000 -1.0000 -1.0000  1.0000  69940.16  69555.72  69643.38  71897.14  69554.16  69556.54 
 27  1.0000  1.0000 -1.0000  1.0000 -1.0000  42600.66  42660.40  42605.82  43756.36  42600.38  42599.40 
 28  1.0000  1.0000 -1.0000  1.0000  1.0000  45416.66  45415.04  45414.14  45517.78  45414.72  45414.42 
 29  1.0000  1.0000  1.0000 -1.0000 -1.0000  92567.38  90904.04  90944.52  93378.46  90906.52  90900.94 
 30  1.0000  1.0000  1.0000 -1.0000  1.0000 105474.50 105018.40 105026.50 106700.90 106700.70 104996.00 
 31  1.0000  1.0000  1.0000  1.0000 -1.0000  51865.88  51857.66  51838.60  51839.62  51839.62  51839.34 
 32  1.0000  1.0000  1.0000  1.0000  1.0000  57868.72  57414.40  57346.32  59077.90  57358.88  57358.88 
 33 -1.0000  0.0000  0.0000  0.0000  0.0000 100422.00  97777.18  97486.42 102726.90  97947.46  97650.86 
 34  1.0000  0.0000  0.0000  0.0000  0.0000  58412.00  58954.34  58237.34  58960.66  58627.98  58238.38 
 35  0.0000 -1.0000  0.0000  0.0000  0.0000  68891.74  67021.44  67182.54  73427.40  67001.24  66999.18 
 36  0.0000  1.0000  0.0000  0.0000  0.0000  67398.60  66410.72  66321.44  74623.80  67338.62  66394.38 
 37  0.0000  0.0000 -1.0000  0.0000  0.0000  56398.60  54806.26  54798.16  82663.16  54797.66  54789.08 
 38  0.0000  0.0000  1.0000  0.0000  0.0000  84875.72  85243.72  84569.36  86252.76  84629.40  84549.32 
 39  0.0000  0.0000  0.0000 -1.0000  0.0000 104841.30 102452.50 102327.70 116375.90 103165.70 102473.20 
 40  0.0000  0.0000  0.0000  1.0000  0.0000  53490.94  53236.12  53012.44  59706.26  53137.94  53026.66 
 41  0.0000  0.0000  0.0000  0.0000 -1.0000  63148.18  62883.12  62889.78  66971.08  62946.30  62932.60 
 42  0.0000  0.0000  0.0000  0.0000  1.0000  71660.06  71236.48  71281.12  73086.04  71376.78  71242.36 
 43  0.0000  0.0000  0.0000  0.0000  0.0000  67567.28  67117.62  67008.62  75559.64  67101.84  67087.56 
 44 -0.7500 -0.7500 -0.7500 -0.7500 -0.7500  93122.32  91426.56  90098.18  90326.06  89649.82  89638.34 
 45 -0.7500 -0.7500 -0.7500 -0.7500  0.7500 103405.40  99527.36  98378.68  99656.72  98307.74  98261.22 
 46 -0.7500 -0.7500 -0.7500  0.7500 -0.7500  54127.98  53811.36  53621.48  56364.98  56364.98  53718.84 
 47 -0.7500 -0.7500 -0.7500  0.7500  0.7500  59951.34  58687.28  58705.32  60451.38  59168.76  58779.54 
 48 -0.7500 -0.7500  0.7500 -0.7500 -0.7500 152378.30 149592.70 149010.70 151503.80 150682.90 149006.10 
 49 -0.7500 -0.7500  0.7500 -0.7500  0.7500 175400.80 168567.80 167960.10 170373.30 170373.30 167953.10 
 50 -0.7500 -0.7500  0.7500  0.7500 -0.7500  86149.28  81560.16  81528.08  83889.06  82245.40  81527.18 
 51 -0.7500 -0.7500  0.7500  0.7500  0.7500  91730.22  90886.52  90885.88  91762.94  91110.40  90875.34 
 52 -0.7500  0.7500 -0.7500 -0.7500 -0.7500  89483.68  87773.00  87520.34  88694.28  87622.78  87521.72 
 53 -0.7500  0.7500 -0.7500 -0.7500  0.7500  96136.06  95762.24  95717.68 105490.30  95715.74  95714.08 
 54 -0.7500  0.7500 -0.7500  0.7500 -0.7500  52828.56  52662.04  52636.42  58204.50  52739.58  52725.52 
 55 -0.7500  0.7500 -0.7500  0.7500  0.7500  64513.44  57656.02  57649.02  61382.40  58022.62  57704.88 
 56 -0.7500  0.7500  0.7500 -0.7500 -0.7500 180922.10 157423.40 156556.00 158775.90 158007.80 156558.60 
 57 -0.7500  0.7500  0.7500 -0.7500  0.7500 208151.40 177464.30 176256.30 188143.40 178224.70 176258.80 
 58 -0.7500  0.7500  0.7500  0.7500 -0.7500  85471.04  84258.78  84104.64  87108.06  85489.78  84098.20 
 59 -0.7500  0.7500  0.7500  0.7500  0.7500  95735.40  94282.86  93990.80  95629.72  94109.74  93986.40 
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-----(Continued from the previous page)----- 
  ID            v1             v2             v3             v4              v5           Ws(A2)         Ws(A3)        Ws(A5)         Ws(B2)         Ws(B3)         Ws(B5) 

 
 60  0.7500 -0.7500 -0.7500 -0.7500 -0.7500  62413.66  62078.72  61842.98  67439.00  62158.70  61843.70 
 61  0.7500 -0.7500 -0.7500 -0.7500  0.7500  67047.74  66642.68  66430.50  70209.74  66436.14  66426.16 
 62  0.7500 -0.7500 -0.7500  0.7500 -0.7500  44480.96  44403.68  44415.34  47057.78  44416.18  44425.62 
 63  0.7500 -0.7500 -0.7500  0.7500  0.7500  47030.40  46991.16  46975.52  53448.40  46974.30  46975.50 
 64  0.7500 -0.7500  0.7500 -0.7500 -0.7500  87257.58  85202.66  85240.18  87409.90  85379.06  85199.60 
 65  0.7500 -0.7500  0.7500 -0.7500  0.7500  98044.42  94847.48  94718.80  95492.50  94678.42  94672.36 
 66  0.7500 -0.7500  0.7500  0.7500 -0.7500  55973.40  55718.84  55806.66  63814.12  55735.12  55734.90 
 67  0.7500 -0.7500  0.7500  0.7500  0.7500  63992.06  60334.24  60316.98  61096.46  60326.70  60319.04 
 68  0.7500  0.7500 -0.7500 -0.7500 -0.7500  61445.64  61396.06  61377.12  73911.84  62919.34  61584.66 
 69  0.7500  0.7500 -0.7500 -0.7500  0.7500  66449.28  66070.32  66001.70  66068.68  66011.22  66024.14 
 70  0.7500  0.7500 -0.7500  0.7500 -0.7500  47023.24  44236.30  44239.04  44387.22  44532.00  44524.82 
 71  0.7500  0.7500 -0.7500  0.7500  0.7500  49123.68  46727.26  46723.76  47105.62  46732.30  46728.84 
 72  0.7500  0.7500  0.7500 -0.7500 -0.7500  86786.86  86215.90  85996.76  89165.36  85910.22  85913.18 
 73  0.7500  0.7500  0.7500 -0.7500  0.7500  95913.28  95324.88  95313.70  95837.00  95444.32  95300.98 
 74  0.7500  0.7500  0.7500  0.7500 -0.7500  56456.18  56010.02  55832.82  55866.54  55836.78  55834.66 
 75  0.7500  0.7500  0.7500  0.7500  0.7500  60827.32  60442.10  60446.26  60973.76  60475.74  60467.64 
 76 -0.7500  0.0000  0.0000  0.0000  0.0000  95116.86  88482.68  88496.44 101316.00  88489.30  88485.76 
 77  0.7500  0.0000  0.0000  0.0000  0.0000  60894.46  59749.10  59712.32  61006.82  59651.90  59649.92 
 78  0.0000 -0.7500  0.0000  0.0000  0.0000  68762.20  67580.68  67166.50  83693.58  67259.34  67108.56 
 79  0.0000  0.7500  0.0000  0.0000  0.0000  67001.22  66686.32  66616.24  67430.96  66716.48  66706.32 
 80  0.0000  0.0000 -0.7500  0.0000  0.0000  57878.92  56412.22  55995.08  70424.04  56188.30  55980.74 
 81  0.0000  0.0000  0.7500  0.0000  0.0000  84318.34  82705.72  82589.88  84198.34  82884.04  82615.84 
 82  0.0000  0.0000  0.0000 -0.7500  0.0000 101273.90  90302.30  89994.74  91405.06  90484.88  90035.28 
 83  0.0000  0.0000  0.0000  0.7500  0.0000  56016.32  55669.00  55641.38  63745.34  55655.14  55654.54 
 84  0.0000  0.0000  0.0000  0.0000 -0.7500  71287.36  63859.12  63854.64  66971.44  63937.82  63935.66 
 85  0.0000  0.0000  0.0000  0.0000  0.7500  70524.50  70319.58  70166.34  77578.64  70367.88  70169.70 
 86 -0.7500 -1.0000  0.2500  0.7500 -1.0000  83912.78  69910.44  69654.36  71329.58  69683.68  69514.26 
 87 -0.7500 -1.0000  0.7500 -0.2500 -1.0000 127326.70 113382.60 113127.80 116613.50 114088.70 113135.40 
 88 -0.7500  1.0000 -0.7500 -0.2500  1.0000  79769.12  78895.88  78581.62  86779.58  78673.74  78673.74 
 89 -0.7500  1.0000 -0.2500 -0.7500  1.0000 134293.90 121008.00 120670.30 134204.90 122791.90 120677.50 
 90 -0.7500  1.0000 -0.2500  0.7500  1.0000  72148.34  70558.14  69147.70  69543.38  69484.20  69434.86 
 91 -0.7500  1.0000  0.7500  0.2500  1.0000 113048.50 112831.60 112490.50 114591.00 113543.30 112483.90 
 92 -0.2500 -1.0000 -0.7500 -0.7500 -1.0000  74372.02  74427.08  74196.26  75564.12  74243.74  74242.86 
 93 -0.2500 -1.0000  0.7500  0.7500  1.0000 100128.20  75321.84  75007.96  84158.12  75311.36  74991.76 
 94 -0.2500  1.0000 -0.7500  0.7500 -1.0000  46772.84  46453.24  46439.08  50876.72  46495.58  46480.02 
 95  0.2500 -1.0000 -0.7500  0.7500  1.0000  51762.92  49085.12  48892.30  54190.26  52377.96  48956.14 
 96  0.2500  1.0000 -0.7500 -0.7500  1.0000  71309.64  70984.56  70967.40  81046.04  70883.30  70884.74 
 97  0.2500  1.0000  0.7500 -0.7500  1.0000 114528.00 111356.10 111184.80 146473.30 112490.60 111168.80 
 98  0.7500 -1.0000 -0.7500 -0.2500 -1.0000  53192.74  53088.46  52775.20  59274.66  53180.18  52853.12 
 99  0.7500 -1.0000  0.2500  0.7500 -1.0000  51244.04  51262.88  51248.44  51275.88  51253.02  51243.96 
100  0.7500 -1.0000  0.7500 -0.2500  1.0000  79352.56  79305.70  79184.68  80004.84  79178.26  79174.36 
101  0.7500  1.0000  0.2500 -0.7500 -1.0000  76918.50  77045.24  75830.92  76616.84  76349.94  75828.30 
102  0.7500  1.0000  0.7500  0.2500 -1.0000  61628.70  61363.60  61358.84  61376.60  61396.96  61350.48 
103 -0.7500 -1.0000 -0.7500  0.2500 -1.0000  60927.40  60408.52  60352.74  63110.08  60563.26  60383.58 
104 -0.2500 -1.0000  0.7500 -0.7500  1.0000 152999.00 134714.00 134651.30 139712.70 135717.50 134642.20 
105 -0.2500  1.0000 -0.7500 -0.7500 -1.0000  72682.30  72190.86  72190.92  73671.94  72209.22  72196.98 
106 -0.2500  1.0000  0.7500 -0.7500 -1.0000 119817.70 118773.40 118819.70 124480.20 118770.40 118769.70 
107 -0.2500  1.0000  0.7500  0.7500 -1.0000  67422.86  67370.88  67029.92  67172.94  67164.80  67035.38 
108  0.2500 -1.0000 -0.7500 -0.7500  1.0000  81461.52  72636.32  72504.52  85316.16  72880.92  72513.34 
109  0.2500 -1.0000  0.7500 -0.7500 -1.0000  96498.06  95697.48  95243.94  96193.96  95356.12  95399.74 
110  0.2500  1.0000 -0.7500  0.7500 -1.0000  44829.96  44345.86  44310.30  47788.98  44319.92  44311.96 
111  0.2500  1.0000  0.7500  0.7500  1.0000  66612.16  66337.86  66322.34  66839.98  66318.64  66317.82 
112  0.7500  1.0000 -0.7500  0.2500  1.0000  52368.60  51507.82  51464.46  55315.24  57378.02  51489.00 
113 -1.0000 -0.3333 -0.3333 -0.3333 -0.3333  95690.64  95190.58  94566.34  97228.48  96506.76  94541.92 
114 -1.0000  0.3333  0.3333  0.3333  0.3333 112135.90 103692.40 101670.90 135873.20 103035.90 101670.30 
115 -0.3333 -1.0000 -0.3333  0.3333  1.0000  67204.94  64545.60  64337.98  69251.90  64847.40  64385.22 
116 -0.3333 -0.3333 -1.0000  1.0000  0.3333  47391.50  47408.80  47323.92  49485.54  47354.52  47362.22 
117 -0.3333  0.3333  1.0000 -1.0000 -0.3333 155274.80 151927.90 149467.40 158219.90 150680.00 149447.40 
118 -0.3333  1.0000  0.3333 -0.3333 -1.0000  91446.70  89071.58  88563.30  90144.84  88873.14  88624.58 
119  0.3333 -1.0000  0.3333  1.0000 -0.3333  53456.92  53397.88  53382.92  54215.84  54215.84  53387.88 
120  0.3333 -0.3333  1.0000  0.3333 -1.0000  65997.12  65666.22  65641.32  66512.42  65883.84  65622.96 
121  0.3333  0.3333 -1.0000 -0.3333  1.0000  60000.64  60147.52  59978.32  66422.10  59991.08  60001.44 
122  0.3333  1.0000 -0.3333 -1.0000  0.3333  97324.00  83220.44  82868.60  87033.42  83250.00  82814.44 
123  1.0000 -1.0000  1.0000 -0.3333  0.3333  82599.14  76292.38  76196.84  76983.96  76196.46  76194.60 
124  1.0000 -0.3333  0.3333 -1.0000  1.0000  93147.72  93717.76  92378.96  92596.24  92647.28  92349.98 
125  1.0000  0.3333 -0.3333  1.0000 -1.0000  44493.46  44494.92  44491.44  44535.08  44491.70  44491.62 
126  1.0000  1.0000 -1.0000  0.3333 -0.3333  49267.06  47533.12  47641.70  51293.52  47555.22  47542.42 
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Appendix E MATLAB Code for Direct Fit of 

Weibull Model to Optimization Errors 
 

This MATLAB source code is used to fit the Weibull model to the error of Case A2. It 

reads in data files of optimal wing structural weight (Ws). It calculates the error with respect to 

the best of the six runs from different GENESIS parameter settings. As an output, a QQ plot is 

generated. It also prints out histograms and cumulative frequencies to compare data and fit.  The 

results of χ2 goodness-of-fit test are printed. 

 
 
clear all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% read in Ws data stored in files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Case A2 
fid=fopen('Ws.CaseA2.dat','r'); 
WsA2=fscanf(fid,'%g'); 
fclose(fid); 
%Case A3 
fid=fopen('Ws.CaseA3.dat','r'); 
WsA3=fscanf(fid,'%g'); 
fclose(fid); 
%Case A5 
fid=fopen('Ws.CaseA5.dat','r'); 
WsA5=fscanf(fid,'%g'); 
fclose(fid); 
%Case B2 
fid=fopen('Ws.CaseB2.dat','r'); 
WsB2=fscanf(fid,'%g'); 
fclose(fid); 
%Case B3 
fid=fopen('Ws.CaseB3.dat','r'); 
WsB3=fscanf(fid,'%g'); 
fclose(fid); 
%Case B5 
fid=fopen('Ws.CaseB5.dat','r'); 
WsB5=fscanf(fid,'%g'); 
fclose(fid); 
% observation index 
index=[1:length(WsA2)]'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% estimate true Ws by taking the best of six cases 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Wst=(min([WsA2 WsA3 WsA5 WsB2 WsB3 WsB5]'))'; 
% calculate error of Case A2  
X=(WsA2-Wst); 
% sort the error data 
X=sort(X); 
% Find id numbers of data points of nonzero values 
non0X=find(X); 
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% add offset to avoid singularity of X=0 for alpha < 1  
if length(non0X) == length(X)  
   os=0.; 
else      
   os=min( .00001*mean(X), X(non0X(1)) ); 
end 
X=X+os; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%              Fitting Weibull model to the data  
% 
% weibfit from MATLAB statistics toolbox 
% Use 5% confidence level 
% Estimated parameters are returned to mu 
% Confidence interval of mu are returned to muci 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[mu muci]=weibfit(X,.05) 
mu1=mu(1); 
mu2=mu(2); 
% MATLAB uses parameters in a different form. Convert them to alpha and beta. 
alpha=mu(2); 
beta=(1/mu1)^(1/mu2); 
% Calculate Log likelihood function for the estimated parameters 
ONES=ones(length(X),1); 
LL=sum(  log(  weibpdf(X,mu1*ONES,mu2*ONES) )   ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
%      Generating QQ plot between data and fit 
% 
% invX: expected location of X from fit 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
pX=( ([1:length(X)]-.5)./length(X) )'; 
invX=weibinv(pX,mu1,mu2); 
maxX=max([max(invX) max(X)]); 
XSCL=[1 10 100 1000 10000 100000]; 
ISCL=find( maxX./XSCL < 10 ); 
SCL=XSCL(ISCL(1)); 
xrange=SCL*round(max([max(invX) max(X)])/SCL+.5); 
figure; 
plot(invX,X,'r+',[0 xrange],[0 xrange],'b-'); 
% 
axis equal 
axis([0 xrange 0 xrange]); 
set(gca,'xtick',[0:SCL:xrange]); 
set(gca,'ytick',[0:SCL:xrange]); 
set(gca,'XTickLabel',[0:SCL:xrange]); 
set(gca,'YTickLabel',[0:SCL:xrange]); 
set(gca,'FontSize',15); 
xlabel('X Quantiles(Fit)','FontSize',15); 
ylabel('Y Quantiles(Data)','FontSize',15); 
fid=fopen('qqWEIBcaseA2.plt','w'); 
fprintf(fid,'%15.7e %15.7e %15.7e\n',… 
[invX X (linspace(0,xrange,length(X)))' ]'); 
fclose(fid); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       GENERATE data for histogram and cumulative frequency plot 
% 
% BND : subintervals 
% XBND: center point of subintervals 
% IBIN: frequencies of data 
% SBIN: Cumulative frequencies of data 
% RBIN: complementary cumulative frequencies, (Total # of data)-SBIN 
% XFRQexp: expected frequencies from the fit 
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% CFRQexp: expected cumulative frequencies from the fit 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nbin=50; 
MpctL=0; 
%MpctU=xrange; 
MpctU=SCL*round(max(X)/SCL+.5); 
Mpct=MpctU-MpctL; 
binsize=Mpct/nbin; 
BND=[MpctL :binsize:MpctU]'; 
for n=1:nbin 
   XBND(n,1)=.5*( BND(n)+BND(n+1) ); 
end 
% 
IBIN=zeros([nbin 1]); 
SBIN=zeros([nbin 1]); 
RBIN=zeros([nbin 1]); 
for k=1:length(X) 
     ibin=floor( (X(k)-MpctL)/binsize ) + 1 ; 
     IBIN(ibin)=IBIN(ibin)+1; 
end 
% 
SBIN(1)=IBIN(1); 
for n=2:nbin 
  SBIN(n)=SBIN(n-1)+IBIN(n); 
end 
% 
for n=1:nbin 
   RBIN(n)=length(X)-SBIN(n); 
end 
% 
for i=1:nbin 
    Xexp(i,1)=weibcdf(BND(i+1),mu1,mu2)-weibcdf(BND(i),mu1,mu2); 
    XFRQexp(i,1)=length(X)*Xexp(i); 
    CFRQexp(i,1)=length(X)*weibcdf(BND(i+1),mu1,mu2); 
end 
% print out histogram data as TECPLOT format 
fid=fopen('WEIBcaseA2hist.plt','w'); 
fprintf(fid,'variables=XBND,IBIN,XFRQexp\n'); 
fprintf(fid,'%13.5e %13.5e %13.5e \n',[XBND IBIN XFRQexp ]'); 
fclose(fid); 
% print out CDF data as TECPLOT format 
fid=fopen('WEIBcaseA2cdf.plt','w'); 
fprintf(fid,'variables=BND,SBIN,CFRQexp\n'); 
fprintf(fid,'%13.5e %13.5e %13.5e \n',[BND(2:end) SBIN CFRQexp ]'); 
fclose(fid); 
%return to original data 
X=X-os; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%          Chi-square goodness of fit TEST 
% 
% nb: # of intervals for Chi-square test 
% ip: x-locations of the intervals having the same probability 
% IX: prob( x < x_i), probability that x is less than the i-th observation  
% IB: number of data points belong to each interval 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nb=10; 
nbi=1./nb; 
p=[0 : nbi : 1] 
np=length(X)*nbi; 
for i=1:length(p)-1 
 ip(i,1)=weibinv(p(i),mu1,mu2); 
end 
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ip(length(p),1)=Inf; 
% 
for i=1:length(X) 
IX(i)=weibcdf(X(i),mu1,mu2); 
end 
IB=zeros([nb 1]); 
for k=1:length(X) 
     if IX(k) == 0 
        IB(1)=IB(1)+1; 
     elseif IX(k) ==1 
        IB(end)=IB(end)+1; 
     else  
        ib=floor( (IX(k)-p(1))/nbi ) + 1 ; 
        IB(ib)=IB(ib)+1; 
     end 
end 
sum(IB) 
% 
fprintf('%3d %12.5e %12.5e %3d %12.5e %12.5e %12.5e\n', ... 
[ [1:nb]' ip(1:end-1) ip(2:end) IB np*ones(nb,1) (IB-np) (IB-np).^2/np]'); 
X2=sum( (IB-np).^2 )/np; 
%chi2cdf(X2,nb-1) 
pvalue=1-chi2cdf(X2,nb-1-2); 
fprintf('%15.4f %15.4f\n',[mu1 mu2]); 
meanE=beta/alpha*gamma(1/alpha); 
varE=beta^2/alpha*( 2*gamma(2/alpha)-1/alpha*(gamma(1/alpha))^2 ); 
stdE=sqrt(varE); 
fprintf(' alpha=%15.4f\n beta=%15.4f\n meanE=%15.4f\n stdE=%15.4f\n',... 
[alpha beta meanE stdE]); 
fprintf(' X^2=%15.4f\n pvalue=%15.4f\n',[X2 pvalue]); 
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Appendix F MATLB Code for Indirect Fit of 

Weibull Model to Optimization Errors 
 

INDIRECTFIT.m reads in Ws data files and performs the indirect fit of differences 

between Cases A2 and A3. A set of distribution parameters are sought to maximize the log 

likelihood function by using a constrained minimization routine, fmincon, from the optimization 

toolbox of MATLAB [86]. LOGL.m calculates the negative of the log likelihood function. 

WJIM.m and WJIP.m are integrands of convolution for x < 0 and x > 0, respectively (see Eqs. 

C.5 and C.7 in Appendix C). COSLOGSPACE.m is used to generate intervals for numerical 

integration. The outputs are the parameters of the Weibull models for Cases A2 and A3 and the 

χ2 test results for the fit on the differences. 

 

 INDIRECTFIT.m  
 
clear all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% read in Ws data stored in files 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Case A2 
fid=fopen('Ws.CaseA2.dat','r'); 
WsA2=fscanf(fid,'%g'); 
fclose(fid); 
%Case A3 
fid=fopen('Ws.CaseA3.dat','r'); 
WsA3=fscanf(fid,'%g'); 
fclose(fid); 
%Case A5 
fid=fopen('Ws.CaseA5.dat','r'); 
WsA5=fscanf(fid,'%g'); 
fclose(fid); 
%Case B2 
fid=fopen('Ws.CaseB2.dat','r'); 
WsB2=fscanf(fid,'%g'); 
fclose(fid); 
%Case B3 
fid=fopen('Ws.CaseB3.dat','r'); 
WsB3=fscanf(fid,'%g'); 
fclose(fid); 
%Case B5 
fid=fopen('Ws.CaseB5.dat','r'); 
WsB5=fscanf(fid,'%g'); 
fclose(fid); 
% observation index 
index=[1:length(WsA2)]'; 
%%%%%% calculate differences between Case A2 and Case A3 
X=(WsA2-WsA3); 
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% perturb data of x = 0 
npt=length(X); 
izero=find(X==0); 
if length(izero) > 0 
   X(izero)=0.5*( X(izero(1)-1) +X(izero(end)+1) ); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Minimization of LOGL.m  
%   using fmincon of optimization toolbox of MATLAB 
%   LOGL.m : objective function, calculate -loglikelihood  
%   beta's are scaled (multiplied by 0.001 ) to prevent  
%   numerical difficulties during optimization 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
OPTIONS=optimset('Diagnostics',1,'Display','iter','MaxIter',30,'MaxFunEvals',1000); 
[B,FVAL,EXITFLAG]= fmincon('LOGL',[0.7663 3.9012907 0.4703 0.3058443],... 
[],[],[],[],[.3 2 .1 0.01],[.8 8 .6 1.],[],OPTIONS,X); 
 
% Rescale beta's 
B(2)=1000*B(2); 
B(4)=1000*B(4); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%    Generate empirical CDF of differences 
% mc: size of sample  
% R1: weibull random numbers for Case A2 
% R2: weibull random numbers for Case A3 
% RDIFF: R1-R2, sorted 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mc=100; 
rand('state',0); 
% 
R1=weibrnd(B(2)^(-(B(1))),B(1),npt*mc,1); 
R2=weibrnd(B(4)^(-(B(3))),B(3),npt*mc,1); 
RDIFF=sort(R1-R2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Chi-square goodness of fit TEST for the difference fit 
% 
% nb: # of intervals for Chi-square test 
% ip: x-locations of the intervals having the same probability 
% IB: number of data points belong to each interval 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nb=10; 
nbi=1./nb; 
p=[0 : nbi : 1]; 
np=length(X)*nbi; 
ip(1,1)=RDIFF(1); 
for i=2:length(p)-1 
    ip(i,1)=RDIFF( round( (length(RDIFF)*p(i)) ) ); 
end 
ip(length(p),1)=RDIFF(end); 
% 
IB=zeros([nb 1]); 
for i=1:length(X) 
  if X(i) < ip(2) 
     IB(1)=IB(1)+1; 
  elseif X(i) >= ip(end-1) 
     IB(end)=IB(end)+1; 
  else 
     j=2; 
     while ~( ip(j) <=  X(i) & ip(j+1) >  X(i) ) 
        j=j+1; 
     end 
     IB(j)=IB(j)+1; 
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  end 
end 
sum(IB) 
% 
fprintf('%3d %12.5e %12.5e %3d %12.5e %12.5e %12.5e\n', ... 
[ [1:nb]' ip(1:end-1) ip(2:end) IB np*ones(nb,1) (IB-np) (IB-np).^2/np]'); 
X2=sum( (IB-np).^2 )/np 
%chi2cdf(X2,nb-1); 
pvalue=1.-chi2cdf(X2,nb-4-1); 
alpha1=B(1); 
beta1=B(2); 
alpha2=B(3); 
beta2=B(4); 
fprintf(' alpha1=%12.5e\n beta1=%12.5e\n alpha2=%12.5e\n beta2=%12.5e\n',... 
alpha1,beta1,alpha2,beta2); 
fprintf(' X^2=%12.5e\n pvalue=%12.5e\n',X2,pvalue); 
 
 
LOGL.m 
 
function R=LOGL(B,XS); 
npt=length(XS); 
id=[]; 
% return to original scale 
B(2)=1000.*B(2); 
B(4)=1000.*B(4); 
% large enough upper bound of integration 
Irange=100000; 
% 
fprintf(1,'B = %15.7e %15.7e %15.7e %15.7e\n',B); 
for i=1:npt 
  if XS(i) < 0 
     s_0=0; 
     s_1=s_0+Irange; 
     s_0=s_0^B(1); 
     s_1=s_1^B(1); 
  elseif XS(i) > 0 
     s_0=XS(i); 
     s_1=s_0+Irange; 
     s_0=(s_0-XS(i))^B(3); 
     s_1=(s_1-XS(i))^B(3); 
  else 
     fprintf('x is zero, perturb it \n'); 
  end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%          set subintervals for integration 
% - use logarithmic distribution to use dense intervals near lower bound 
% - use offset to prevent too dense s near zero 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  offset=0.1*s_1; 
  s=COSLOGSPACE(log10(s_0+offset),log10(s_1+offset),101); 
  s=s-offset; 
  s(1)=s_0; 
 
% Gaussian quadrature of third order accuracy 
  n=length(s)-1; 
  for j=1:n 
    a=s(j); 
    b=s(j+1); 
    c1=1; 
    c2=1; 
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    t1=-1/sqrt(3); 
    t2= 1/sqrt(3); 
    s1=.5*((b-a)*t1+a+b); 
    s2=.5*((b-a)*t2+a+b); 
% WJIM: integrand for x < 0 
% WJIP: integrand for x > 0 
    if XS(i) < 0 
       fsum(j)=.5*(b-a)* (c1*WJIM(s1,XS(i),B)+c2*WJIM(s2,XS(i),B)); 
    else 
       fsum(j)=.5*(b-a)* (c1*WJIP(s1,XS(i),B)+c2*WJIP(s2,XS(i),B)); 
    end 
  end 
  f(i)=sum(fsum); 
end 
% negative of loglikelihood for minimization 
R=-sum( log(f) ); 
fprintf(1,'OBJ = %15.7e\n',R); 
 
 
WJIM.m 
 
function f=WJIM(s,x,B); 
 
% integrand for x < 0 
a1=B(1); 
b1=B(2); 
a2=B(3); 
b2=B(4); 
% 
f=a2*b1^(-a1)*b2^(-a2)*(s.^(1/a1)-x).^(a2-1).*exp(-s./(b1.^a1)-((s.^(1/a1)-
x)./b2).^a2); 
 
 
WJIP.m 
 
function f=WJIP(s,x,B); 
 
% integrand for x > 0 
a1=B(1); 
b1=B(2); 
a2=B(3); 
b2=B(4); 
% 
f=a1*b1^(-a1)*b2^(-a2)*(s.^(1/a2)+x).^(a1-1).*exp(-s./(b2.^a2)-
((s.^(1/a2)+x)./b1).^a1); 
 
 
COSLOGSPACE.m 
 
function y = COSLOGSPACE(d1, d2, n) 
 
% generate highly stretched intervals between d1 and d2 by  
% combining cosine and log 
pw=d1+(d2-d1)*(1-cos(linspace(0,.5*pi,n))).^2; 
y=10.^pw; 
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Appendix G SAS Input File for IRLS Procedure 
 

The SAS input file performs the IRLS procedure on Ws data of Case A2 using a quadratic 

model. IRLS with Huber’s weighting function is performed first to get initial regression 

coefficients. Then, IRLS with biweight function is performed to identify outliers. 

 
options pagesize = 30000 nodate; 
TITLE '--- IRLS FIT: QUADRATIC ----'; 
/* read in X data */ 
DATA WSTW; 
   INFILE 'Hsct5B.dat'; 
   INPUT X01 X02 X03 X04 X05 ; 
   RUN; 
/* read in Ws data */ 
DATA WSTW; 
   SET WSTW; 
   INFILE 'Ws.caseA2.dat'; 
   INPUT Y; 
   RUN; 
/* remove unreasonable designs */ 
DATA WSTW; 
   SET WSTW; 
   IF Y GT 150000 THEN DELETE; 
   RUN; 
DATA WSTW; 
   SET WSTW; 
   Y=1.E-4*Y; 
   X0101 = X01*X01; X0102 = X01*X02; X0103 = X01*X03; X0104 = X01*X04; 
   X0105 = X01*X05; X0202 = X02*X02; X0203 = X02*X03; X0204 = X02*X04; 
   X0205 = X02*X05; X0303 = X03*X03; X0304 = X03*X04; X0305 = X03*X05; 
   X0404 = X04*X04; X0405 = X04*X05; X0505 = X05*X05; 
   RUN; 
/* least squares fit to get scale parameter s */ 
PROC REG DATA=WSTW OUTEST=ESTL; 
     TITLE 'REG FIT TO GET INITIAL SIGMA'; 
     MODEL Y = X01 X02 X03 X04 X05 X0101 X0102 X0103 X0104 X0105 X0202 
     X0203 X0204 X0205 X0303 X0304 X0305 X0404 X0405 X0505 
     ; 
     OUTPUT OUT=WSTW R=RL; 
/* pass LS coefficients to IRLS with Huber */ 
DATA ESTL; 
   SET ESTL; 
   CALL SYMPUT('INTERCEP',INTERCEP); CALL SYMPUT('B01',X01); CALL SYMPUT('B02',X02); 
   CALL SYMPUT('B03',X03); CALL SYMPUT('B04',X04); CALL SYMPUT('B05',X05); 
   CALL SYMPUT('B0101',X0101); CALL SYMPUT('B0102',X0102); CALL SYMPUT('B0103',X0103); 
   CALL SYMPUT('B0104',X0104); CALL SYMPUT('B0105',X0105); CALL SYMPUT('B0202',X0202); 
   CALL SYMPUT('B0203',X0203); CALL SYMPUT('B0204',X0204); CALL SYMPUT('B0205',X0205); 
   CALL SYMPUT('B0303',X0303); CALL SYMPUT('B0304',X0304); CALL SYMPUT('B0305',X0305); 
   CALL SYMPUT('B0404',X0404); CALL SYMPUT('B0405',X0405); CALL SYMPUT('B0505',X0505); 
PROC PRINT DATA=WSTW; 
     VAR X01 X02 X03 X04 X05 RL; 
     RUN; 
PROC UNIVARIATE DATA=WSTW; 
     VAR RL; 
     OUTPUT OUT=MRL MEDIAN=MDN; 
DATA MRL; 
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     SET MRL; 
     CALL SYMPUT('MDN',MDN); 
DATA WSTW; 
     SET WSTW; 
     MAD=ABS(RL-&MDN); 
PROC UNIVARIATE DATA=WSTW; 
     VAR MAD; 
     OUTPUT OUT=MADSET MEDIAN=MMAD; 
DATA MADSET; 
     SET MADSET; 
     CALL SYMPUT('MMAD',MMAD); 
 
/* IRLS fit with Huber weighting function to get initial coeff */ 
PROC NLIN DATA=WSTW NOHALVE MAXITER=1000 OUTEST=ESTP; 
     TITLE 'NONLINEAR REGRESSION TO GET IRLS INITIAL COEFF'; 
     PARMS 
       INTERCEP = &INTERCEP 
       B01 = &B01 
       B02 = &B02 
       B03 = &B03 
       B04 = &B04 
       B05 = &B05 
       B0101 = &B0101 
       B0102 = &B0102 
       B0103 = &B0103 
       B0104 = &B0104 
       B0105 = &B0105 
       B0202 = &B0202 
       B0203 = &B0203 
       B0204 = &B0204 
       B0205 = &B0205 
       B0303 = &B0303 
       B0304 = &B0304 
       B0305 = &B0305 
       B0404 = &B0404 
       B0405 = &B0405 
       B0505 = &B0505 
     ; 
     MODEL Y = INTERCEP +B01*X01 +B02*X02 +B03*X03 +B04*X04 +B05*X05 +B0101*X0101 
       +B0102*X0102 +B0103*X0103 +B0104*X0104 +B0105*X0105 +B0202*X0202 +B0203*X0203 
       +B0204*X0204 +B0205*X0205 +B0303*X0303 +B0304*X0304 +B0305*X0305 +B0404*X0404 
       +B0405*X0405 +B0505*X0505 
     ; 
  DER.INTERCEP = 1; DER.B01=X01; DER.B02=X02; DER.B03=X03; DER.B04=X04; DER.B05=X05; 
  DER.B0101=X0101; DER.B0102=X0102; DER.B0103=X0103; DER.B0104=X0104; DER.B0105=X0105; 
  DER.B0202=X0202; DER.B0203=X0203; DER.B0204=X0204; DER.B0205=X0205; DER.B0303=X0303; 
  DER.B0304=X0304; DER.B0305=X0305; DER.B0404=X0404; DER.B0405=X0405; DER.B0505=X0505; 
 
     R=Y-MODEL.Y; 
 
     SIG=1.4826*&MMAD; 
     H=1.; 
 
     RPS=ABS(R/SIG); 
     IF RPS <= H THEN _WEIGHT_=1.; 
     ELSE _WEIGHT_= H/RPS; 
     OUTPUT OUT=WSTW R=RP; 
DATA WSTW; 
   SET WSTW; 
   SIG=1.4826*&MMAD; 
   H=1.0; 
   RPS=ABS(RP/SIG); 
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   IF RPS <= H THEN _WEIGHT_=1.; 
   ELSE _WEIGHT_= H/RPS; 
PROC PRINT DATA=WSTW; 
     VAR X01 X02 X03 X04 X05 SIG RL RP RPS H  _WEIGHT_; 
     RUN; 
 
PROC UNIVARIATE DATA=WSTW; 
     VAR RP; 
     OUTPUT OUT=MRP MEDIAN=MDN2; 
DATA MRP; 
     SET MRP; 
     CALL SYMPUT('MDN2',MDN2); 
DATA WSTW; 
     SET WSTW; 
     MAD2=ABS(RP-&MDN2); 
PROC UNIVARIATE DATA=WSTW; 
     VAR MAD2; 
     OUTPUT OUT=MADSET2 MEDIAN=MMAD2; 
DATA MADSET2; 
     SET MADSET2; 
     CALL SYMPUT('MMAD2',MMAD2); 
 
PROC PRINT DATA=ESTP; 
     RUN; 
DATA ESTP; 
     SET ESTP; 
     IF _TYPE_ ~= 'FINAL' THEN  DELETE; 
PROC PRINT DATA=ESTP; 
     RUN; 
/* pass coefficients to IRLS with biweight */ 
DATA ESTP; 
   SET ESTP; 
   CALL SYMPUT('INTERCEP',INTERCEP); CALL SYMPUT('B01',B01); CALL SYMPUT('B02',B02); 
   CALL SYMPUT('B03',B03); CALL SYMPUT('B04',B04); CALL SYMPUT('B05',B05); 
   CALL SYMPUT('B0101',B0101); CALL SYMPUT('B0102',B0102); CALL SYMPUT('B0103',B0103); 
   CALL SYMPUT('B0104',B0104); CALL SYMPUT('B0105',B0105); CALL SYMPUT('B0202',B0202); 
   CALL SYMPUT('B0203',B0203); CALL SYMPUT('B0204',B0204); CALL SYMPUT('B0205',B0205); 
   CALL SYMPUT('B0303',B0303); CALL SYMPUT('B0304',B0304); CALL SYMPUT('B0305',B0305); 
   CALL SYMPUT('B0404',B0404); CALL SYMPUT('B0405',B0405); CALL SYMPUT('B0505',B0505); 
/* IRLS with biweight */ 
PROC NLIN DATA=WSTW NOHALVE MAXITER=1000 ; 
     TITLE 'NONLINEAR REGRESSION TO GET IRLS FIT'; 
     PARMS 
       INTERCEP = &INTERCEP 
       B01 = &B01 
       B02 = &B02 
       B03 = &B03 
       B04 = &B04 
       B05 = &B05 
       B0101 = &B0101 
       B0102 = &B0102 
       B0103 = &B0103 
       B0104 = &B0104 
       B0105 = &B0105 
       B0202 = &B0202 
       B0203 = &B0203 
       B0204 = &B0204 
       B0205 = &B0205 
       B0303 = &B0303 
       B0304 = &B0304 
       B0305 = &B0305 
       B0404 = &B0404 
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       B0405 = &B0405 
       B0505 = &B0505 
     ; 
     MODEL Y = INTERCEP +B01*X01 +B02*X02 +B03*X03 +B04*X04 +B05*X05 +B0101*X0101 
       +B0102*X0102 +B0103*X0103 +B0104*X0104 +B0105*X0105 +B0202*X0202 +B0203*X0203 
       +B0204*X0204 +B0205*X0205 +B0303*X0303 +B0304*X0304 +B0305*X0305 +B0404*X0404 
       +B0405*X0405 +B0505*X0505 
     ; 
 
  DER.INTERCEP=1; DER.B01=X01; DER.B02=X02; DER.B03=X03; DER.B04=X04; DER.B05=X05; 
  DER.B0101=X0101; DER.B0102=X0102; DER.B0103=X0103; DER.B0104=X0104; DER.B0105=X0105; 
  DER.B0202=X0202; DER.B0203=X0203; DER.B0204=X0204; DER.B0205=X0205; DER.B0303=X0303; 
  DER.B0304=X0304; DER.B0305=X0305; DER.B0404=X0404; DER.B0405=X0405; DER.B0505=X0505; 
 
     R=Y-MODEL.Y; 
 
     B=1.9; 
 
     SIG2=1.4826*&MMAD2; 
     RBS=ABS(R/SIG2); 
     IF RBS <= B THEN _WEIGHT_=(1.-(RBS/B)**2)**2; 
     ELSE _WEIGHT_=0.; 
     OUTPUT OUT=WSTW R=RB; 
     RUN; 
 
DATA WSTW; 
   SET WSTW; 
   B=1.9; 
    
   SIG2=1.4826*&MMAD2; 
   RBS=ABS(RB/SIG2); 
   IF RBS <= B THEN _WEIGHT_=(1.-(RBS/B)**2)**2; 
   ELSE _WEIGHT_=0.; 
/* print out results */ 
PROC PRINT DATA=WSTW; 
     VAR X01 X02 X03 X04 X05 SIG SIG2 RL RP RPS RB RBS B  _WEIGHT_; 
     RUN; 
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