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(ABSTRACT)

The classic minimum induced drag spanload is not necessarily the best choice for an

aircraft. For a single aircraft configuration, variations from the elliptic, minimum drag

optimum load distribution can produce wing weight savings that result in airplane

performance benefits. For a group of aircraft flying in formation, non-elliptic lift

distributions can give high induced drag reductions both for the formation and for each

airplane.

For single aircraft, a discrete vortex method which performs the calculations in the

Trefftz plane has been used to calculate optimum spanloads for non-coplanar multi-

surface configurations. The method includes constraints for lift coefficient, pitching

moment coefficient and wing root bending moment. This wing structural constraint has

been introduced such that wing geometry is not changed but the modified load

distributions can be related to wing weight. Changes in wing induced drag and weight

were converted to aircraft total gross weight and fuel weight benefits, so that optimum

spanloads that give maximum take-off gross weight reductions can be found. Results

show that a reduction in root bending moment from a lift distribution that gives minimum

induced drag leads to more triangular spanloads, where the loads are shifted towards the

root, reducing wing weight and increasing induced drag. A slight reduction in root

bending moment is always beneficial, since the initial increase in induced drag is very

small compared to the wing weight decrease. Total weight benefits were studied for a

Boeing 777-200IGW type configuration, obtaining take-off gross weight improvements

of about 1% for maximum range missions. When performing economical, reduced-range

missions, improvements can almost double. A long range, more aerodynamically driven

aircraft like the Boeing 777-200IGW will experience lower benefits as a result of
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increasing drag. Short to medium range aircraft will profit the most from more triangular

lift distributions

Formation flight configurations can also result in large induced drag reductions for load

distributions that deviate from the elliptical one. Optimum spanloads for a group of

aircraft flying in an arrow formation were studied using the same discrete vortex method,

now under constraints in lift, pitching moment and rolling moment coefficients. It has

been shown that large general improvements in induced drag can be obtained when the

spanwise and vertical distances between aircraft are small. In certain cases, using our

potential flow vortex model, this results in negative (thrust) induced drag on some

airplanes in the configuration. The optimum load distributions necessary to achieve these

benefits may, however, correspond to a geometry that will produce impractical lift

distributions if the aircraft are flying alone. Optimum separation among airplanes in this

type of formation is determined by such diverse factors as the ability to generate the

required optimum load distributions or the need for collision avoidance.
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Chapter 1 Introduction

1.1 Motivation

The problem of finding the optimum lift distribution for a given wing and aircraft

configuration is difficult. Optimum spanloads that will give minimum induced drag for a

given planform have been obtained since lifting line theory was developed by Prandtl.

Planar wings were the main objective of this early method, although more advanced

configurations (i.e. wing with winglets) were also treated. Recently, more advanced

methods were developed that could deal with non-planar wings and multiple lifting

surface configurations (i.e. a Vortex Lattice Method). These methods can find the lift

distribution that gives minimum induced drag, generally performing the calculations in

the Trefftz plane.

For a single aircraft configuration, the minimum induced drag spanload seems to be a

reasonable design objective. For a planar wing, this will give an elliptic lift distribution.

However, the problem is more involved than this, since minimum drag will not be the

only requirement for finding an optimum lift distribution. Indeed, the spanload will affect

the wing structural weight. A useful method for finding the optimum spanload should in

fact involve aerodynamics and structures together. It is then an interdisciplinary problem,

and it is this connection between disciplines that makes the problem difficult. Including

wing structural considerations in the spanload optimization problem can lead to total

aircraft gross weight reductions as a result of wing weight savings.

For a group of aircraft flying in formation, induced drag savings are experienced due to

the upwash coming from nearby airplanes. Formation flight benefits can be observed in

nature in the flying disposition of migrating birds, often adopting V-shaped formations.

These formations help birds save energy by decreasing air resistance so that they can

travel through longer distances.
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The variability in the geometry of bird’s wings, together with their highly controllable

flight allows them to change their wing geometry and fly very close to each other. This

makes them take full advantage of formation flying. For a rigid wing aircraft the

capability of adapting wing geometry is very limited, close flying is not possible because

of collision dangers and control problems can appear. However, large induced drag

benefits can be obtained for the whole formation and for each airplane if the spanloads

are altered from the elliptic, single flight minimum drag optimum. Advantages of

formation flying will be dependent on the relative distance between aircraft and the

adaptability and limitations of rigid aircraft, that impose restrictions on the benefits that

can actually be achieved.

1.2 Previous work on spanload optimization with wing structural considerations

Several attempts have been made previously to treat both aerodynamics and structures.

Prandtl[1] himself was the first one to notice that the spanload for minimum induced drag

was not the “optimum” spanload, and he calculated analytically the lift distribution

giving minimum induced drag with a constraint in integrated bending moment§ for planar

wings. Jones[2] also performed analytical calculations for planar wings, using a root

bending moment constraint. Later on, Jones[3] studied minimum induced drag for wings

with winglets using an integrated bending moment constraint, the same kind of constraint

Prandtl used for his analysis. Klein and Viswanathan[4,5], combined both constraints of

integrated and root bending moment and solved analytically for the optimum spanload for

a given lift. More recently, numerical approaches have also been developed, such as those

of Kroo[6], McGeer[7] and Craig and MacLean[8].  Kroo developed a computer program

to optimize spanloads for arbitrary multiple lifting surface configurations. His program

optimized induced drag for a given total lift, wing weight and trim. McGeer used an

iterative scheme to find the optimum spanload for minimum drag with a fixed wing

weight and parasite drag, including aeroelastic effects. Craig and McLean further

introduced aeroelastic effects and body-surface interactions using the theory developed

                                                          
§ The classical structural models used as constraints for spanload calculations are a root bending moment
constraint (the area under the load curve is kept constant) and an integrated bending constraint (the area
under the bending moment curve is kept constant). Prandtl used this last constraint in his approach.
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by Gray and Schenk[9], and studied wing weight and total drag (including profile drag)

trade-offs. Kroo, McGeer, and Craig and McLean employed more advanced structural

models than a bending moment constraint. All the authors mentioned above let the span

vary while maintaining a fixed wing weight, no matter what structural model they used.

An optimum spanload for minimum induced drag under weight constraints is then the

general approach that most authors have used for aerodynamic-structural load

optimization. It should be noted that a different perspective, not so widely treated, could

be equally valid, in which the wing weight is minimized with a constraint in induced drag

coefficient. Haftka[10] optimized the weight of a wing of known geometry with a

constraint in induced drag for a fighter aircraft in a pull-up maneuver. However, a general

optimization in which wing twist and camber distributions are not known and induced

drag is found at the cruise condition is needed.

 The studies performed by the authors previously mentioned led to the conclusion that

significant drag savings could be obtained if wing span was increased while keeping

wing weight constant. This was achieved by shifting the minimum drag elliptic load

distributions towards more triangular ones, reducing loads outboard.

1.3 Previous work on spanload optimization in formation flight

Formation flight has been studied frequently in the past. Schlichting[11]∗ inspired the

work in this field with his pioneering efforts on formation flight studies. Hoerner[12]

apparently used Schlichting’s work to show the influence of aircraft separation on

airplane drag. Schollenberger and Lissaman[13] investigated the formation flight of birds.

They realized that the bird flexibility was an important requirement to obtain maximum

advantage in formation flying. Their analysis showed that a 40% induced drag reduction

could be achieved for each bird flying in an arrow formation consisting of just three

birds. When 25 birds were flying in an arrow formation, induced drag savings as large as

65% could be achieved for each bird according to the authors, and this drag reduction can

result in a range increase of about 71%. Jenkinson[14] used the induced drag savings

                                                          
∗ We have not yet been able to obtain this reference.
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calculated by Schlichting to establish the possible advantages of transport aircraft flying

in formation as a solution for the growing demand in future large aircraft. Feifel[15] used

a vortex lattice method with calculations performed in the near field to obtain the

advantages of formation flying in an array of five airplanes of known geometry flying in

a V-formation. Feifel only shows results for one test case, so that the magnitude of the

induced drag reduction and its variation with spacing between aircraft cannot be shown.

Maskew[16], using again a vortex lattice method, but with a Trefftz plane analysis,

studied the induced drag variation for each aircraft and for the whole formation as a

function of the distance (in the three space coordinates) between airplanes for an arrow

formation consisting of three equal aircraft. An experimental investigation of the possible

benefits for three aircraft flying in an arrow formation has been recently performed by

Gingras[17]. Beukenberg and Hummel[18] gave flight test data for three aircraft flying in

an arrow formation, and compared it to the theoretical aerodynamic results obtained with

various vortex models.

Promising results have been obtained by these authors, and large induced drag savings for

each aircraft and the configuration could be achieved. However, high induced drag

savings coincide with close spacing between aircraft. Collision and control problems may

arise at these close distances.

1.4 Overview

This work studies the possible benefits of load distributions that deviate from the

aerodynamic, single flight optimum, that is, from the classical elliptical load distribution.

First, for a single aircraft configuration, optimum spanloads will be obtained with an

applied root bending moment constraint. Aerodynamic and structural formulation and

modeling for this problem will be given in Chapter 2. In Chapter 3, the different aircraft

configurations that will be studied are introduced. Chapter 4 shows the results for these

configurations, in which optimum spanloads for maximum weight reductions will be

found. Then, spanloads giving minimum induced drag for an arrow formation flight

configuration will be studied. Chapter 5 gives the formulation and theory used for the

spanload optimization in formation flight. Chapter 6 shows the arrow formations that will



5

be used as test cases for the different studies, and Chapter 7 will give the results and

potential aircraft performance benefits from a formation configuration. Finally,

concluding remarks are presented in Chapter 8. Appendix A and Appendix B show

sample input and output files for both the single aircraft study with a root bending

moment constraint and the formation flight case.
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Chapter 2 Methodology for spanload optimization with a
root bending moment constraint

2.1 Objective

Several authors have addressed the problem of incorporating wing structural constraints

for the optimization of load distributions in the past (refer to section 1.2), and general

tendencies have been obtained. For example, for a cantilever wing, keeping the weight

fixed and increasing its span will produce a shift from the elliptical loading towards a

more triangular one that, maintaining the total lift constant, will reduce induced drag (due

to the increased span). In spite of these trends, a general conclusion about which should

be the optimum spanload cannot yet be achieved. In particular, the interest must be

centered in the lift distribution for a fixed planform. This is the problem that would be

naturally incorporated in an MDO process for the complete aircraft.

The difficulty in finding optimum spanloads comes from the analysis carried out by these

authors. First of all, varying the span while keeping the wing weight fixed will not be

very helpful when trying to compare lift distributions for a given planform, since

comparisons will be made for essentially different wings. A new approach is needed, in

which the spanload is varied but the wing planform is not, and the wing weight will then

vary according to the spanload. Secondly, the analysis must consider the entire

configuration. The interdisciplinary nature of the problem should not be reduced to wing

structures and wing drag, since the optimum spanload will be that bringing maximum

benefits to the whole aircraft, not to the wing alone. When the lift distribution is varied, it

is not only important to know how it will affect induced drag and wing weight, but how it

will change wing, fuel, and ultimately, gross weights. Taking gross weight as a real

measure of effectiveness (certainly better than wing weight or induced drag) will be

helpful in finding the optimum lift distribution that will produce the maximum weight

reductions.
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Here the problem is treated through a different perspective that will allow to differentiate

between the spanloads that will be beneficial to the complete aircraft configurations and

those that will not bring any improvement at all.

2.2 General Approach

The lift distributions were obtained using a computer program (a general description of

this program is given below), which optimizes the spanload of multiple lifting surface

configurations with a constraint on root bending moment (root bending moment will be

defined in section 2.3.1). It is clear that this is the simplest structural constraint that can

be imposed on the problem, and it may be argued that the approaches of Kroo[6] and

Craig and McLean[8] will give better results, since they used more advanced structural

models. This would be true if wing weight were assumed to be a simple function of root

bending moment. Instead, a general functional relationship is assumed of the form:

                                   ,...)__( momentbendingrootfWwing =                                      (2.1)

Then, root bending moment is taken only as a constraint for generating spanloads, but it

is not really the structural model used for wing weight calculations. Another important

consideration comes from the fact that it is needed to change wing weight keeping the

planform shape a constant. This will be achieved through a special implementation of the

root bending moment constraint in the aerodynamics code (see section 2.3).

The structural model will be described in section 2.4. For now it will be enough to say

that given the load distribution (calculated using the root bending moment constraint) and

the planform characteristics of the configuration, the model used calculates wing weight,

but the aircraft gross weight is needed for this calculation also.

Finally, once a new spanload is obtained, which corresponds to a new induced drag

coefficient and wing weight, it is necessary to study the effect they will have in fuel and

total gross weight. For that reason, the Breguet range equation is used. The description of

how the Breguet equation was implemented in the program will be discussed later.
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 If fuel weight and gross weight variations can be obtained for different lift distributions,

the task of finding the optimum spanload will then be a matter of choosing which one is

the best measure of effectiveness for this optimization problem: that is, wing weight, fuel

weight, gross weight, or a prescribed combination of them.

2.3 Description of the aerodynamics code

The method used for calculating the lift distributions is a discrete vortex method with a

Trefftz plane analysis. It was developed by Blackwell[19], Lamar[20], Kuhlman[21] and

Kroo[6] for pure aerodynamic optimization, that is, to determine the lift distribution

corresponding to the minimum induced drag of the configuration. The implementation by

Grasmeyer[22] in a FORTRAN code (idrag version 1.1) was used here. The code also

includes an optional trim constraint, in which the pitching moment coefficient can be

fixed if several surfaces are analyzed. Given the geometry for a number of surfaces, the

program finds the spanload that gives minimum induced drag for a specific value of lift

coefficient and moment coefficient using the method of Lagrange multipliers[22]. The

number of vortices in which the lifting surfaces for a certain configuration are discretized

determine the accuracy of the induced drag and optimum spanload calculations. As the

number of vortices increases, the calculations converge to a certain value. The number of

vortices for a given configuration must be the minimum number (because the

computational cost increases with number of vortices) that still provides an accurate

induced drag and optimum spanload calculation. Grasmeyer[22] studied the convergence

of these results as a function of the number of vortices.

The code was modified to implement an extra constraint: a root bending moment

constraint. Then, a new strategy was implemented in the code in order to obtain lift

distributions with this constraint. The spanload for minimum induced drag is found first

without taking into consideration any bending moment constraints (i.e. for a planar wing,

this will give an elliptic lift distribution). Once this spanload is obtained, the root bending

moment it produces is calculated. This bending moment will correspond to a particular

wing weight. Now, the root bending moment is reduced by an arbitrary amount (say, for

example, 10%) corresponding to a lower wing weight, and a new spanload will be
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calculated with the same lift it had before and the reduced root bending moment

constraint. In that way, for a given planform, and knowing the relationship between

weight and root bending moment†, the reduction in weight can be compared to the

increase in induced drag.

2.3.1 Root bending moment constraint formulation

The bending moment constraint has been implemented in the idrag code using the

method of Lagrange multipliers, and this constraint can also be turned on or off in

combination with the trim constraint. The root bending moment coefficient is given by

the equation:

               ( ) ( )[ ]∫ −+−=
final

ref

s

s

refref
ref

l
RBM dszzyy

b

c
C θθ sincos                                          (2.2)

In this equation, sref is the point about which the root bending moment calculations are

performed, and sfinal is the final location for root bending moment calculations, that is, the

wing tip. In the discrete vortex model equation 2.2 takes the form:

               
{ } ( ){ }∑

= 










−+−=

m

j
jrefjjrefj

ref
j

avg

jn
RBM zzyy

b
s

c

cc
C

1

sin)(cos
1 θθ                     (2.3)

Where the geometry definition is taken from the discrete vortex method formulation by

Blackwell [19](see Figure 2-1).

This constraint is only applied for wing surfaces. In equation 2.3, c is the local chord of

each lifting element, cavg is the average chord of the reference surface, cn is the normal

force coefficient at each station (at each control point) and s is a non-dimensional vortex

semi-width. The result is that the first term in equation 2.3 is simply the lift coefficient at

each station. The term in brackets accounts for the moment arm caused by this lift

coefficient with respect to a reference point. In this term, yref and zref are the y and z

                                                
† The spanload generated with the root bending moment constraint is used to calculate wing weight using
weight equations from FLOPS[23]. A detailed description of this weight calculation is given in section 2.4.
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locations of the reference point, usually equal to the center of gravity of the aircraft. Note

that the streamwise moment arm is neglected, that is, no root bending moment is

calculated in the x direction. The moment caused by the load at each station due to

streamwise distance is really a pitching moment that must be counterbalanced with the

help of tail surfaces (pitching moment constraint), and no structural moment is produced.

The root bending moment coefficients calculated in the code were validated by

introducing elliptical and triangular load distributions. The code calculated root bending

moment coefficients for these spanloads with equation 2.3. Results were compared to

those obtained by numerical integration of equation 2.2 using a standard mathematical

package. These results showed excellent agreement between both equations.

z

y

z’

2 s’

θ j

θ i

w
V

Vn

v Control
Point

Influence
Vortices

y’

Trace of Lifting
Surface

Figure 2-1. Discrete vortex method coordinate systems (Ref. 19)



11

2.3.2 Aerodynamics code connectivity for spanload optimization with a root bending
moment constraint

Since the strategy in the aerodynamics code has changed as a result of the addition of the

root bending moment constraint, the flowchart of the code has also changed. Figure 2-2

shows this flowchart when only lift and pitching moment constraints were included.

Figure 2-3 shows the new code connectivity after the changes were made.

Note that the idrag code has also an analysis capability, in which performance parameters

can be calculated if the loads at each station are supplied. These performance parameters

now include the root bending moment coefficient. In this study, only the design

capability is used, in which loads are found to give minimum induced drag for the aircraft

configuration.

Begin

Set Up Geometry

Input Mode

Form Matrix of Influence Coefficients

Solve Matrix for Optimum 
Load Distribution

Calculate Performance Parameters

End

Design

Analysis

Figure 2-2. Flowchart of idrag code before a root bending moment
constraint was implemented (Ref. 22)
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The modifications made to the code have introduced a significant penalty in terms of

computational time. Now, the system of equations whose solution is the optimum load

distribution must be solved twice: with no root bending moment constraint and with an

active bending moment constraint. Since the system of equations solution is by far the

most computationally expensive task performed in the code, the result is that

computational time has doubled. This approach is however necessary since a previous

knowledge of the root bending moment caused by a minimum drag spanload is essential.

It is in fact the only way of knowing if the bending moment at the wing root is increased

or reduced, and therefore, if wing weight is higher or lower.

Figure 2-3. Flowchart of idrag code after a root bending moment constraint was
implemented.

Begin

Set up Geometry

Form Matrix of Influence Coefficients

Input Mode

Solve Matrix for Minimum Induced
Drag Load Distribution

Root Bending
Moment Constraint

Form and solve matrix for Optimum
Load Distribution with Root Bending

Moment constraint

Analysis

Design

Active

Inactive

Calculate Performance Parameters

End

Root bending moment
constraint



13

2.3.3 Preliminary results

Several configurations have been studied with this method. One of them is shown in

Figure 2-4. It shows the load distribution in cruise flight for minimum induced drag, that

is, with no bending moment constraint, and with an arbitrary root bending moment

reduction (in the figure 11%). Trimmed flight has been assumed, so that both bending

moment and trim constraints are active. Note that the spanwise distances over which

loads are plotted are perpendicular to the plane of symmetry of the aircraft, as shown in

Figure 2-5.

General trends expected can be observed in Figure 2-4. A reduction in root bending

moment shifts the load curve towards a more triangularly loaded wing that will still have

the same area under the curve (same lift). Since the load is shifted inwards, wing weight

should be reduced with this new loading, and the induced drag will necessarily be

increased since the spanload deviates from the minimum induced drag distribution. The

actual induced drag increase obtained with the aerodynamic code for the 11% root

Figure 2-4. Span load distribution for minimum induced drag and with an arbitrary
root bending moment reduction for a Boeing 777-200IGW type configuration.
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bending moment reduction is about 8%. Another important consideration that should not

be disregarded is that, as the load curve becomes more triangular, the load at the wing

root also becomes larger for the same lift coefficient. For a very high load near the wing

root, stall at this location will occur necessarily at a low lift coefficient value compared to

that for a more elliptically loaded wing.  Then, although it will be shown that shifting the

lift distribution towards a more triangularly loaded wing will in some cases reduce gross

weight, there will be a limit on  “how triangular“ the spanload really can become based

on stall considerations. For the purposes of this study, it will be assumed that no limits

based on stall are imposed on the optimization, and this will be true as long as the

spanload does not become “too triangular”, with a high load value at the wing root.

The test case studied here corresponds to a Boeing 777-200IGW type configuration in

cruise flight. For this type of aircraft, normal cruise is performed in the transonic region

(in this case the cruise mach number for the 777-200IGW class aircraft was assumed to

be 0.85). The total drag of the configuration will, of course, depend on Mach number,

since wave drag becomes an important part of the total drag coefficient in the transonic

region. However, the induced drag for a certain configuration and the spanload giving

Y

Figure 2-5. Definition of spanwise distance Y
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minimum induced drag for that configuration are independent of Mach number. Only

induced drag and optimum spanload variations will be studied in this thesis. For this

reason, Mach number considerations are not taken into account.

2.4 Structural Model

The structural model used for calculating the wing bending material weight was

developed by Naghshineh-Pour[24] at Virginia Polytechnic Institute and State University.

Cantilever wings as well as strut-braced wings can be treated with this model. It was

implemented in a code by the same author and has been shown to be a realistic structural

model, valid at least for preliminary design purposes. The code requires the wing

planform shape, together with airfoil thickness distributions and the load curve as inputs,

and it gives wing bending material weight as an output. The required bending material

weight along a variable box beam is calculated by integrating over the area under the

bending moment curve, and engine inertia relief factors are also included. Several

structural analyses can be performed in the code, including taxi bump load analysis, but

they are not carried out in this study for simplicity purposes, since detailed aircraft data

(such as fuel distribution over the wing) are needed for these calculations. The only

structural analysis used to calculate bending material weight was a maximum load factor

condition. A value of 2.5 with a safety margin of 1.5 was the maximum allowable load

factor used, since it is typical of transport aircraft. Loads were calculated for this load

factor using the modified idrag code and they were introduced in the structural program

for bending material weight calculations.

The loads calculated for the maximum load factor condition with the aerodynamic code

have the same shape as the loads for cruise design lift coefficient. This means that a rigid

wing is assumed, in which no aeroelastic effects are included. A truly optimal wing

would be aeroelastically tailored to have minimum root bending moment in worst-case

load conditions while having minimum induced drag at the design lift coefficient. In this

study the rigid wing assumption will neglect the aeroelastic effects for maximum load
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factor conditions. However, this simplified model provides insight into the potential

performance benefits that can be obtained with reduced root bending moment spanloads.

The bending material weight is then used to calculate wing weight using equations taken

from the general optimization code FLOPS[23] (Flight Optimization System) developed

at NASA. The wing weight calculations involve corrections for wing sweep, wing area,

flap area, aeroelastic tailoring factors and another factor accounting for the amount of

composite materials used in the wing. The final weight equation used in the FLOPS

subroutine is given here because it will become important when the Breguet range

equation is introduced:

                                 
1

321

1 w

wwwGW
Wwing +

++⋅=                                                          (2.4)

Where, in this equation:

GW is the aircraft gross weight.

w1 is a factor that accounts for bending material weight, planform shape, engine inertia

relief and aeroelastic and composite factors. It is the value supplied by the Naghshineh-

Pour code.

w2 is an extra correction due to flap area

w3 further corrects wing weight for the amount of composites used.

Equation 2.4 was introduced here for one key reason: to show that the wing weight

calculation requires a knowledge of the aircraft total gross weight. The purpose of this

study is to change the lift distribution and observe how induced drag and wing weight

will change. This in turn will affect total fuel and gross weights. However, if the wing

weight is dependent on aircraft gross weight, something must be done to close the loop. It

will be shown that the implementation of the Breguet equation will not only serve as a

method for calculating fuel and gross weights from a knowledge of induced drag and

wing weight, but to close the loop connecting gross weight and wing weight.
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2.5 Implementation of the Breguet Range Equation

The Breguet range equation has been introduced as a means of relating wing weight and

induced drag for a certain aircraft configuration to fuel and gross weights. Given the

gross weight of a transport aircraft for a certain mission and the fuel weight and range for

that same mission, the lift coefficient, drag coefficient and specific fuel consumption at

the mission altitude and velocity can be calculated. The lift coefficient for the mission

altitude and velocity is found as an average lift coefficient:
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The specific fuel consumption at the cruise velocity is calculated with the equation[25]:
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And an average total drag coefficient is calculated with the help of the Breguet range

equation:
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The induced drag and lift distribution for minimum drag at the design lift coefficient can

be obtained using the aerodynamics code (section 2.3), and the corresponding wing

weight is calculated with the structural model (section 2.4). At this design lift coefficient,

once the induced drag is calculated, the following relationship is established:

                      )_(___ designCinducedDrestDD L
CCtotalC +=                                                   (2.9)
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That is, the drag will be divided in two parts: the induced drag and the drag not covered

by it.

The loads supplied for wing weight calculations are obtained by calling the aerodynamics

code with a different lift coefficient than the design minimum drag value. The lift

coefficient for maximum load calculation is found using:
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Once minimum induced drag and wing weight are calculated, the following assumptions

are made: the weight of the aircraft that does not include wing and fuel weight will

remain constant, and the drag of the aircraft that does not include induced drag will also

remain fixed. The validity of the results obtained in this study will depend on the validity

of these assumptions. As for the first one, the structural weight of the whole aircraft will

depend on wing weight and fuel weight, so that if these weights change, the structural

weight should also change. However, for small variations in wing and fuel weight, that is,

small changes in aircraft gross weight, it is not a bad assumption to presume that the rest

of the structural weight (and of course, the payload weight) remains constant. In any

event, if gross weight is reduced the structural weight should decrease. Hence, the gross

weight reductions obtained here will be in fact minimum expected reductions. In the

second assumption, it is presumed that changing the twist or camber distribution of the

wing (recall that the planform remains the same) does not change profile or pressure

drag. It seems clear that drag will change, but as long as the aircraft is still at the same

speed, altitude, and lift coefficient conditions, the effects of the changing profile and

pressure drag on the wing should be minor.

Once the assumption is made that the only changing weights are wing and fuel weights

and that the only changing drag is induced drag, the spanload can be modified to see the

variation it will produce on aircraft weights. The root bending moment is then decreased



19

from the initial minimum drag configuration, producing a more triangularly loaded lift

distribution with an increased value of induced drag. The new loads (with the root

bending moment reduction but now with maximum load conditions) are then used in the

structural model so that wing weight can be calculated. It was noted earlier that gross

weight is needed to calculate wing weight from the FLOPS weight equation 2.4.

Assuming that the mission range is constant (that is, the aircraft still has to meet the same

mission requirements), all that is needed to calculate take-off weight from the Breguet

range equation is the wing weight. Solving for the take-off weight from the Breguet

equation will give:
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 or, put in another way:
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In this equation, restW  is simply the weight assumed to remain constant, that is, the weight

not covered by fuel or wing weight, and CD_rest is the drag that also remains constant (the

drag excluding induced drag). For the maximum range configuration, where the aircraft

has a full fuel load, it will be assumed that take-off weight equals aircraft gross weight.

Combining equation 2.4 to calculate wing weight with equation 2.13 to calculate gross

weight it is clear that an iteration will yield simultaneously both the aircraft gross weight

and wing weight. This is the approach that will be followed. Now, a change in wing lift

distribution towards a more triangular curve can be related to changes in wing weight,

fuel weight and gross weight, so that an optimum lift distribution can be found.

With the new take-off and wing weights calculated using the iteration mentioned above,

fuel weights are simply found with the equation:

          restnewwingnewnewFUEL WWTOGWW −−= __                                                             (2.14)
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When new gross weights are calculated corresponding to new lift distributions, the lift

coefficient will change if the aircraft still flies at the same altitude, so that the loads used

do not actually reflect the calculated gross weights. Cruise altitude is then changed with

gross weight variation to keep the cruise lift coefficient constant. In that way, the load

distributions will correspond to weight variations. The actual altitude change needed to

keep the lift coefficient constant is in fact small (less than 500 ft. for a Boeing 777-

200IGW class test case)

This is not the only approach that could have been used. Instead of varying gross weight

and keeping mission range constant, the opposite could have been done, that is, the gross

weight could be kept a constant, so that any wing weight reduction would be

compensated by a fuel weight increase in the same amount, and the different ranges that

different spanloads would produce could be compared. In the approach used here, fuel

weight is just calculated so that the required range is met, and different gross weights are

compared for the same mission. This perspective was believed to have more significance,

since the approach corresponds to standard aircraft design practice.

2.6 Code connectivity for maximum fuel configurations

Figure 2-6 shows the general flowchart of the code, where the connection between the

aerodynamics and structures codes can be seen. This flowchart is only valid for the study

of maximum fuel, maximum range configurations. Section 2.7 deals with the

modifications introduced in this code to include the capability of studying aircraft

configurations with reduced fuel-loads.

Starting with minimum induced drag loads (first iteration), the root bending moment will

be reduced from this minimum induced drag value in steps to find new wing, fuel and

gross weights. In the first iteration, the wing weight calculation can be performed directly

using equation 2.4 because the initial gross weight is known. The weight that will be

assumed to remain constant throughout, that is, Wrest will be calculated by subtracting

wing weight and total fuel weight from the given gross weight in the first iteration. CD_rest

will be found subtracting the minimum induced drag from CD_total.
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Calculate design lift coefficient, cruise sfc, total average
drag coefficient and maximum lift coefficient for weight

calculations.

Iteration

Call aerodynamics code for
minimum induced drag

calculation at CL_design.

Call aerodynamics code for
load calculation at

CL_weight_calculation.

Bending material weight
calculation with maximum

loads

Wing weight calculation

Wrest and CD_rest calculation

Reduce root bending moment
from minimum induced drag

value

Call aerodynamics code for minimum
induced drag calculation at CL_design and

with a root bending moment reduction.

Call aerodynamics code for load calculation at
CL_weight_calculation and with a root bending

moment reduction.

Bending material weight calculation
with maximum loads

Simultaneous calculation of wing and take-
off gross weights.

Fuel weight calculation

Reduce root bending moment

Begin

For the new gross weight, calculate new
altitude to maintain CL_design constant and

find sfc and Speed at this new altitude

First Iteration

Iteration number >1

Figure 2-6. Flowchart of the spanload optimization code with a root bending moment
constraint, maximum range configuration.
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When the root bending moment is reduced from the minimum drag value the wing weight

will change and consequently gross weight will also. The iteration between equations 2.4

and 2.13 is needed in this case to calculate simultaneously wing and gross weights. The

new gross weights certainly will not match the lift coefficient and altitude conditions

prescribed before. For that reason, cruise altitude is changed so that the lift coefficient is

unchanged. The variation in altitude affects cruise specific fuel consumption and speed

(cruise mach number is assumed constant), which in turn will affect equation 2.13. For a

cruise altitude greater than 36000 ft., temperature does not change, so that specific fuel

consumption and speed are constant for altitude changes above this limit. The ideal thing

to do is enclose the iteration between equation 2.4 and 2.13 inside another loop that

changes altitude conditions. That is, a take-off weight will be calculated, which will

change altitude (sfc and Speed), then a new take-off weight will be found with equations

2.4 and 2.13 which will again change altitude conditions, until convergence is achieved.

To decrease computational time, another approach was used here. No iteration is made to

match altitude for the new weight conditions. Instead, a lagging altitude is used. The

altitude for specific fuel consumption and speed calculations will be assumed to be the

one corresponding to the previous case, that is, to the previous root bending moment

reduction and gross weight. For root bending moment reduction steps of 1%, where gross

weight changes are small from case to case, so are altitude changes. For a Boeing 777

class aircraft test case, with a design cruise altitude of 40000 ft., altitude changes from

step to step are lower than 40 ft. Above 36000 ft. altitude changes will not have any

effect on the calculations. Even if cruise altitude were below this limit, a 40 ft error will

mean a deviation in ambient temperature of 0.26 Kelvin, resulting in negligible changes

in speed and specific fuel consumption.

2.7 Methodology for reduced mission ranges

So far, the code developed can give the optimum spanload for a given aircraft, that is, the

spanload that will produce a maximum reduction in gross weight. However, the only test

cases that can be studied with the method so far are those corresponding to a maximum

take-off weight configuration. Aircraft generally fly through shorter distances than their



23

design maximum range, often in economic missions. It is then important to study how the

spanloads generated by the root bending moment reduction will affect fuel weights and in

turn take-off weights for these different missions. A modified FORTRAN code was then

developed to carry out this study, the description of which follows here:

2.7.1 Code modifications to study different mission ranges

The code developed to study weight variations for different mission ranges includes only

a few modifications.

Maximum take-off weight (equal to aircraft gross weight), maximum fuel weight and

maximum range are still needed together with the new fuel weights for which weight

variations will be studied. The code assumes that the initial take-off weight (take-off

weight for minimum drag with no structural constraint added) is reduced by the same

amount from the maximum take-off weight than the fuel weight is reduced from the

maximum fuel weight, that is, all the missions will have the same payload:

              )( ___ MISSIONNEWFUELMAXFUELinitial WWTOGWTOW −−=                                 (2.15)

A new value of cruise lift coefficient for the new weights is calculated. This lift

coefficient is found using equation 2.5, substituting TOGW by TOW and WFUEL by

WFUEL_NEW_MISSION. It is then assumed that the drag coefficient not due to induced drag is

still constant, with the same value it had for the maximum range configuration. Note that

this assumption is really more restrictive than the one made before for the drag

coefficient, since the cruise lift coefficient is changing now, and consequently the angle

of attack, which will change the drag coefficient. However, the mission is still performed

at the same altitude and speed, and the lift coefficient varies little from the initial

maximum weight configuration, so that drag coefficient will remain almost unchanged by

the new conditions:

         )_(max_)__( __ rangemissionCrangemissionreducedC restDrestD =              (2.16)
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The weight not covered by fuel weight spent during cruise or wing weight is also the

same as in the maximum mission range configuration, since the payload weight remains

the same:

         )_(max_)__( rangemissionWrangemissionreducedW restrest =                      (2.17)

The range for the new fuel weight can be calculated using the Breguet equation (equation

2.7). In this equation fuel and take-off weights and the design lift coefficient must be

changed to the new values. The total drag coefficient is set as the sum of CD_rest and the

induced drag coefficient calculated using the aerodynamics code for minimum induced

drag with the new value of lift coefficient. The induced drag increase (non-dimensional)

for a given configuration due to a specific root bending moment reduction from the

minimum drag value is exactly the same no matter what the design lift coefficient is. That

is, the induced drag increase

)_(min_

)_(min_)__(___
dragimuminducedD

dragimuminducedDreductionmomentbendinginducedD

C

CC
increasedragind

−
=              (2.18)

is not dependent on mission range. This happens because for a given planform, the

optimum loads are directly proportional to the lift coefficient, so that variations in

induced drag coefficients are the same. To calculate the new induced drags for the

reduced mission range calling the aerodynamics code for each root bending moment

reduction is not needed. If the induced drag increase is calculated using equation 2.18 for

the maximum range configuration, only the induced drag for minimum drag in the new

reduced range configuration must be found. The induced drag coefficient for any root

bending moment reduction can then be calculated using:

)__1()_(min_)__(_ increasedragindCC dragimuminducedDreductionmomentbendinginducedD +=          (2.19)

In this way, the aerodynamics subroutine is only used once for each new mission range.

The approach that was used for the maximum range configuration to calculate wing

weight can no longer be applied. Using an iteration between the Breguet equation solved

for the take-off weight (equation 2.13) and the wing weight equation from FLOPS
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(equation 2.4) will lead to inconsistent results. The take-off weight calculated in this

iteration will serve as the gross weight used in the wing weight calculations, and for a

reduced range mission take-off weight and gross weight will certainly be different. Since

for a specified root bending moment reduction the aircraft still has to meet the maximum

range, the gross weights calculated for the maximum range configuration at the specific

root bending moment reduction are still valid, and so are the wing weights calculated for

this configuration. These wing weights are then the weights used for the reduced range

configurations, the iteration is removed and the wing weights for different mission ranges

are the same. The actual take-off weight is then calculated once the wing weight is known

using equation 2.13, and fuel weights are found in the same way they were before

(equation 2.14).

 One final consideration must be pointed out: to compare take-off weight variations and

fuel weight variations for different mission ranges, the fuel weight subtracted from the

maximum fuel weight and maximum take-off weight is added back once the calculations

are finished, so that again total take-off weights and total fuel weights variations are

compared. Otherwise, comparisons would be made for variations that are non-

dimensionalized by different take-off weights.

2.7.2 Code connectivity for the spanload optimization for different mission ranges

If calculations have been performed for the maximum range configuration, the

computational cost required for the study of reduced mission ranges will be minimal. The

aerodynamics code is only called once for induced drag calculations at the minimum drag

condition (no root bending moment constraint) for each new fuel weight (new range).

The rest of the induced drag coefficients and wing weights corresponding to different

root bending moment reductions are already known from the maximum range analysis.

Induced drag coefficients and wing weights can be quickly related to gross and fuel

weights with analytical equations of negligible computational cost. For that reason, if the

maximum range analysis is performed, calculations can be made for several fuel weights

with no important decrease in performance. Figure 2-7 shows a flowchart of the code.
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Maximum Range configuration study
Calculations of induced drag increases and wing weights

are saved.

Calculate new Take-off Weight, sfc
and design lift coefficient

Call Aerodynamics code to calculate
induced drag coefficient for minimum

drag case

Calculate new range

Induced drag coefficient and wing weight are taken from maximum
range analysis for the specific root bending moment reduction

Calculate take-off weight and fuel weight and
percent weight variations from initial values

Reduce root bending moment

For the new take-off weight, calculate the new altitude to
keep the lift coefficient fixed, and find sfc and Speed at

this altitude

Change to a new fuel weight corresponding to
another mission

Figure 2-7. Code connectivity for the spanload optimization with a root
bending moment constraint, reduced mission range configurations.
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The code starts performing the calculations for a maximum range configuration (see

Figure 2-6). Wing weights and induced drag increases for the different root bending

moment reductions are saved in this step. A loop is then started for different fuel weights

that correspond to different mission ranges. For each mission, a separate study is

performed in which root bending moment is reduced in steps (in the same way as it was

done for the maximum range configuration). The induced drag coefficient and wing

weight for each root bending moment reduction are found using the saved results from

the maximum range analysis, and they are related to fuel and take-off weights. To keep

the lift coefficient constant for each mission range, the same approach used for maximum

range studies is also used here. Altitude is changed with a lagging technique, that is, the

altitude corresponding to the aircraft take-off weight of the previous root bending

moment reduction is used for specific fuel consumption and speed calculations for the

new root bending moment reduction. Again, for small steps in root bending moment

reductions, altitude changes are also small (not larger than 40 ft), so that speed and

altitude changes from the real values are negligible using this technique.
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Chapter 3 Spanload optimization problem with a root
bending moment constraint

The spanloads over the wings of existing aircraft configurations are to be optimized.

Load distributions will be found that give minimum induced drag for the aircraft under

study with the constraints in lift, pitching moment and root bending moment coefficient.

The root bending moment will be applied at the aircraft wing to include wing structural

considerations. Starting from a load distribution for minimum induced drag, the root

bending moment produced by this minimum drag spanload will be reduced. New

spanloads with the applied root bending moment constraint will be related to changes in

wing, fuel, and take-off weights, and a conclusion about which spanload will be optimum

for a certain aircraft configuration will be made.

A certain spanload that produces weight changes for an aircraft configuration when

performing its maximum range mission, will produce different changes in aircraft

weights when reduced range missions are performed. For that reason, both maximum

range configurations and reduced fuel loads studies will be performed.

3.1 Maximum range configurations

Test studies have been performed for Boeing 777-200IGW and Boeing 747-100 class

airplanes. Note that the configuration under study here is a maximum take-off weight,

maximum range, maximum fuel arrangement. Other missions for the same aircraft will

generate different results. These other missions will be treated later.

3.1.1 Boeing 777-200IGW class aircraft, maximum range configuration

The basic data introduced in the code is given in Table 3-1
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Table 3-1.  Boeing 777-200IGW class aircraft test data for maximum range
configurations

WING GEOMETRY
1 Location of Wing Chord Break Point (non-dimensional) 0.37
2 Wing Half Span (ft) 109.21
3 Inboard Wing Sweep (deg) 28.29
4 Outboard Wing Sweep (deg) 28.29
5 Wing Dihedral Angle (deg) 6
6 Wing Chord at Fuselage Center Line (ft) 52
7 Wing Chord at Break Point (ft) 25.83
8 Wing Chord at Wing Tip (ft) 7.35
9 Thickness to Chord at Fuselage Center Line (ft) 0.111
10 Thickness to Chord at Wing Break Point (ft) 0.1
11 Thickness to Chord at Wing Tip (ft) 0.08

HORIZONTAL TAIL GEOMETRY
12 Horizontal Distance from wing to tail leading edges at center line 120
13 Vertical Distance from Wing to Tail Leading Edges at Center Line 12
14 Tail Half-Span (ft) 36.913
15 Tail Sweep Angle (deg) 37
16 Tail Dihedral Angle (deg) 0
17 Tail Root Chord (ft) 22.618
18 Tail Tip Chord (ft) 7.35

PERFORMANCE SPECIFICATIONS
19 Maximum Gross-Weight (lbs) 588893
20 Fuel Weight (lbs) 215000
21 Maximum Range (nm) 7600 + 500 reserve range
22 Cruise Mach Number 0.85
23 Cruise Altitude (ft) 40000
24 Static Specific Fuel Consumption (lb/hr/lb) 0.29

ENGINE SPECIFICATIONS
25 Number of Engines on Wing 2
26 Engine Weight (lbs) 16278
27 Spanwise location of Engine on Wing 0.33

MISCELLANEOUS
28 Ultimate Factor 2.5
29 Ratio of Wing Area Covered by Flaps 0.333
30 Location of Aircraft Center of Gravity from wing centerline leading edge(ft) 35
31 Fuselage Diameter (ft) 20.33

3.1.1.1 Geometry definition

Variables 1 to 18 define wing and tail geometry. They are not design variables and will

remain fixed throughout the calculations. Variables 1 to 8 specify the wing planform

geometry that will be used by the aerodynamics code for loads and induced drag

calculations. Note that it is assumed that the wing is composed of two panels, the point

where the first panel (inboard panel) ends and the second (outboard panel) begins is the

breakpoint. Horizontal tail geometry is also given in variables 12 to18, specifying both

planform and streamwise distance to the wing. This will also be used by the
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aerodynamics code for loads and pitching moment coefficient calculations. Variables 9 to

11 establish the thickness to chord distributions. It is assumed that this distribution is

linear for each wing panel. The thickness to chord distribution is used by the structural

code for bending material weight calculations.

3.1.1.2 Performance specification

The use of variables 19 to 24 can be seen from section 2.5. They allow the calculation of

an average cruise-design lift coefficient, a cruise specific fuel consumption and an

averaged cruise total drag coefficient. It is important to realize that the performance

specification is treated as that corresponding to a minimum induced drag spanload with

no root bending moment constraint. That is, it is supposed that the aircraft is designed

with an aerodynamically optimum spanload. This may not be the case, but the key

purpose here is to study percent weight variations as a result of more triangularly loaded

wings (reductions in root bending moment from the minimum induced drag value). The

fact that this type of aircraft may not be designed for the minimum drag spanload will not

affect this study.

3.1.1.3 Engine specification

The weight and location of the engines are specified in variables 25 to 27. Engine inertia

relief factors can be calculated in the structural code using these variables.

3.1.1.4 Miscellaneous

The maximum load factor (variable 28) is used to calculate the lift coefficient that will be

used for weight calculations (equation 2.10). The aerodynamics code will generate the

load distribution for this lift coefficient, and the loads will be transferred for weight

calculations. Variable 29, the wing flap area, simply introduced a correction in the wing

weight calculations through the FLOPS weight equation  2.4. The location of the aircraft

center of gravity is important for pitching moment calculations (variable 30). Finally, the

fuselage diameter (variable 31), is introduced here to include the pitching moment

coefficient caused by the fuselage about the center of gravity. This calculation requires a
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knowledge of the fuselage pitching moment derivative with respect to aircraft lift

coefficient. This may not always be known. Fortunately, this term is negligible for the

calculations. If the pitching moment caused by the fuselage is not taken into account,

optimum spanloads and weight variations remain the same.

3.1.1.5 Constraints

The load distributions are found from the aerodynamics code under the constraints of a

design lift coefficient, a pitching moment coefficient about the center of gravity and a

wing root bending moment coefficient. Note that this last constraint is applied only to one

side of the wing. If the whole wing root bending moment is calculated, it would be zero

for a symmetrical load distribution since loads will be the same but moment arms will

change signs (equation 2.3). No other constraints are imposed on the calculations.

3.1.1.6 Changing variables

The performance specifications are assumed to correspond to a minimum induced drag

(aerodynamically optimum) load distribution. The root bending moment for this spanload

is calculated. Weight variations will be studied for different root bending moment

reductions from this minimum drag value. The only forced changing variable is then the

root bending moment reduction. In this study, root bending moment coefficient will be

reduced from the aerodynamic optimum from 0% to 30% in 0.5% increments.

3.1.1.7 Optimized variables

The only parameter that is really optimized is the induced drag of the aircraft

configuration. An optimum minimum induced drag spanload is obtained for each root

bending moment reduction. These spanloads are in turn related to aircraft weights.

Weight variation curves as a function of root bending moment reduction can be obtained.

The choice of an optimum spanload that corresponds to a minimum aircraft weight will

be made by looking at these curves. In no case will the aircraft weight actually be

minimized.
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3.1.1.8 Measures of effectiveness

Induced drag, wing weight, fuel weight, wing plus fuel weight and take-off weight are

studied for each root bending moment reduction. Each one, or even a combination of

them, could be taken as the measure of effectiveness for determining the optimum

spanload. General aircraft design practice tells, however, that take-off weight will be the

best measure of effectiveness.

3.1.2 Boeing 747-100 class aircraft, maximum range configuration

The basic data introduced in the code for a Boeing 747-100 class aircraft configuration

for a maximum range mission is given in Table 3-2.

Geometry definitions, performance, engine specifications and other variables apply in the

same way they did for the previous Boeing 777-200IGW class case (section 3.1.1). Root

bending moment reductions from the minimum drag configuration will also be changed

from 0% to 30% in 0.5% increments, and weight variations will be studied. Take-off

weight will again be the most important measure of effectiveness to determine optimum

load distributions.

The study of a different test case than the Boeing 777 class configuration will be

important for several reasons. First of all, the trends that are observed in the Boeing 777-

200IGW case study are expected for the Boeing 747-100 class aircraft (and for other

airplanes). A greater generality on the results can be obtained with the study of two

different airplane configurations. Secondly, it is expected that lower range airplanes will

benefit the most from greater root bending moment reductions (more triangular

spanloads), since they are more driven by structural considerations than by aerodynamic

ones (any increase in induced drag is more important for a long range aircraft). The

Boeing 747-100 class aircraft is a lower range aircraft, but it is also a heavier one. The

effects of aircraft characteristics on the weight variations due to more triangular

spanloads can therefore be studied.
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Table 3-2.  Boeing 747-100 class aircraft test data for maximum range configuration.

WING GEOMETRY
1 Location of Wing Chord Break Point (non-dimensional) 0.47
2 Wing Half Span (ft) 97.80
3 Inboard Wing Sweep (deg) 37.50
4 Outboard Wing Sweep (deg) 37.50
5 Wing Dihedral Angle (deg) 7.00
6 Wing Chord at Fuselage Center Line (ft) 54.30
7 Wing Chord at Break Point (ft) 29.00
8 Wing Chord at Wing Tip (ft) 13.30
9 Thickness to Chord at Fuselage Center Line (ft) 0.1344
10 Thickness to Chord at Wing Break Point (ft) 0.08
11 Thickness to Chord at Wing Tip (ft) 0.08

HORIZONTAL TAIL GEOMETRY
12 Horizontal Distance from wing to tail leading edges at center line 120
13 Vertical Distance from Wing to Tail Leading Edges at Center Line 17
14 Tail Half-Span (ft) 36.40
15 Tail Sweep Angle (deg) 37.50
16 Tail Dihedral Angle (deg) 7
17 Tail Root Chord (ft) 32.00
18 Tail Tip Chord (ft) 8.30

PERFORMANCE SPECIFICATIONS
19 Maximum Gross-Weight (lbs) 718825
20 Fuel Weight (lbs) 274955
21 Maximum Range (nm) 5500+ 500 reserve range
22 Cruise Mach Number 0.8
23 Cruise Altitude (ft) 35401
24 Static Specific Fuel Consumption (lb/hr/lb) 0.36

ENGINE SPECIFICATIONS
25 Number of Engines on Wing 4
26 Engine Weight (lbs) 12727
27 Spanwise location of Engine on Wing 0.40, 0.71

MISCELLANEOUS
28 Ultimate Factor 2.5
29 Ratio of Wing Area Covered by Flaps 0.33
30 Location of Aircraft Center of Gravity (ft) 49
31 Fuselage Diameter (ft) 23.00

3.2 Reduced range configurations

The effect of the different spanloads on the aircraft weights for reduced fuel, reduced

range missions configurations will be studied only for the Boeing 777-200IGW class

aircraft. The comparisons between Boeing 747-100 and Boeing 777-200IGW class

airplanes can be made by looking at the maximum range configurations. The weight

variations for reduced fuel weights will be relatively the same for both aircraft, so that the

Boeing 747-100 class aircraft was not studied for reduced ranges.
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3.2.1 Boeing 777-200IGW class aircraft, reduced range configurations

The input data that is needed for the Boeing 777-200IGW class configuration study was

given in Table 3-1 for the maximum range configuration. The same table is valid for

reduced fuel, reduced range configurations. The geometry definition will of course

remain the same, together with the engine specifications and miscellaneous variable

definitions. Maximum range performance specifications are also needed and will remain

the same, since the calculations for reduced range configurations start with a maximum

range study (see section 2.7 and Figure 2-7).

Calculations will start, then, performing a maximum range configuration analysis in

which root bending moment reduction will be varied from 0% to 30% in 0.5% step

increments as before. Once wing weights and induced drag increases are found for the

maximum range configuration, calculations can begin for reduced range configurations

(refer to section 2.7 for a description of how reduced fuel configuration calculations are

carried out).

Calculations will be performed for the Boeing 777-200IGW class aircraft test study for a

variety of fuel weights, starting from the maximum one. Table 3-3 shows the fuel weights

that will be considered:

Table 3-3. Fuel weights used for reduced range configuration calculations, Boeing 777-
200IGW class aircraft.

Fuel Weight 1 (maximum) 215000 lbs
Fuel Weight 2 185000 lbs
Fuel Weight 3 155000 lbs
Fuel Weight 4 125000 lbs
Fuel Weight 5 95000 lbs
Number of Fuel Weights Studied 5

A new, reduced aircraft range corresponds to each fuel weight. For each configuration the

root bending moment will be reduced from 0% to 30% in 0.5% step increments, and take-

off weight and fuel weight variations will be studied.

Appendix A.1 gives a sample input for the code. It corresponds to the Boeing 777-

200IGW class aircraft test case for a reduced range configuration. The first part of the
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input file is common for all studies, both maximum range and reduced fuel loads. The

second part is simply the definition of the fuel loads that will be analyzed. In this sample

input file only one reduced fuel load is studied (185000 lbs.).
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Chapter 4 Results for the spanload optimization problem
with a root bending moment constraint

Results are presented here using the FORTRAN code that has been developed which

generates spanloads for a given aircraft configuration corresponding to different root

bending moments, calculates wing weights using the structural model described before,

and studies the effect the different lift distributions have on fuel weights and aircraft

gross weight.

Studies have been performed on both Boeing 777-200IGW and Boeing 747-100 class

aircraft.

4.1 Results for maximum range configurations

Boeing 777-200IGW and Boeing 747-100 type aircraft data are given in Tables 3-1 and

3-2, respectively.  Note that the configuration under study is a maximum take-off weight,

maximum range, maximum fuel arrangement. Other missions for the same aircraft will

generate different results. As the root bending moment is decreased and new spanloads

are calculated, the induced drag increases and the wing weight decreases. To compare

induced drag increase to wing weight reduction as the root bending moment decreases,

nondimensional parameters for both variables are developed as follows:
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In these equations, CDinduced0 and Wwing0 are the induced drag and wing weight

corresponding to the aerodynamically optimum spanload, with no root bending moment

constraint applied. Note that variations are expressed as a percentage change.
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4.1.1 Results for the Boeing 777-200IGW type aircraft, maximum range
configuration

Wing weight reduction and induced drag increase as a function of root bending moment

reduction from the aerodynamic optimum value are shown in Figure 4-1 for the Boeing

777-200IGW type test case (input data shown in Table 3-1).

Wing weight reductions and induced drag increases correspond to equations 4.1 and 4.2

respectively.

The induced drag curve shows that the drag increase from the minimum induced drag

point (that is, zero root bending moment reduction) is parabolic, with zero slope at the

starting point, as expected, since that should mean that the zero root bending moment

reduction point is in fact a minimum for induced drag. The induced drag increase curve

turns out to be exactly parabolic for every aircraft and planform configuration.
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Figure 4-1. Wing weight reduction and induced drag increase versus root bending
moment reduction. Boeing 777-200IGW type aircraft, maximum range configuration.
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The wing weight reduction curve is much more interesting.  Note the nearly linear

behavior of this line. Even when a structural model was used that calculates wing

bending material weight and takes into account such diverse factors in wing weight

calculations as engine inertia relief or the use of composite materials, the variation of

wing weight with root bending moment seems to be almost linear.

It was presumed that the root bending moment constraint was a crude structural model

from a first point of view. However, it has been shown that, at least for this test case, it

turns out to be a quite good one, and no further structural models would in fact be

needed.

It should be realized that the linearity of the wing weight reduction curve is in fact

dependent on the test case, so that a different aircraft would yield a different curve. A

wide variety of airplanes of different sizes, weights and mission ranges should be tested

to prove that the linearity of the wing weight reduction versus root bending moment

curve is in fact general, and that a straight line can be fit through this curve in all cases

with a low loss in accuracy. If this presumption is true, the whole spanload optimization

will only require the study of two values for the wing weight and induced drag, one for

minimum induced drag (zero root bending moment reduction) and another for an

arbitrary root bending moment reduction. Curves would then be fit through these two

points and the whole optimization process could be greatly improved, since the need of

making calculations covering a wide range of root bending moment reductions would no

longer be necessary.

Induced drag and wing weight variations have been related to fuel and take-off weight

changes. Fuel weight variations versus root bending moment reductions for the same test

case are shown in Figure 4-2. Fuel weight is actually decreased when the root bending

moment reduction is low (from zero to six percent), even when the induced drag is

increasing. This is due to the rapid decrease in wing weight compared to the increase in

induced drag for these low values of root bending moment reduction, leading to an

essentially lighter aircraft with the same drag characteristics, so that less fuel is required

to complete the mission. Nevertheless, when the root bending moment reduction becomes
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high, the fuel weight increases sharply, and this will in fact limit the value beyond which

a more triangular spanload will be beneficial.

Figure 4-3 is a plot of the variation of the sum of wing and fuel weights, also showing the

variation of gross weight. These two curves are essentially the same plot, since the weight

of the aircraft not covered by the wing and fuel weights was assumed to be constant. The

minimum gross weight for the test case is found for a root bending moment reduction of

about 10%. The spanload corresponding to this minimum gross weight is given in Figure

4-4, together with the lift distribution for minimum induced drag. Note that the maximum

gross weight reduction obtained for this test case is small, yet non-negligible (close to

1%). For a long-range aircraft, like the Boeing 777-200IGW, any increase in drag would

bring a large penalty in fuel weight, so that only a low root bending moment reduction

would be beneficial. Low gross weight reductions are then expected for this type of

airplane. For low range transport aircraft, where structures become more important than

Figure 4-2. Fuel weight variation versus root bending moment reduction. Boeing
777-200IGW type aircraft, maximum range configuration.
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aerodynamics, a larger root bending moment reduction will still produce benefits, and the

total gross weight savings will be higher.

Figure 4-3. Wing plus fuel and gross weight variations versus root bending moment
reductions. Boeing 777-200IGW type aircraft, maximum range configuration.

Figure 4-4. Span load distribution for minimum induced drag compared to optimum
load distribution. Boeing 777-200IGW type aircraft, maximum range configuration
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4.1.2 Results for the Boeing 747-100 type aircraft, maximum range configuration

The Boeing 747-100 class aircraft input data for maximum range configuration is given

in Table 3-2. Figure 4-5 shows wing weight reduction and induced drag increase

(equations 4.1 and 4.2) as a function of root bending moment reduction for this test case.

The induced drag increase curve is exactly parabolic with a zero slope for no root

bending moment reduction (minimum drag). In this case, the wing weight reduction

curve is also nearly linear, so that a straight line can be fit through this curve with a low

loss in accuracy. However, a general conclusion about the linearity of this curve cannot

yet be achieved, since only two test cases have been studied.

Comparing figures 4-1 and 4-5, it can be seen that the wing weight reduction with root

bending moment reduction is lower for the 747 class aircraft than for the 777

configuration. This will make total weight reductions smaller. This lower wing weight

reduction can be explained by looking at the FLOPS wing weight equation:
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Figure 4-5. Wing weight reduction and induced drag increase versus root bending
moment reduction. Boeing 747-100 type aircraft, maximum range configuration.
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Here, w1 (essentially the bending material weight) changes the same for both airplanes

due to root bending moment changes. The next term, w2, is a correction for flap area, and

it should not make any difference between aircraft. The difference must lie then in the

aircraft GW and w3. This last term, w3, implements a weight correction for wing area and

the amount of composites used in the wing construction. In the studies performed here, it

was assumed that no composite materials were used in the wing construction of any

airplane. w3, however, has a larger value for the Boeing 747-100 class configuration due

to its larger reference area. On the other hand the gross weight of the Boeing 747-100

type aircraft is also larger (see tables 3-1 and 3-2). As a result, with a certain reduction in

bending material weight (reduction in w1), the wing weight of the bigger, heavier aircraft

will be reduced by a lower amount. Note that with a similar bending material weight

reduction the numerator of equation 2.3 diminishes less in comparison to the denominator

for a higher GW and w3.

Figure 4-6 shows fuel weight variation as a function of root bending moment reduction

for the Boeing 747-100 test case. Comparing Figures 4-2 and 4-6, the percent fuel weight

increase for a given root bending moment reduction is very similar for both test cases.

Also note that the initial maximum fuel weight for both airplanes is similar (215000 lbs.

for the 777-200IGW class aircraft and 275000 lbs. for the 747-100 type). This makes the

non-dimensionalization to calculate percent variations similar. But it was noted that the

wing weight reduction is lower for the heavier, 747-100 type aircraft. It seems that this

aircraft should have a greater increase in fuel drag because the benefits of wing weight

reduction are not so large. This is where aircraft range comes into play. For a lower range

aircraft, like the Boeing 747-100, any increase in induced drag caused by a root bending

moment reduction will need a lower fuel increment to complete the required range, since

the incremental drag is applied through a shorter distance. The result is that the lower

benefit that the Boeing 747-100 class aircraft receives from lower wing weight reductions

is compensated by larger fuel savings due to its lower range.
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Wing plus fuel weight variations and gross weight variations for the Boeing 747-100

class aircraft are shown in figure 4-7. As in the previous case, both curves reflect the

same changes since the weight not covered by wing or fuel weight is assumed to be

constant. Figure 4-7 shows that the Boeing 747-100 class configuration has lower

maximum gross weight reductions than those obtained for the Boeing 777-200IGW class

aircraft. For a 20% root bending moment reduction, for example, the wing weight

reduction for the Boeing 747-100 class aircraft is 17%, compared to the 18.5% wing

weight reduction that is achieved for the Boeing 777-200IGW. It has been shown that

fuel weight variations are almost the same for both aircraft. The difference is then in the

wing weight variation. The lower wing weight reduction experienced by the Boeing 747-

100 class airplane results in lower gross weight reductions. Besides, for the Boeing 777-

200IGW, the ratio of wing weight to aircraft gross weight is about 0.14, that is, wing

weight accounts for 14% of the maximum take-off weight. For the 747-100 class aircraft,

however, wing weight accounts only for 11% of aircraft gross weight. As a result, any

weight saving obtained due to wing weight reductions will reflect less in the 747-100

Figure 4-6. Fuel weight variation versus root bending moment reduction. Boeing 747-
100 type aircraft, maximum range configuration.
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aircraft gross weight. Optimum load distributions for this case (corresponding to a root

bending moment reduction of about 8%) are shown in figure 4-8, together with minimum

drag loads.

Figure 4-7. Wing plus fuel and gross weight variations versus root bending moment
reductions. Boeing 747-100 type aircraft, maximum range configuration.

Figure 4-8. Span load distribution for minimum induced drag compared to optimum
load distribution, Boeing 747-100 class aircraft.

-3

-2

-1

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

root bending moment reduction (%)

W
ei

g
h

t 
va

ri
at

io
n

 (
%

)

Wing+Fuel Weight
Variation (%)

Gross Weight
Variation (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

y (ft)

lo
ad

s

Minimum Drag Loads

Optimum Loads
8% rbm reduction



45

It has been shown that the optimum spanload of a certain aircraft configuration can be

found, that is, the spanload that will produce a maximum reduction in gross weight. The

maximum gross weight reductions are dependent on such different things as aircraft

range, gross weight, wing reference area and percent of the gross weight covered by the

wing weight. These test cases studied are maximum take-off weight, maximum range

configurations. It is now necessary to study the effect of the different spanloads generated

using the root bending moment constraint on reduced fuel, reduced range configurations.

4.2 Results for reduced range configurations

A Boeing 777-200IGW class aircraft test study will be performed for reduced fuel loads.

In this case the spanload is optimized for a reduced range, while the aircraft still meets

the full, long range mission requirement as a constraint. In minimizing the take-off

weight at a shorter range, a penalty will be incurred for the full range mission compared

to the basic aero-alone optimum weight. The relative magnitude of the benefit for shorter

range flight compared to the penalty at the full mission range is found as part of the

results, and can be used in determining the best design target choice. The input data for

this study is given in Table 3-1, and the different mission fuel weights are given in Table

3-3. Table 4-1 shows these fuel weights again, together with the mission range to which

they correspond.

Table 4-1. Fuel weights and ranges for reduced fuel configurations. Boeing 777-200IGW
class aircraft.

Case study Mission Fuel Mission
1 215000 lbs. 8508 nm
2 185000 lbs. 7446 nm
3 155000 lbs. 6346 nm
4 125000 lbs. 5205 nm
5 95000 lbs. 4025 nm

Note that the mission range calculated for the new mission fuel weights is found under

the assumption of a minimum drag load distribution, with no root bending moment

constraint (see Figure 2-7)
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The study is then performed reducing fuel weights so that ranges vary approximately

from 4000 to 8000 nautical miles, which are typical mission ranges for the 777-200IGW.

Wing weights for different root bending moment reductions will have the same value as

those obtained for the maximum range configuration since the aircraft still has to meet

this maximum range requirement and has to comply with the maximum range weights, so

that its variation will not be shown here.

Appendix A.2 shows the output files that are generated by the code. These output files

correspond to the input data given in Appendix A.1, that is, to the Boeing 777-200IGW

type test case with a reduced fuel load of 185000 lbs., corresponding to test case 2 in

Table 4-1. Five different output files are generated. loads.out give the minimum drag load

distribution and the optimum load distribution for the reduced range configuration. ww-

id.out gives the wing weight and induced drag coefficient for the reduced fuel load for

different values of root bending moment reduction (recall that wing weight is the same

for all missions). wred-dinc.out is the same file but results for wing weight and induced

drag are given as percent variations from the initial, minimum drag value. Finally,

weights.out gives wing, fuel, wing plus fuel, and take-off weights for the reduced fuel

load configuration. Note that the fuel weight subtracted from the maximum range

configuration is added back in this file, for comparison purposes with other fuel load

configurations. weight-variation.out gives the percent variations for these weights.

Figure 4-9 shows the fuel weight variation as a function of root bending moment

reduction for different mission ranges. Since the aircraft has now a different initial fuel

load for each configuration, the non-dimensionalization performed to obtain percent fuel

weight variation can be confusing. The fuel weight variation will be given by:

        
)(max_

)()(
__
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initialWnewW
VariationWeightFuel

FUEL

FUELFUEL −
=                                                      (4.3)

Let us assume that the Boeing 777-200IGW class configuration is being studied, with a

reduced fuel load equal to 155000 lbs. (case study 3 in Table 4-1). For this case,

WFUEL(initial)=155000 lbs., WFUEL(max_range)=215000 lbs., equal for all cases, and

finally, WFUEL(new) is the new fuel weight calculated for the specific mission for a given
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root bending moment reduction. Starting from the initial fuel weight for the reduced

range mission, the root bending moment is reduced from the minimum drag

configuration, which changes fuel weight to a new value WFUEL(new). The fuel weight

variations are non-dimesionalized in all cases by the same fuel weight (maximum range

configuration fuel weight).

In Figure 4-9, all the curves appear close to each other when the root bending moment

reduction is low, but for high values of root bending moment reduction (more triangular

spanloads), the needed fuel weight to complete the mission range increases much more

sharply for high mission ranges, and this will be reflected in aircraft take-off weight.

Figure 4-10 represents the variation of the sum of wing and fuel weights as a function of

root bending moment reduction. Figure 4-11 depicts take-off weight variation. Both of

these percent variations are non-dimensionalized by dividing the weight difference by the

wing plus fuel weight or take-off weight corresponding to the maximum range

configuration. Again figures 4-10 and 4-11 are essentially the same graph, since wing and

Figure 4-9. Fuel weight variation with root bending moment reduction for different
mission ranges. Boeing 777-200IGW type aircraft.
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fuel weights are the only weights that change in our model. The general result is that a

larger take-off weight reduction can be achieved for lower ranges, also corresponding to a

higher root bending moment reduction and a more triangular lift distribution. This means

that the take-off weight savings due to reduced wing weights become more important

than the fuel weight increments due to increased drag for lower mission ranges, as

expected. Take-off weight reductions for a reduced fuel weight corresponding to a range

of 4025 nm. are almost 2%, doubling the reductions that can be obtained for the

maximum range configuration. However, this take-off weight reduction is obtained at a

root bending moment reduction of about 22%. This will make the optimum load

distribution very triangular, with a high load near the wing root. Stall at the inboard part

of the wing will be likely to occur when the aircraft is at the 2.5g load condition. It was

noted earlier that wing root stall will be an important factor for determining the optimum

lift distribution that can be achieved. In this study, no constraints on section lift

coefficient are imposed to account for this effect, but it must be realized that in some

cases an optimum spanload corresponding to a high root bending moment reduction will

not be actually possible.

It should also be realized that the optimum load distributions for short range

configurations can result in weight penalties for the maximum range mission. Figure 4-11

shows the maximum take-off weight reduction for the 4025 nm. mission range case,

corresponding to a 22% root bending moment reduction. Weight savings when

performing this reduced mission range are given by saving  in Figure 4-11 (around 2%).

However, for the same spanload, if the maximum mission range is performed, a take-off

weight penalty of penalty (around 0.5%) will be experienced. It is then important to

choose an optimum spanload that represents a compromise between weight savings for

the different mission ranges that the aircraft will perform.

Care must also be taken with respect to fuel weight when choosing the desired lift

distribution. In this test case, for example, choosing a spanload that will give optimum

gross weight savings for reduced mission ranges (for example a 22% root bending

moment reduction spanload) will increase the required fuel weight by about 10% when

the maximum mission range is performed (see Figure 4-9).
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Figure 4-10. Wing plus fuel weight variation versus root bending moment
reduction for different mission ranges. Boeing 777-200IGW type aircraft.

Figure 4-11. Take-off weight variation versus root bending moment reduction for
different mission ranges. Boeing 777-200IGW type aircraft.
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Chapter 5  Methodology For Spanload Optimization In
Formation Flight

5.1 Objective

Airplanes flying in close formation will obtain important performance benefits as a result

of the induced drag reduction they can experience in these configurations. The downwash

distribution that each aircraft causes on itself (due to lift) can be compensated by the

upwash emanating from the tips of the accompanying airplanes, causing an induced drag

reduction.  Several formation configurations are possible, in which the arrangement of the

aircraft in the formation can be varied to obtain the desired drag reductions on specific

airplanes. The most common formation flight configuration is an arrow formation. It is a

symmetric configuration consisting of one central airplane (generally leading the

formation), with several aircraft on its sides forming a V-shape. Migrating birds usually

fly in such V-formations. Figure 5-1 shows an example of this type of configuration.

 When dealing with arrow formations, all the aircraft that are off-center will have an

asymmetrical load distribution due to the upwash distribution coming from the central

Figure 5-1. Birds flying in a V-shaped formation
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airplane. Of course, the rolling moment coefficient should equal zero for each and every

aircraft flying in the formation. Feifel and Maskew have made quantitative studies for

determining induced drag savings in aircraft formations (see section 1.3). They used in

their studies aircraft of completely known geometry, that is, the twist distribution was

specified for the wings (no twist for both authors) and the rolling coefficient was insured

to be zero by the differential lift caused by ailerons, again, of known geometry.

A different approach was followed here, where no twist or camber distribution is known

before-hand, and the loads are calculated to obtain minimum induced drag for the whole

formation under individual aircraft constraints of lift coefficient, pitching moment

coefficient and rolling moment coefficient. Then, Feifel[15] and Maskew[16] treated

basically an analysis problem with known geometry, while this paper will address a

design problem for which the twist or camber distribution is not prescribed. Instead, the

actual geometry must be found after the calculations are made to produce the required

load distributions. Attacking the problem in a design mode will give maximum

achievable benefits for the whole formation.

5.2 General Approach

Airplanes in formation flight can achieve large advantages in induced drag reduction as a

result of the influence that the upwash from other aircraft exert on them. A code has been

developed to obtain the optimum load distributions for a group of airplanes flying in V-

formation. Only aerodynamic considerations are taken into account, with no structural

constraints. The analysis carried out in chapters 2 to 4 showed that a structural constraint

could produce spanloads that, although increasing induced drag, can achieve performance

benefits (take-off weight savings). In this case, an applied structural constraint will not be

so useful. First of all, the calculations now depend on a larger number of variables (like

the relative spacing between aircraft), and an additional constraint can hide general

trends. Secondly, the optimum load distribution for each aircraft is dependent on airplane
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separation. For this reason, wing weight calculations will become confusing (a new wing

weight would be obtained for each aircraft position).

 The main purpose of the code developed is to find the optimum spanload that gives

minimum induced drag for the whole system of airplanes. The induced drag for each

aircraft alone will also be of primary importance to study the effects of relative position

on individual aircraft performance. Induced drag will be the measure of effectiveness,

both for the formation and for the single aircraft.

An important aspect of the code developed and the studies performed must be pointed

out. The flow is being modeled as potential, inviscid flow. A potential flow vortex model

representation is being used. These models give usually quite good results for regions that

are not near the vortex cores, which are small, where viscous effects become important.

A description of the aerodynamics code used for optimum load distribution design and

induced drag calculations follows here.

5.3. Description of the aerodynamics code for spanload optimization in formation flight

The same aerodynamics code (see section 2.3) written by Grasmeyer[22] (idrag version

1.1) was modified here. This code applies the theory developed by Blackwell[19],

Lamar[20], Kuhlman[21] and Kroo[6]. This theory is a discrete vortex method with a

Trefftz plane analysis to calculate spanloads corresponding to the minimum induced drag

of the configuration. Recall that the code includes an optional trim constraint, in which

the pitching moment coefficient can be fixed for several lifting surface configurations.

The minimum induced drag spanload for a specific value of lift coefficient and moment

coefficient is calculated with the method of Lagrange multipliers.

Several modifications have been made to this code to include the capability of analyzing

several aircraft configurations.
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First of all, a lift coefficient constraint is now necessary for each aircraft, and a trim

constraint on the rolling moment and the pitching moment of individual aircraft in the

formation will also be required.

The code now assumes that the configuration is always symmetric, so that the geometry

of V-formations can be specified only with the central aircraft and one side of the

formation. The central aircraft, due to symmetry, will have an equal load distribution on

both sides. Off-centered airplanes, on the contrary, will have asymmetrical spanloads

because the formation does not meet the symmetry condition from their point of view.

This asymmetry causes these airplanes to have non-zero rolling moment coefficients

about their centers of gravity, so that an extra constraint to maintain rolling moment

coefficient for off-centered aircraft equal to zero has also been imposed.

Optimum load distributions for a group of airplanes flying in V-formation is found using

the method of Lagrange Multipliers under the constraints of a specified lift coefficient for

each aircraft, a pitch trim constraint for each one of them, and a rolling moment

coefficient constraint for all except the central one.

Another major modification has been introduced in the code to allow the analysis and

induced drag calculations of separate airplanes.

The code used (idrag version 1.1) is merely an implementation of the equations used by

Blackwell[19]. This theory makes use of Munk’s Stagger Theorem[26]. According to the

theorem, the induced drag of the whole configuration is independent of the streamwise

location of the point of application of the loads. Once the optimum load distribution for

the whole configuration has been found, that will always be the optimum no matter what

changes in the streamwise location of different aircraft in the formation are made, and the

formation induced drag will always remain the same. For this reason, Blackwell’s theory

assumes that all lifting surfaces are located at the same streamwise position, because

optimum loads and total induced drag remain the same.

 For a formation configuration, where the interest is not only centered on the induced

drag as a whole, but rather on the induced drag of each airplane, Blackwell’s theory alone
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is not applicable, since the induced drag of each lifting surface is dependent on its

streamwise position (the downwash distribution is dependent on streamwise position too)

although total induced drag of all the aircraft is not.

The code was modified by assigning a streamwise coordinate position to each discrete

vortex and control point. Control points are points on the lifting surfaces where

downwash angles are calculated, in the approach used in this thesis they are located at the

midpoint of each discrete bound vortex line. The influence of each trailing vortex on each

control point was modified applying the Biot-Savart law in the streamwise direction and

the influences of the bound vortex lines on the control points were also added. In that

way, optimum spanloads are still independent of streamwise vortex locations, but

individual downwash angles and induced drags have a strong dependence on movements

along this axis (total induced drag of the complete system remains unchanged).

A description of the implementation of the rolling moment constraint, together with the

methodology for the modifications introduced to Blackwell’s theory follows in the next

sections.

In section 2.3, it was shown that the accuracy that can be obtained in induced drag and

spanload calculations using a discrete vortex model is dependent on the number of

vortices used in the discretization. The larger the number of vortices, the greater the

accuracy and the computational cost. The analysis performed by Grasmeyer[22] on the

convergence of the optimization when the number of vortices is increased represents a

good guideline for typical spanloads. These typical spanloads are, for example, the type

of spanload that was dealt with in the first part of this thesis (Chapters 2, 3 and 4). For

this kind of load distributions, the relative variation in load magnitude from vortex to

vortex is small. That is, they are not rapidly changing spanloads as a function of spanwise

distance.

When optimizing spanloads for a formation flight configuration, it will be shown that in

some cases the optimum load distributions are quite different from the elliptical ones. In

these configurations, load distributions with rapidly changing spanloads as a function of

spanwise distance can be encountered, especially near the wing tips where peaks in the
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load distributions can be obtained. The magnitude and shape of the optimum spanloads in

formation configurations will be shown to be dependent on the actual configuration and

the relative spacing between aircraft. Because of this, a general convergence study cannot

be performed. Instead, for each configuration, the number of vortices must be increased

until convergence in the results is achieved.

5.3.1 Rolling moment coefficient constraint formulation

The rolling moment coefficient constraint has been implemented in the idrag code using

the method of Lagrange multipliers. The equation used for rolling moment coefficient

calculations is:
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The nomenclature here can be confusing. The rolling moment coefficient is represented

as Cl, and it is the term on the left side of the equal sign for equation 5.1. On the other

hand, the lower case term cl that appears on the right hand side of this equation represents

the sectional, two-dimensional lift coefficient. In the discrete vortex model equation 5.1

takes the form:
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The geometry and definitions for the different terms in this equation is the same as for the

root bending moment constraint in Chapter 2 (see equation 2.3 and Figure 2-1). In fact,

equation 5.2 is exactly the same as equation 2.3. Both equations represent the lift

coefficient at each station multiplied by the moment arm about the aircraft centerline.

This is the moment caused by the lift distribution about this line, representing both the

root bending moment coefficient and the rolling moment coefficient. Of course, there

must be something that helps differentiate between both constraints, since they are not the
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same. For the root bending moment constraint calculations, only one side of the wing is

included. This is the same as taking the absolute value of all the moment arms in equation

2.3, calculating the root bending moment coefficient over the whole wing, and dividing

by 2 (note that symmetric load distributions were studied in Chapters 2 to 4). For the

rolling moment coefficient, the whole wing must be included when calculations are

performed with equation 5.2. That way, the left side rolling moment must balance the

moment caused by the wing right side.

The rolling moment coefficient constraint is applied to the off-centered airplanes, since

they are the ones that will have asymmetrical load distributions. Only one side of the

central aircraft is specified in the code, so that this constraint cannot be applied here.

However, there is no need to apply the rolling moment constraint to this aircraft since

symmetry insures a zero rolling coefficient.

5.3.2 Methodology for changes made to Blackwell’s theory

5.3.2.1 Brief description of Blackwell’s theory

The coordinate system used by Blackwell was already shown in figure 2-1. This Figure

will be repeated here for convenience in Figure 5-2.
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Figure 5-2. Discrete vortex method coordinate systems.(Ref 19)
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Two coordinate systems are used in this method. The first is the traditional aerodynamic

reference frame, with the x-axis pointing to the rear of the aircraft along the centerline,

the y-axis pointing starboard, and the z-axis pointing up.  The second is a set of local

reference frames for each vortex element. Figure 5-2 corresponds to the lifting surface

projection on the Trefftz plane. The Trefftz plane is a plane located at an infinite distance

downstream of the lifting surface.

Each aerodynamic surface is represented by a set of discrete horseshoe vortices.  The

induced drag is then calculated in the Trefftz plane as a function of the velocity induced

by the trailing segments of the horseshoe vortices.

Munk’s stagger theorem[26] establishes that the minimum induced drag and the

corresponding load distribution for the entire system are independent of the streamwise

location of the point of application of the loads. For this reason, Blackwell assumes that

all the discrete horseshoe vortices are at the same streamwise location as shown in Figure

5-3, because loads and total induced drag will remain the same. In Figure 5-3, the

direction of the circulation for each discrete vortex is given by the right hand rule in the

direction pointed by the arrows.
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The induced drag caused at each control point (control points are located at the Trefftz

plane) by a trailing vortex is given by the Biot-Savart law. Since control points are

located at a far downstream distance the Biot-Savart law reduces to:

                             
h

Vinduced π2

Γ=                                                                                     (5.3)

In equation 5.3, the induced velocity caused at the control point is perpendicular to the

plane formed by the trailing vortex filament and the control point, and h is the

perpendicular distance between them, as shown in Figure 5-4.

Figure 5-3. Horseshoe vortex discretization and streamwise vortex assumption in Blackwell’s
theory
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same streamwise location
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.

Since all the control points are now located at a far downstream location (in the Trefftz

plane), the bound vortices will not produce any downwash or upwash velocity on the

control points and they do not need to be taken into account.

The equations describing the induced velocities in the Trefftz plane at a control point

P(���\i, zi) by a horseshoe vortex located in the real plane at a point at P(xj, yj, zj) are

given below[19] (from the Biot-Savart law). Note that the geometry corresponds to

Figure 5-2.
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Figure 5-4. Geometry for induced velocity caused by a trailing semi-infinite vortex on a
control point located at an infinite downstream distance.
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where:

R1 = z′ 2 + y′ - s′ 2 (5.7)

R2 = z′ 2 + y′ + s′ 2 (5.8)

y′ = yi - yj  cos θ j + zi - zj  sin θj (5.9)

z′ = - yi - yj  sin θj + zi - zj  cos θj (5.10)

Normal induced velocities are found with the equation:
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and the induced drag coefficient is found by
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Although this theory is good for total induced drag and optimum spanload calculations, it

does not give the distribution in induced drag.

5.3.2.2 Changes necessary to Blackwell’s theory

It is true that the theory described above can give the induced drag coefficient and the

optimum load distributions for any configuration, independently of the given number of

lifting surfaces under study. That is, even if several aircraft flying in formation are

analyzed, this method will be able to give the total induced drag and the optimum

spanloads for all  airplanes. However, it will not be able to find the induced drag of each

separate lifting surface or airplane.
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Moving discrete vortices to the same streamwise position simplifies the calculations

because bound vortex effects are not needed and the Biot-Savart law has a quite simple

form for this case (equation 5.3). This discrete vortex movement has no effect on total

drag or optimum spanload by virtue of Munk’s Stagger Theorem[26]. However, this does

have an effect on the individual induced velocities at each control point, and, in turn,  on

the individual induced drags. A discrete vortex located far aft of the control point will

obviously exert a very low influence on this control point. In contrast, if the control point

is located aft of the discrete vortex it should feel a higher influence (the trailing vortices

extend to infinity).

Since individual induced drags are dependent on vortex streamwise positions, and in a

formation flight study the interest lies in the induced drag calculations for individual

airplanes, the streamwise locations of individual vortices must be incorporated in the

method. That is, the actual configuration must be studied. Vortex positions must not be

moved to the same streamwise location.

Figure 5-5 shows an actual wing configuration in which the discrete vortices are located

at their corresponding positions. If several aircraft are analyzed, they can now be

separated in the streamwise coordinate, and induced drag variations can be obtained as

this streamwise distance is changed.

Note from Figure 5-5 that the control points are now located at the midpoint of the bound

vortex lines, and not in the Trefftz plane. It should also be noted that the bound vortex

lines are aligned in a direction perpendicular to the incoming flow. They are not aligned

with the wing quarter chord line. When the bound vortex lines were located in the same

direction as the quarter chord line, results became inconsistent. It was then determined

experimentally that the right way of orienting bound vortices is as shown in Figure 5-5,

confirming the theoretical results by Tulinius[27].
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The vortex strengths to obtain minimum drag using this nearfield formulation have been

found to give the same values obtained with the farfield calculation. However, the

nearfield formulation allows us to find the distribution of induced drag using the local

induced flowfield angle. In making this calculation, the induced angle of each control

point on itself is taken to be identically zero. This assumption is required to make the

nearfield and farfield calculations identical. The theoretical foundation remains to be

established. The load at each wing station is assumed to be applied at the bound vortex.

Once the induced angle is known for each control point, the induced drag at each station

Control point

Discrete vortex

Trefftz plane
Figure 5-5. Vortex discretization and location of lifting surface with

modified aerodynamic theory.



63

is simply this induced angle times the corresponding load. The induced drag calculations

are then straightforward. However, there is a drawback: a relation between the loads at

each station and the wing geometry (twist or camber) at that station cannot be

established. That is, it is not possible to determine the twist or camber distribution that is

required to obtain a certain spanload.

To relate the minimum drag spanloads to the required twist or camber shape it will be

necessary to include further considerations. Twist shape calculations could be performed

following the development of Gray and Schenk[9]. This theory includes an additional

control point for each wing station located at the ¾ chord line. The induced velocities due

to the lifting vortices are calculated at these control points, and a relation between the

resultant of the induced velocity and the flight velocity, and the section zero-lift line can

be established. Namely, at these ¾ chord points, no flow exists normal to the zero-lift

line. This way the induced velocity distribution can be related to twist distribution.

The calculation of the optimum camber shape required to achieve the minimum drag

spanloads would be more involved, and a general vortex lattice method would be needed.

Lamar[20] developed such a method for optimum mean camber shape calculations. In

this thesis, neither twist nor camber shape are calculated. This study concentrates on the

calculations of the optimum spanloads giving minimum induced drag for the

configuration. The required twist and camber shape to achieve these spanloads will be

left as a necessary extension to the studies presented here.

As a result of the location change of vortices and control points, the induced velocity

calculations at each control point are not so simple, since the Biot-Savart law will not

assume the mathematical form presented in equation 5.3.

The induced velocity caused by the trailing vortices on the control points will now be

given by:
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Again, the induced velocity is perpendicular to the plane formed by the trailing vortex

filament and the control point, and h is the perpendicular distance as shown in Figure 5-6.

Note that the term cos �brings the desired tendency, since a lower influence will be felt

by control points that are upstream of the trailing vortices and vice versa.

When the control points were located at an infinite downstream distance, the induced

velocity at the control points caused by the bound vortex lines was zero. For that reason,

bound vortex filaments were not included.

For the case treated here, it is clear that the bound vortex lines will produce normal

induced velocities at the control points. These induced velocities will be given by:

Trailing
vortex

Control
point

D

h

Figure 5-6. Geometry for induced velocity caused by a trailing semi-infinite
vortex on a control point having a different streamwise location.
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The induced velocity will be perpendicular to the plane formed by the bound vortex line

and the control point, as shown in Figure 5-7.

Only normal velocities to the streamwise direction are necessary for induced drag

calculation (see equation 5.12). If the control point is located at a different vertical

position than the bound vortex line, a component of the induced velocity will be directed

in the streamwise direction, as shown in Figure 5-8. The induced velocity obtained with

the Biot-Savart law (equation 5.14) must be multiplied by the cosine of the corresponding

angle to obtain the desired normal induced velocity.

Control
point

Bound
vortex

1

2 h

Figure 5-7. Geometry for induced velocity caused by a bound vortex filament on
a control point having a different streamwise location.
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The equations that gave the induced drag velocities at a control point according to the

geometry of Figure 5-2 (equations 5.5 and 5.6) must now be changed to include the

additional effects.

The induced velocity at a specific control point due to the trailing vortices of a discrete

KRUVHVKRH�YRUWH[�PXVW�EH�PRGLILHG�E\�WKH�WHUP����FRV ���DV�VKRZQ�LQ�HTXDWLRQ�������DQG

the bound vortex induced velocity at the control point must be added. When equations 5.5

and 5.6 are modified the result is:

( ) ( ) 

























−+

−
+

′
−















−+

−
+

′Γ
−=

∞∞
2

22
2

11

11
2

1

ji

ji

ji

jiji

xxR

xx

R

z

xxR

xx

R

z

VV

v

π
                   (5.15)

{ }
( )

{ }
( ) 











+














−+

−
+

′+′
−















−+

−
+

′−′Γ
=

∞∞
vortexbound

ji

ji

ji

jiji Effect
xxR

xx

R

sy

xxR

xx

R

sy

VV

w
_2

22
2

11

11
2

1

π
     (5.16)

where the bound vortex effect is given by:
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Figure 5-8. Normal induced velocity caused by a bound vortex line on
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Note that the induced velocity due to the bound vortex line only acts in the wi direction,

that is, in the direction perpendicular to this vortex line. Once the induced velocities with

equations 5.15 to 5.20 have been calculated, the normal induced velocities can be found

with equation 5.11 and induced drag calculations can still be performed with equation

5.12.

The streamwise effects of the discrete vortices on the control points have then been

added, and the calculations are no longer performed in the Trefftz plane.

The induced drag variations for separate airplanes flying in formation as a function of the

relative distance (in the three space directions) can now be studied. With the

modifications made to the code, it has been found that the total induced drag and

optimum load distributions remain independent of the streamwise aircraft separation.
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Chapter 6 Spanload Optimization Problem In Formation
Flight

Optimum load distributions for a group of aircraft flying in an arrow formation will be

found. A program has been developed that can give these optimum spanloads with

applied constraints in lift and pitching moment coefficients for each aircraft and a rolling

moment coefficient constraint applied to off-centered airplanes. This last constraint

insures straight flight since the rolling moment is imposed to be zero for all aircraft. Total

and individual drag savings as a function of aircraft relative distances to each other (in

the three space directions) will be obtained.

The number of airplanes flying in arrow formation influences the drag benefits that they

can obtain from the configuration (see Maskew[16]). The key purpose here, however, is

the study of drag and load distribution variations as a function of aircraft relative

distance. A high number of airplanes in the formation would mean a high number of

variables (distances) to be studied. The arrow formations that will be treated here consist

only of three airplanes, a central one and two off-centered aircraft.

Two different aircraft configurations will be studied. In the first one, the three airplanes

in the formation will be of equal sizes, and no tail surfaces will be included. In the second

study, a mother, large airplane will be leading and helping (in performance) to two

smaller aircraft, located by its sides.

6.1. Equal aircraft problem

Optimum load distributions for a group of three equal aircraft flying in arrow formation

will be found, and their induced drag compared as a function of relative distance in the

three space directions. Planform geometry and the relative spacing between aircraft are

the same as in Maskew’s[16], with three airplanes, each one of them consisting only of

planar wing panels so that pitching moment constraints do not need to be applied. Each
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planform is trimmed with respect to rolling moment. The characteristics of the planform

geometry are shown in Table 6-1 (from Maskew[16]).

Table 6-1. Basic wing geometry for equal aircraft configuration formation flight study.

Span 2.0
Geometric mean chord 0.25
Area 0.5
Aspect ratio 8.0
Taper ratio 0.33
Sweepback (quarter-chord line) 5 deg
Dihedral 0

The aircraft will be moved relative to the other in the x (streamwise), y (spanwise) and z

(vertical) directions, studying the effects of these distances on load distributions and drag

savings. Figure 6-1 shows how the off-centered airplane will be moved relative to the

central one. Recall that it is assumed that the configuration will always be symmetric.

The off-centered aircraft (Aircraft 2) will be moved along the strong dotted line in Figure

6-1. First, from x/b=-3.0 to x/b=3.0, the variation in induced drag savings will be studied

as a function of streamwise distance, maintaining a y/b=0.89 and a z/b=0.01. This small,

but still significant value of vertical offset between airplanes is set due to numerical

problems in the code when the projections of different lifting surfaces in the Trefftz plane

come on top of each other.

Then, with a fixed x/b=3.0, the spanwise effect will be considered by letting z/b=0.01

and changing y/b, and finally, the vertical effect is obtained by letting z/b vary while

setting x/b=3.0 and y/b=0.89. This is similar to the approach used by Maskew.

Although the planform geometry and movements of the airplanes are taken from

Maskew’s paper, the main purpose here is not to compare results. The geometric

similarities will certainly make them resemble his results. However, Maskew solves an

analysis problem in which the wing twist distribution is specified and the aileron

deflection is found so that rolling moment equals zero. With the whole wing geometry

fixed, downwash angles completely determine the loads at each station.
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In this thesis a design problem is treated, in which only planform geometry is known and

optimum loads are found. This time the loads are not determined by the downwash angles

because twist or camber distribution at each station are not known. The only thing that

determines loads and downwash angles is the requirement of minimum induced drag for

the formation, together with the imposed constraints on lift and rolling moment.

To set the rolling moment coefficient to zero in the design problem, the aileron used by

Maskew will not be useful, because calculations are not dependent on twist or camber,

and therefore, angle of attack. The whole wing is then considered as a control surface and

the rolling moment constraint is applied to each wing.

A sample design input file for obtaining optimum load distributions for this equal aircraft

configuration is given in Appendix B.1. It corresponds to an Aircraft 2 location of

Figure 6-1. Movement of the off-centered aircraft relative to the central one for
equal aircraft configuration formation flight study (from Maskew[16])

y/b=0.89

y/b

x/b=3.0

x/b

Aircraft 1

Aircraft 2

O (0,0)
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x/b=3.0, y/b=0.89 and z/b=0.01. For a detailed description of the input file the reader

should refer to the idrag formation code manual[22]. Here, a brief documentation of the

most important parameters introduced is given.

6.1.1 Geometry definition

For each aircraft in the configuration (recall that only half of the formation must be

specified), the x position for the center of gravity and the y and z locations about which

rolling moment coefficient is to be calculated must be given. These parameters will be

used when the pitching moment and rolling moment coefficient constraints are applied.

The reference area (normally wing area) and reference chord (generally mean

aerodynamic chord) must also be specified for each aircraft. These values will be used for

the non-dimensionalization of loads and performance parameters (like the induced drag

coefficient).

The actual geometry for the lifting surfaces is given by specifying the x, y and z positions

of the four corners of each panel. The aircraft to which the panel corresponds must also

be specified. Relative movement between airplanes will be given by three parameters,

required for each aircraft, which determine the x, y and z movements of all the panels for

the corresponding aircraft from the specified position. Center of gravity position and the

point for rolling moment calculations will also be moved by these variables.

6.1.2 Constraints

A lift coefficient constraint is applied at each airplane. Then, a value of lift coefficient

must be specified for each one of them. For this equal aircraft configuration formation

flight study a lift coefficient of 0.6 will be assumed. A pitching moment coefficient

constraint can also be used at each aircraft. However, in this configuration, only wing

lifting surfaces are analyzed, so that the trim constraint is disengaged. As stated above, a
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rolling moment coefficient constraint must be applied to off-centered aircraft so that their

rolling moment equals zero. No input is needed for this constraint since the code applies

it automatically.

6.1.3 Changing variables

The only variables that will be changed (manually, changing the input file) are the

relative movements of the different airplanes in the configuration. Aircraft 1 will be

fixed, and the x, y and z movements for Aircraft 2 will be varied.

6.1.4 Optimized variables and measures of effectiveness

 The induced drag for the whole formation will be the variable optimized. Optimum

spanloads that give minimum drag for the formation will be calculated, not for individual

aircraft. However, the primary measure of effectiveness will be the induced drag of each

separate airplane, since it is important to study the effects of formation flight on

individual aircraft performance.

6.2 Different aircraft size problem

Recently, interest has been concentrated on systems of airplanes consisting of a leading,

large size mother aircraft and two smaller aircraft flying to its sides. The greater loads

that the mother aircraft experiences in flight produce large upwash velocities that can be

used by the trailing airplanes. In this way smaller, less efficient airplanes can get large

drag benefits from big, efficient aircraft with long ranges.

The configuration studied is shown in Figure 6-2. The planform characteristics of the

mother aircraft are given in Table 6-2.  Aircraft 2 geometry is exactly equal to that of the
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leading aircraft, with a scale factor of 0.5. That is, Aircraft 1 is exactly twice as large as

Aircraft 2. The lift coefficients of both airplanes are set to a value of 0.6.

Table 6-2. Basic wing geometry for mother aircraft, different aircraft size configuration
formation flight study

Span 1.0
Geometric mean chord 0.2
Area 0.2
Aspect ratio 5.0
Taper ratio 1.0
Sweepback (quarter-chord line) 0 deg
Dihedral 0

Figure 6-2. Geometry and relative movements between airplanes for
different aircraft size configuration formation flight study.
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Note that airplanes now have tail panels, so that the pitching moment coefficient can be

included in the calculations. Optimum spanloads for minimum induced drag are found

with constraints in lift, pitching moment and rolling moment coefficients.

Since the smaller, off-centered aircraft are the ones that must receive drag benefits from

the central one, they are located trailing the formation. The streamwise distance between

aircraft is set to be large enough so that aircraft collision can be avoided and induced drag

coefficients are independent on x direction. Results will show that Aircraft 2 obtains the

largest benefit at this position and that vertical spacing between aircraft must approach

zero for maximum drag reductions. In this study x/b will be set to a value of 3.0 and

z/b=0.01. These values are non-dimensionalized by the span of the mother aircraft

(b=1.0). The small vertical spacing again avoids numerical problems.

Appendix B.2 shows an input file for a different aircraft size configuration study

corresponding to Figure 6-2. In this input file, x/b=3.0, y/b=1.05 and z/b=0.01. The

description of the input parameters follows the same considerations stated for the equal

aircraft configuration with two exemptions. First of all, the pitching moment constraint is

applied since the configuration has horizontal tail lifting surfaces. A value for the

pitching moment coefficient about the center of gravity must be fixed for each airplane. It

is of course usual to set this moment coefficient to zero. Secondly, only the spanwise

effect will be studied for this case, since it will give maximum benefits for the trailing

aircraft.
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Chapter 7  Results for Spanload Optimization Problems in
Formation Flight.

Optimum load distributions for minimum induced drag of an arrow formation

configuration will be studied as a function of relative distance between aircraft. Induced

drag coefficients for each airplane will also be obtained. Arrow formation configurations

consisting of one central airplane and two off-centered ones are treated.

7.1 Equal aircraft configuration results

Results for the equal aircraft configuration formation flight study proposed in section 6.1

will be given here. The wing geometry for each aircraft was shown in Table 6-1, and the

relative movement between airplanes is stated in Figure 6-1. The effect of relative aircraft

distance will be studied in three steps according to the movements of Aircraft 2 relative

to Aircraft 1: Streamwise, spanwise and vertical effect.

A code sample output file for this configuration is given in Appendix B.3. It corresponds

to the input file from Appendix B.1. The input parameters are repeated in the beginning,

followed by the x, y and z location for the vortex control points and the optimum loads

(both in terms of lift coefficients and normal force coefficients) at these points. Lift,

pitching moment, rolling moment, and induced drag coefficients are given at the end of

the file for each aircraft, together with the total configuration induced drag coefficient.

The number of vortices used in discretizing each wing was 80. Convergence was actually

achieved for a smaller number of vortices (about 40 vortices per wing), but a higher

number was used here to obtain smooth load curves.

7.1.1 Streamwise effect

Airplane 2 is moved along the x axis from x/b=-3 to x/b=3 as shown in Figure 6-1.

Figure 7-1 shows the change in induced drag coefficient for each aircraft and for the
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formation as the streamwise relative distance is changed. Results are shown as the ratio

of their induced drag in the formation to their induced drag when flying alone. Induced

drag for single flight is the minimum induced drag for an aircraft alone configuration,

corresponding to an elliptic lift distribution and a span efficiency factor equal to 1.

Note that the induced drag for the formation is independent of the streamwise location of

the airplanes, as stated by Munk’s theorem[26]. That constant value is the minimum

induced drag for the whole configuration. The optimum spanloads corresponding to this

minimum drag are shown in Figure 7-2 (only shown half). The load distribution is also

independent of streamwise position, so that Figure 7-2 shows the spanload for any x/b.

The induced drag coefficients of Aircraft 1 and 2 are highly dependent on x when the

aircraft are close in this direction. For a streamwise distance between them greater than

three spans, their induced drag reaches a steady value and is no longer dependent on x

separation.

When x/b is negative, the central aircraft is behind the two leading ones, so that it

receives the upwash from them. The result is that Aircraft 1, under the potential vortex

Figure 7-1. Effect of streamwise position, y/b=0.89, z/b=0.01. Equal aircraft
configuration formation flight study.
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assumption, achieves a negative induced drag (a thrust forward). The upwash from the

leading aircraft is higher than the downwash caused by the central aircraft on itself.

For x/b positive, the central aircraft is leading the formation, and its upwash influences

Aircraft 2 reducing its induced drag. This time, since it is only the central aircraft

influencing two trailing ones, the upwash contribution by Aircraft 1 on Aircraft 2 is lower

than the downwash caused by Aircraft 2 on itself.

When Aircraft 1 leads the formation with a high streamwise separation with respect to

Aircraft 2 (see Figure 7-1 for x/b=3), its induced drag ratio is greater than one. The

induced drag coefficient when flying alone was established to be the minimum induced

drag, corresponding to an elliptical load distribution. Then, the leading aircraft suffers a

decrease in performance. This seems contradictory, since almost no downwash should be

felt on Aircraft 1 due to Aircraft 2 (it is far aft). However, this increase in induced drag

coefficient enhances the performance of the trailing airplanes, so that a formation

minimum induced drag is obtained. Figure 7-2 shows that the load distribution for the

central aircraft is not elliptic. It has higher loads toward the wing tip than an elliptically

loaded wing would have. These high loads towards the tip induce greater upwash angles
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Figure 7-2. Optimum load distribution z/b=0.01, y/b=0.89. Equal aircraft
configuration formation flight study.
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on the trailing aircraft, reducing their induced drag coefficients. The result is that a

decrease in performance in the leading aircraft can help obtaining overall drag reductions

for the formation.

The same thing happens for a high negative value of x/b. In this case the off-centered

airplanes lead the formation and they experience a reduction in performance due to their

non-elliptic load distributions. Here, however, the two leading aircraft influence each

other so that their induced drag increase is compensated by the upwash they exert on each

other.

For x/b near zero, the induced drag curves for Aircraft 1 and Aircraft 2 have a break (see

Figure 7-1). This is caused by the influence of the bound vortex lines on the airplanes. If

Aircraft 1 leads the formation, it feels an upwash from the bound vortex lines of the

trailing aircraft, and exerts a downwash on them. When they cross, the upwash and

downwash influences are inverted and a break in the induced drag curve appears. The

break is a lot smoother if vertical or spanwise distance is increased (for a y/b = 0.94 the

break no longer appears). Note that a streamwise distance near zero with a vertical

distance as small as 0.01 is not really a physically achievable situation.

One further consideration must be pointed out. Figure 7-2 shows the asymmetry in the

load distribution of Aircraft 2. This asymmetry is a consequence of a V-formation

geometry, in which only the central aircraft has a symmetric lift distribution. Despite the

asymmetric spanload on Aircraft 2, its rolling moment coefficient about its center of

gravity is zero (the rolling moment constraint was active). Achieving the desired lift

distribution will be the greatest problem, not only because of the asymmetry of the load

distribution, but because the spanloads will be dependent on vertical and spanwise

distance between airplanes.

7.1.2 Spanwise effect

Aircraft 2 is moved along the y direction while x/b is fixed at a value of 3.0 and z/b=0.01.

Figure 7-3 shows the changes in induced drag for each aircraft and the whole formation

as the spanwise distance is varied.
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The formation induced drag coefficient is very dependent on spanwise position. When

y/b=1 the right tip of Aircraft 1 coincides with the left tip of Aircraft 2 in y location. The

formation minimum actually occurs for a value of y/b less than one, where Aircraft 2 is in

the wake of the leading aircraft. For a spanwise distance of two spans, the drag savings

are very small and formation flying is no longer beneficial. Thus it is important to

maintain the airplanes in close spanwise position to obtain the largest possible induced

drag reduction.

The drag dependence of Aircraft 2 on spanwise distance is also very strong, with 80%

potential induced drag savings for optimum position. Aircraft 1, however, has a constant

induced drag coefficient equal to its minimum induced drag when flying alone as long as

the airplane tips do not get close in the spanwise direction. If the aircraft tips come close

or overlap, Aircraft 1 performance decreases, while the induced drag for Aircraft 2 and

the formation starts decreasing more rapidly.

Figure 7-3. Effect of spanwise position, x/b=3.0, z/b=0.01. Equal aircraft
configuration formation flight study
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The previous section showed how a decrease in performance in Aircraft 1 could produce

an induced drag decrease for the trailing airplanes and in turn for the whole formation.

But it is necessary to see why this effect only takes place for close spanwise distances.

Figure 7-4 shows the optimum load distributions for several spanwise positions.

When the airplane tips start overlapping, their optimum load distributions are very

different from the elliptical loading, the main difference being higher loads in the vicinity

of the other aircraft’s tip.  These loads increase drag on Aircraft 1 but induce a greater

upwash on Aircraft 2, improving its performance. That is why Figure 7-3 shows a rise in

induced drag when tips overlap.

For a tip spanwise distance greater than y/b=1, the overlapping does not occur, and the

optimum load distributions for both airplanes become nearly elliptic. Their spanloads are

now close to the optimum for single flight. In this situation, higher loads towards the
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Figure 7-4. Optimum load distributions for different spanwise distances. Equal
aircraft configuration formation flight study
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aircraft tip will again decrease leading aircraft performance helping the trailing airplanes.

However, the induced upwash on Aircraft 2 will be much smaller when the aircraft do not

overlap (note that induced velocities are inversely proportional to spanwise distance). The

result is that the reduction in the trailing aircraft drag will not compensate for the drag

increase on the leading aircraft. The formation minimum corresponds to load

distributions close to those for solo flight when aircraft tips do not overlap.

The fact that a potential flow vortex model is being used in this analysis should be

emphasized here. Overlapping tips means close vortex interactions, where potential flow

can fail and viscous effects may need to be included.

7.1.3 Vertical effect

Aircraft 2 is moved in the vertical direction while keeping y/b=0.89 and x/b=3.0. The

induced drag variation is shown in Figure 7-5.

Figure 7-5. Vertical effect, x/b=3.0, y/b=0.89. Equal aircraft configuration
formation flight study.
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The strong dependence on z location is clear from this figure. Maximum drag reductions

for the formation occur at z=0 (induced drag variation will be equal for negative values

of vertical position). The actual drag reduction values at z=0 are not obtained due to

numerical problems at these close vertical locations.

When the vertical distance between aircraft is small (less than 0.05), optimum load

distributions start deviating from their elliptical shapes, having higher loads near the tip.

A decrease in Aircraft 1 performance that helps formation drag is again observed. The

load distribution change with vertical position is similar to that obtained with spanwise

distance variation, as seen in Figure 7-6.
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Figure 7-6. Optimum load distributions for different vertical distances. Equal
aircraft configuration formation flight study.
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7.2 Different aircraft size configuration results

The formation flight configuration composed of a mother aircraft followed by two

smaller airplanes, as shown in section 6.2, will be studied here. Figure 6-2 and Table 6-2

give both the planform and relative movement geometry. The effect of relative distance

between aircraft will only be studied in the spanwise direction in this case. The purpose

of an arrow formation configuration with a big leading airplane is basically the induced

drag reduction (and then performance enhancement) of the trailing, smaller aircraft.

Figures 7-1 and 7-5 show that the maximum drag reductions for the off-centered

airplanes are obtained when they are located trailing the formation with a close vertical

spacing with the mother aircraft. That is why, in this study, x/b will be fixed to 3.0 and

z/b to 0.01.

A sample design output file for this configuration is given in Appendix B.4,

corresponding to the input file data given in Appendix B.2. Again, the location of the

control points and the optimum loads at these points are given, and performance

parameters for each aircraft and for the whole formation appear at the end of the file. The

number of vortices used in this case was 40 vortices for each wing panel and 20 vortices

for each tail panel. This number of vortices was enough to obtain convergence in the

spanload and induced drag calculations for the prescribed configuration (see section 5.3).

7.2.1 Spanwise effect

Induced drag variation for each aircraft and the formation as a function of relative

spanwise distance is shown in Figure 7-7. Spanwise position is non-dimensionalized by

the span of Aircraft 1. As in the previous case, when y/b=1 the tips of the different

aircraft are in the same y position.

The induced drag for Aircraft 2 and the formation is again very dependent of the relative

spanwise distance between airplanes. Aircraft 1 has a constant induced drag coefficient

when airplane tips are not very close to each other. When y/b approaches 1, Aircraft 1

experiences a sharp increase in induced drag that benefits the whole system of airplanes
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since the drag of Aircraft 2 is highly decreased. Negative induced drag values (a thrust)

are experienced by the trailing aircraft for y/b values lower that 1.05.

For this case, higher loads on the tips of the mother aircraft are even more beneficial,

since they will cause a high upwash field that can be used by the smaller airplanes. The

result is that optimum spanloads for close aircraft positions deviate more from the

elliptical loading for this type of configuration.

Figure 7-8 shows the optimum load distributions for two cases. For y/b=1.0 the spanloads

are very different from flying-alone optimums, resulting in an 80% increase in the

induced drag of the mother aircraft and a negative induced drag on the smaller ones (see

Figure 7-7). For y/b=1.05 the optimum spanloads are now nearly elliptic. Aircraft 1 still

has high loads near the tips because of the relative proximity between airplanes. Aircraft

Figure 7-7. Spanwise effect for different aircraft size configuration formation flight
study, x/b=3.0, z/b=0.01
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1 experiences an increase in induced drag of less than 10% while the trailing aircraft

achieve drag reductions greater than 80%.

Again, overlapping tips means close vortex interactions where the potential flow vortex

model may not be highly accurate.
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7.3 Optimum aircraft position

An interesting V-shape configuration will be that in which the induced drag of every

airplane will be the same, so that each one of them obtains equal benefits.  Figure 7-1

shows that such a configuration requires close spacing between aircraft (x/b=0.1). A

more realistic configuration will be that in which aircraft collision can certainly be

avoided. When x/b is high both in the negative and positive directions, the danger of

collision is not great.

Besides collision avoidance, desired aircraft position must also be limited by the ability

of each airplane to maintain its position and optimum load distribution in the

configuration.

It was noted above (see Figures 7-4, 7-6 and 7-8) that the optimum load distribution is

very dependent on aircraft relative position when airplanes overlap in the spanwise

direction and they have a close vertical spacing. The key problem here is how to obtain

different load distributions for different aircraft positions.

The approaches of Feifel and Maskew do not encounter that problem since their effective

angle of attack at each station is known. Their only problem is finding the aileron

deflection required to obtain zero rolling moment about the center of gravity.

In this paper the whole wing is treated as a rolling-control surface. Moreover downwash

velocities and optimum spanloads are dependent on aircraft position. A new twist

distribution is needed (recall that planform geometry is always constant) for every

configuration to achieve these load distributions.

Another problem exists for formation flying. For these cases the rapidly changing

conditions when airplane tips are close to each other leads to highly varying rolling

moment coefficients that require continuous aileron adjustments. Wolf, Chichka and

Speyer[28] developed decentralized controllers and peak-seeking control methods to

make these adjustments and maintain the aircraft at their optimum positions. For the

peak-seeking control methods, due to the difficulties of measuring drag (or thrust) during

flight, airplanes are maintained at a position where the rolling moment coefficient
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without aileron deflection to trim is a maximum. It is assumed that the maximum rolling

moment coefficient occurs at the minimum induced drag location. This assumption may

not always be true, so that real optimum positions are not necessarily obtained. Further

work is required in this area before conclusions can be made.

For the case studied here, the changing spanload distributions in the overlap region will

be difficult to obtain. However, important drag reductions can be obtained for a y/b

greater than one (see Figures 7-3 and 7-7). In this region, the optimum load distribution is

in fact nearly elliptic, very close to the solo flying optimum.

If the overlapping region is not a feasible solution for a formation configuration due to

geometry or control problems, the induced drag benefits will be decreased. In the

spanwise study for three equal aircraft, for example, induced drag reductions for Aircraft

2 will go from 80% to around 40%, and total formation drag savings will decrease from

50% to about 30% (see Figure 7-3).
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Chapter 8  Conclusions

Optimum load distributions are possible that can enhance aircraft performance

characteristics compared to classical, minimum drag elliptic spanloads. For individual

aircraft, the addition of a wing structural constraint in the spanload optimization problem

can lead to total aircraft gross weight reductions caused by wing weight savings. A root

bending moment constraint was implemented to study possible weight benefits for

individual aircraft configurations. For a group of aircraft flying in formation, non-elliptic

lift distributions can give large induced drag savings both for the formation and for each

airplane, with the consequent performance benefits. Potential drag savings in formation

flight configurations have also been studied.

8.1 Spanload optimization with a root bending moment constraint

A method for calculating lift distributions for minimum induced drag with a root bending

moment constraint has been developed. These spanloads are related to changes in wing

weight, fuel weight and gross weight for transport aircraft configurations. The method

can help determine which spanloads bring the maximum benefit to the aircraft under

study, so that an optimum lift distribution can be found.

The key insight is that the wing weight decreases nearly linearly with reduced wing root

bending moment, while the additional induced drag arising from forcing the wing root

bending moment to be less than its minimum drag value results in a parabolic increasing

drag. Therefore, the system minimum will always occur for a spanload with a lower wing

root bending moment than the aerodynamics alone minimum.

Even for the same airplane fuel weight variations due to different lift distributions change

from mission to mission, depending on the range, so that a wing load curve that will

produce large benefits when performing a low range mission can result in disadvantages

when performing its maximum range mission. It is then necessary to study aircraft
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configurations through the whole range of missions they cover to find an optimum

spanload that will represent a compromise for these different missions.

A Boeing 777-200IGW class aircraft has been studied with this method. Results show

that a reduction of about 1% in maximum take-off gross weight can be obtained. When

performing reduced range missions, almost a 2% in take-off weight savings is achieved.

The method described here is applicable to aircraft configurations with cantilever wings.

It needs to be extended to treat the case of strut-braced wing concepts, which have

recently been shown to be very promising[29,30].

8.2 Spanload optimization in formation flight

Optimum spanload distributions for a group of aircraft flying in V-formation giving

minimum induced drag for the whole configuration have been found. The optimization

allows the study of induced drag coefficients for separate aircraft and the formation as a

function of relative distance between airplanes. Only planform geometry is fixed for each

aircraft in the formation, with no twist or camber distribution specified.

When the distance between airplanes is changed, the optimum load distribution giving

minimum induced drag also changes. The twist distribution must then be changed as a

function of aircraft distance if maximum induced drag savings are expected.

A test case has been studied consisting of three aircraft flying in an arrow formation. It

has been shown that the optimum load distribution (and hence the optimum twist

distribution) is very dependent on spanwise separation when the aircraft tips are very

close to each other or they overlap in this direction. When aircraft tips do not overlap in

the spanwise direction the load distribution nearly approaches the optimum spanload

when flying alone.

To avoid collisions between aircraft, they should be separated in the streamwise

direction. Results show that for a large enough streamwise distance between aircraft
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(about three spans), induced drag coefficients for each airplane are no longer dependent

on this direction. Induced velocities also become independent of the streamwise direction

for these distances. A given twist distribution will provide then the desired optimum lift

distribution in this region.

As long as the airplanes are not in a sensitive region with respect to required twist

distributions the induced drag reductions can be certainly obtained. For a configuration of

three equal aircraft, with the central aircraft leading the formation and the other ones in a

non-sensitive region, induced drag reductions for the formation of about 30% are

achievable.

 A formation with a mother aircraft leading two smaller airplanes half its size in a non-

sensitive region can give formation drag reductions of 40%, with induced drag savings in

the trailing aircraft greater than 80%.

Unfortunately, regions of maximum drag savings correspond to regions highly sensitive

to the required twist distribution. If aircraft were positioned in the aerodynamic optimum,

with no regard to required geometries, induced drag reductions of 50% are possible for

the equal aircraft formation. For the mother aircraft and its trailing partners, about 60%

savings for the formation induced drag can be obtained, and the trailing aircraft would

experience a negative induced drag (a thrust forward).

The results obtained here need to be extended to include the design wing shape. With the

aircraft position and spanload known, the camber surface required to achieve the design

spanload must be found.
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Appendix A.1

Sample input file for spanload optimization with a root bending moment constraint.
Boeing 777-200IGW type aircraft test case, reduced fuel load equal to 185000 lbs.

B-777 TYPE AIRCRAFT TEST CASE. REDUCED FUEL LOAD = 185000 LBS.

0.37        eta_break    WING GEOMETRY DEFINITION
109.21      hspan_wing
28.29       sweep_wing_in_1_4_deg
28.29       sweep_wing_out_1_4_deg
6.0         dihedral_wing_deg
52.0        c_wing_center
25.83       c_wing_break
7.35        c_wing_tip
0.111       tc_wing_in
0.10        tc_wing_break
0.08        tc_wing_out
120.0       dx_htail     TAIL GEOMETRY DEFINITION
12.0        dz_htail
36.91       hspan_htail
37.0        sweep_htail_deg
22.61       c_htail_root
7.35        c_htail_tip
0.0         dihedral_htail_deg
588893.0    gw           PERFORMANCE SPECIFICATION
215000.0    wfuel0
8508.0      range
0.85        mach
40000.      altitude
0.29272     sfc_static
0.97        sfc_fact
2           new          ENGINE SPECIFICATION
16278.0     w_engine
0.33        eta_engine_1
0.0         eta_engine_2
35.0        xcg          MISCELLANOUS
-0.000784   cm_fuse
-0.075      cmo_wing
20.33       dia_fuse
0.333       flapr
0.0         fcomp
0.0         faert
0.0         fstrt
3.75        ulf
0.0         cm_design
0.25        cp
0.0         yrbm
0.0         zrbm
80          nvortices_idrag
185000.0    wfuel_new
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Appendix A.2

Sample output files for spanload optimization with a root bending moment constraint.
Boeing 777-200IGW type aircraft, reduced fuel load equal to 185000 lbs.

File loads.out:

ETA        MINIMUM_DRAG_LOADS   OPTIMUM_LOADS
   0.6967            0.6879            0.7889
   2.0901            0.6880            0.7884
   3.4834            0.6876            0.7870
   4.8768            0.6870            0.7851
   6.2702            0.6862            0.7826
   7.6635            0.6851            0.7797
   9.0569            0.6839            0.7763
  10.4503            0.6825            0.7726
  11.8436            0.6808            0.7684
  13.2370            0.6789            0.7638
  14.6304            0.6769            0.7589
  16.0237            0.6745            0.7537
  17.4171            0.6720            0.7481
  18.8105            0.6692            0.7422
  20.2038            0.6662            0.7360
  21.5972            0.6630            0.7294
  22.9906            0.6595            0.7226
  24.3840            0.6557            0.7156
  25.7773            0.6517            0.7082
  27.1707            0.6474            0.7006
  28.5641            0.6428            0.6928
  29.9574            0.6380            0.6847
  31.3508            0.6329            0.6765
  32.7442            0.6276            0.6681
  34.1375            0.6220            0.6595
  35.5309            0.6164            0.6508
  36.9243            0.6107            0.6420
  38.3176            0.6052            0.6333
  39.7110            0.6006            0.6255
  41.0822            0.5914            0.6127
  42.4313            0.5872            0.6050
  43.7804            0.5823            0.5964
  45.1294            0.5774            0.5876
  46.4785            0.5725            0.5788
  47.8276            0.5676            0.5698
  49.1766            0.5627            0.5608
  50.5257            0.5578            0.5517
  51.8748            0.5528            0.5425
  53.2238            0.5478            0.5332
  54.5729            0.5427            0.5238
  55.9219            0.5375            0.5144
  57.2710            0.5322            0.5049
  58.6201            0.5268            0.4953
  59.9691            0.5213            0.4856
  61.3182            0.5156            0.4759
  62.6673            0.5098            0.4660
  64.0163            0.5039            0.4561
  65.3654            0.4978            0.4461
  66.7145            0.4915            0.4361
  68.0635            0.4851            0.4259
  69.4126            0.4785            0.4157
  70.7617            0.4718            0.4054
  72.1107            0.4648            0.3951
  73.4598            0.4577            0.3846
  74.8089            0.4503            0.3741
  76.1579            0.4427            0.3636
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  77.5070            0.4348            0.3529
  78.8560            0.4268            0.3422
  80.2051            0.4184            0.3314
  81.5542            0.4098            0.3205
  82.9032            0.4009            0.3095
  84.2523            0.3916            0.2985
  85.6014            0.3821            0.2873
  86.9504            0.3721            0.2761
  88.2995            0.3618            0.2647
  89.6486            0.3510            0.2533
  90.9976            0.3398            0.2417
  92.3467            0.3281            0.2299
  93.6958            0.3157            0.2180
  95.0448            0.3028            0.2059
  96.3939            0.2891            0.1935
  97.7429            0.2745            0.1809
  99.0920            0.2590            0.1679
 100.4411            0.2423            0.1545
 101.7901            0.2242            0.1406
 103.1392            0.2043            0.1259
 104.4883            0.1820            0.1102
 105.8373            0.1564            0.0930
 107.1864            0.1254            0.0732
 108.5355            0.0838            0.0480
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File ww-id.out:

RBM REDUCT(%)   WING_WEIGHT   INDUCED_DRAG
   0.00           83746.35       0.007679
   0.50           83311.52       0.007681
   1.00           82872.56       0.007685
   1.50           82436.89       0.007691
   2.00           82005.35       0.007700
   2.50           81577.94       0.007712
   3.00           81154.60       0.007727
   3.50           80735.22       0.007744
   4.00           80319.72       0.007763
   4.50           79908.00       0.007785
   5.00           79500.01       0.007810
   5.50           79095.61       0.007838
   6.00           78694.74       0.007868
   6.50           78297.31       0.007901
   7.00           77903.24       0.007936
   7.50           77512.46       0.007974
   8.00           77124.87       0.008015
   8.50           76740.40       0.008058
   9.00           76358.97       0.008104
   9.50           75980.51       0.008152
  10.00           75604.94       0.008203
  10.50           75232.19       0.008257
  11.00           74862.18       0.008313
  11.50           74494.84       0.008372
  12.00           74130.10       0.008434
  12.50           73767.89       0.008498
  13.00           73408.15       0.008565
  13.50           73050.80       0.008634
  14.00           72695.80       0.008706
  14.50           72343.07       0.008781
  15.00           71992.56       0.008858
  15.50           71644.20       0.008938
  16.00           71297.94       0.009021
  16.50           70953.73       0.009106
  17.00           70611.52       0.009193
  17.50           70271.25       0.009284
  18.00           69932.88       0.009377
  18.50           69596.36       0.009472
  19.00           69261.67       0.009571
  19.50           68928.76       0.009671
  20.00           68597.60       0.009775
  20.50           68268.16       0.009881
  21.00           67940.42       0.009990
  21.50           67614.37       0.010101
  22.00           67290.00       0.010215
  22.50           66967.29       0.010331
  23.00           66646.25       0.010451
  23.50           66326.89       0.010572
  24.00           66009.22       0.010697
  24.50           65693.26       0.010824
  25.00           65379.05       0.010954
  25.50           65066.62       0.011086
  26.00           64756.03       0.011221
  26.50           64447.32       0.011358
  27.00           64140.55       0.011498
  27.50           63835.81       0.011641
  28.00           63533.15       0.011787
  28.50           63232.68       0.011935
  29.00           62934.47       0.012085
  29.50           62638.63       0.012238
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File wred-dinc.out:

RBM REDUCT(%) WING_W_REDUCT(%) DRAG_INCREASE(%)
   0.00            0.00000        0.00000
   0.50            0.51923        0.01705
   1.00            1.04338        0.06822
   1.50            1.56360        0.15349
   2.00            2.07890        0.27287
   2.50            2.58926        0.42636
   3.00            3.09477        0.61396
   3.50            3.59554        0.83567
   4.00            4.09168        1.09148
   4.50            4.58330        1.38141
   5.00            5.07048        1.70544
   5.50            5.55337        2.06359
   6.00            6.03204        2.45584
   6.50            6.50660        2.88220
   7.00            6.97715        3.34267
   7.50            7.44378        3.83725
   8.00            7.90659        4.36594
   8.50            8.36568        4.92874
   9.00            8.82113        5.52564
   9.50            9.27305        6.15666
  10.00            9.72151        6.82178
  10.50           10.16661        7.52101
  11.00           10.60843        8.25435
  11.50           11.04707        9.02180
  12.00           11.48259        9.82336
  12.50           11.91510       10.65903
  13.00           12.34466       11.52881
  13.50           12.77136       12.43269
  14.00           13.19526       13.37069
  14.50           13.61645       14.34279
  15.00           14.03499       15.34900
  15.50           14.45096       16.38933
  16.00           14.86442       17.46376
  16.50           15.27543       18.57230
  17.00           15.68407       19.71494
  17.50           16.09038       20.89170
  18.00           16.49442       22.10257
  18.50           16.89624       23.34754
  19.00           17.29590       24.62662
  19.50           17.69342       25.93982
  20.00           18.08885       27.28712
  20.50           18.48223       28.66853
  21.00           18.87357       30.08405
  21.50           19.26290       31.53368
  22.00           19.65023       33.01741
  22.50           20.03558       34.53526
  23.00           20.41892       36.08721
  23.50           20.80027       37.67328
  24.00           21.17959       39.29345
  24.50           21.55687       40.94773
  25.00           21.93206       42.63612
  25.50           22.30512       44.35862
  26.00           22.67600       46.11523
  26.50           23.04463       47.90595
  27.00           23.41093       49.73077
  27.50           23.77482       51.58971
  28.00           24.13621       53.48275
  28.50           24.49500       55.40991
  29.00           24.85109       57.37117
  29.50           25.20435       59.36654
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File weights.out:

RBM_RED    W_WING   W_FUEL  WWING+WFUEL    GW
  0.00     83746.4  215000.0  298746.4     588893.0
  0.50     83311.5  214797.2  298108.7     588255.3
  1.00     82872.6  214616.9  297489.5     587636.1
  1.50     82436.9  214462.9  296899.8     587046.4
  2.00     82005.3  214335.3  296340.7     586487.3
  2.50     81577.9  214234.2  295812.1     585958.8
  3.00     81154.6  214159.4  295314.0     585460.6
  3.50     80735.2  214110.8  294846.0     584992.7
  4.00     80319.7  214088.3  294408.1     584554.7
  4.50     79908.0  214091.9  293999.9     584146.6
  5.00     79500.0  214121.4  293621.4     583768.1
  5.50     79095.6  214176.8  293272.4     583419.0
  6.00     78694.7  214257.9  292952.6     583099.3
  6.50     78297.3  214364.7  292662.0     582808.7
  7.00     77903.2  214497.1  292400.4     582547.0
  7.50     77512.5  214655.1  292167.6     582314.2
  8.00     77124.9  214838.6  291963.4     582110.1
  8.50     76740.4  215047.5  291787.9     581934.5
  9.00     76359.0  215281.7  291640.7     581787.3
  9.50     75980.5  215541.3  291521.8     581668.5
 10.00     75604.9  215826.2  291431.1     581577.8
 10.50     75232.2  216136.3  291368.5     581515.2
 11.00     74862.2  216471.6  291333.8     581480.5
 11.50     74494.8  216832.2  291327.0     581473.6
 12.00     74130.1  217217.8  291347.9     581494.6
 12.50     73767.9  217628.6  291396.5     581543.2
 13.00     73408.2  218064.5  291472.7     581619.3
 13.50     73050.8  218525.5  291576.3     581723.0
 14.00     72695.8  219011.6  291707.4     581854.1
 14.50     72343.1  219522.8  291865.9     582012.6
 15.00     71992.6  220059.1  292051.7     582198.3
 15.50     71644.2  220620.5  292264.7     582411.4
 16.00     71297.9  221207.0  292505.0     582651.6
 16.50     70953.7  221818.6  292772.4     582919.0
 17.00     70611.5  222455.4  293066.9     583213.5
 17.50     70271.2  223117.3  293388.6     583535.2
 18.00     69932.9  223804.4  293737.3     583884.0
 18.50     69596.4  224516.8  294113.1     584259.8
 19.00     69261.7  225254.4  294516.1     584662.7
 19.50     68928.8  226017.4  294946.1     585092.8
 20.00     68597.6  226805.7  295403.3     585549.9
 20.50     68268.2  227619.4  295887.6     586034.2
 21.00     67940.4  228458.7  296399.1     586545.7
 21.50     67614.4  229323.5  296937.9     587084.5
 22.00     67290.0  230213.9  297503.9     587650.6
 22.50     66967.3  231130.1  298097.4     588244.1
 23.00     66646.2  232072.1  298718.4     588865.0
 23.50     66326.9  233040.0  299366.9     589513.6
 24.00     66009.2  234034.0  300043.2     590189.9
 24.50     65693.3  235054.1  300747.4     590894.0
 25.00     65379.1  236100.5  301479.6     591626.2
 25.50     65066.6  237173.3  302239.9     592386.6
 26.00     64756.0  238272.7  303028.7     593175.3
 26.50     64447.3  239398.7  303846.1     593992.7
 27.00     64140.6  240551.7  304692.3     594838.9
 27.50     63835.8  241731.7  305567.5     595714.2
 28.00     63533.2  242939.0  306472.1     596618.8
 28.50     63232.7  244173.7  307406.3     597553.0
 29.00     62934.5  245436.0  308370.5     598517.1
 29.50     62638.6  246726.2  309364.8     599511.5
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File weight-variation.out:

WEIGHT INCREASE FOR DIFFERENT COMPONENETS IN %
 RBM_RED      WWING     WFUEL    WWING+WFU    GW
  0.00       0.0000    0.0000    0.0000    0.0000
  0.50      -0.5192   -0.0943   -0.2134   -0.1083
  1.00      -1.0434   -0.1782   -0.4207   -0.2134
  1.50      -1.5636   -0.2498   -0.6181   -0.3136
  2.00      -2.0789   -0.3092   -0.8053   -0.4085
  2.50      -2.5893   -0.3562   -0.9822   -0.4983
  3.00      -3.0948   -0.3910   -1.1489   -0.5829
  3.50      -3.5955   -0.4136   -1.3056   -0.6623
  4.00      -4.0917   -0.4240   -1.4522   -0.7367
  4.50      -4.5833   -0.4224   -1.5888   -0.8060
  5.00      -5.0705   -0.4086   -1.7155   -0.8703
  5.50      -5.5534   -0.3829   -1.8323   -0.9295
  6.00      -6.0320   -0.3452   -1.9393   -0.9838
  6.50      -6.5066   -0.2955   -2.0366   -1.0332
  7.00      -6.9771   -0.2339   -2.1242   -1.0776
  7.50      -7.4438   -0.1604   -2.2021   -1.1171
  8.00      -7.9066   -0.0751   -2.2705   -1.1518
  8.50      -8.3657    0.0221   -2.3292   -1.1816
  9.00      -8.8211    0.1310   -2.3785   -1.2066
  9.50      -9.2730    0.2518   -2.4183   -1.2268
 10.00      -9.7215    0.3843   -2.4486   -1.2422
 10.50     -10.1666    0.5285   -2.4696   -1.2528
 11.00     -10.6084    0.6845   -2.4812   -1.2587
 11.50     -11.0471    0.8522   -2.4835   -1.2599
 12.00     -11.4826    1.0315   -2.4765   -1.2563
 12.50     -11.9151    1.2226   -2.4602   -1.2481
 13.00     -12.3447    1.4254   -2.4347   -1.2351
 13.50     -12.7714    1.6398   -2.4000   -1.2175
 14.00     -13.1953    1.8659   -2.3561   -1.1953
 14.50     -13.6164    2.1036   -2.3031   -1.1684
 15.00     -14.0350    2.3531   -2.2409   -1.1368
 15.50     -14.4510    2.6142   -2.1696   -1.1006
 16.00     -14.8644    2.8870   -2.0892   -1.0599
 16.50     -15.2754    3.1715   -1.9997   -1.0144
 17.00     -15.6841    3.4676   -1.9011   -0.9644
 17.50     -16.0904    3.7755   -1.7934   -0.9098
 18.00     -16.4944    4.0951   -1.6767   -0.8506
 18.50     -16.8962    4.4264   -1.5509   -0.7868
 19.00     -17.2959    4.7695   -1.4160   -0.7183
 19.50     -17.6934    5.1244   -1.2721   -0.6453
 20.00     -18.0889    5.4910   -1.1190   -0.5677
 20.50     -18.4822    5.8695   -0.9569   -0.4854
 21.00     -18.8736    6.2598   -0.7857   -0.3986
 21.50     -19.2629    6.6621   -0.6054   -0.3071
 22.00     -19.6502    7.0762   -0.4159   -0.2110
 22.50     -20.0356    7.5024   -0.2172   -0.1102
 23.00     -20.4189    7.9405   -0.0094   -0.0048
 23.50     -20.8003    8.3907    0.2077    0.1054
 24.00     -21.1796    8.8530    0.4341    0.2202
 24.50     -21.5569    9.3275    0.6698    0.3398
 25.00     -21.9321    9.8142    0.9149    0.4641
 25.50     -22.3051   10.3132    1.1694    0.5932
 26.00     -22.6760   10.8245    1.4334    0.7272
 26.50     -23.0446   11.3483    1.7070    0.8660
 27.00     -23.4109   11.8845    1.9903    1.0097
 27.50     -23.7748   12.4334    2.2833    1.1583
 28.00     -24.1362   12.9949    2.5861    1.3119
 28.50     -24.4950   13.5691    2.8988    1.4706
 29.00     -24.8511   14.1563    3.2215    1.6343
 29.50     -25.2044   14.7564    3.5543    1.8031
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Appendix B.1

Sample design input file. Spanload optimization in formation flight. Equal aircraft
configuration.

idrag input file
equal formation design
0               input mode
1               write flag
2               number of aircraft
0               cm_flag
0.25            center of pressure for airfoil sections
0.6             cl_design / Design parameters for aircraft 1
0               cm_design
0.0             yrbm
0.0             zrbm
0.03            x cg position
0.5             reference area
0.25            reference chord
0.0             x movement of aircraft 1
0.0             y movement of aircraft 1
0.0             z movement of aircraft 1
0.6             cl_design / Design parameters for aircraft 2
0               cm_design
1.0             yrbm
0.0             zrbm
0.03            x cg position
0.5             reference area
0.25            reference chord
6.0             x movement of aircraft 2
0.78             y movement of aircraft 2
0.02             z movement of aircraft 2
3               number of panels
0   0   0       x,y,z for 4 corners of panel 1
0.125   1   0
0.25    1   0
0.375   0   0
40              number of vortices for panel 1
0               vortex spacing for panel 1
1               aircraft number to which panel 1 corresponds
1               rolling flag for panel 1
0.125 0.0 0.0   x,y,z for 4 corners of panel 2
0.0   1.0 0.0
0.375 1.0 0.0
0.25  0.0 0.0
40              number of vortices for panel 2
0               vortex spacing for panel 2
2               aircraft number to which panel 2 corresponds
1               rolling flag for panel 2
0.0   1.0 0.0   x,y,z for 4 corners of panel 3
0.125 2.0 0.0
0.25  2.0 0.0
0.375 1.0 0.0
40              number of vortices for panel 3
0               vortex spacing for panel 3
2               aircraft number to which panel 3 corresponds
1               rolling flag for panel 3



102

Appendix B.2

Sample design input file. Spanload optimization in formation flight. Different aircraft
size configuration.

idrag input file
diff. formation design
0               input mode
1               write flag
2               number of aircraft
1               cm_flag
0.25            center of pressure for airfoil sections
0.6             cl_design / Design parameters for aircraft 1
0               cm_design
0.0             yrbm
0.0             zrbm
0.03            x cg position
0.2             reference area
0.2             reference chord
0.0             x movement of aircraft 1
0.0             y movement of aircraft 1
0.0             z movement of aircraft 1
0.6             cl_design / Design parameters for aircraft 2
0               cm_design
0.25             yrbm
0.0              zrbm
0.015            x cg position
0.05             reference area
0.1            reference chord
3.0             x movement of aircraft 2
0.55             y movement of aircraft 2
0.01             z movement of aircraft 2
4               number of panels
0   0   0       x,y,z for 4 corners of panel 1
0   0.5   0
0.2 0.5   0
0.2 0   0
20              number of vortices for panel 1
0               vortex spacing for panel 1
1               aircraft number to which panel 1 corresponds
1               rolling flag for panel 1
1    0.0 0.1   x,y,z for 4 corners of panel 2
1    0.2 0.1
1.1  0.2 0.1
1.1  0.0 0.1
10              number of vortices for panel 2
0               vortex spacing for panel 2
1               aircraft number to which panel 2 corresponds
0               rolling flag for panel 2
0.0 0.0 0.0     x,y,z for 4 corners of panel 3
0.0 0.5 0.0
0.1 0.5 0.0
0.1 0.0 0.0
40              number of vortices for panel 3
0               vortex spacing for panel 3
2               aircraft number to which panel 3 corresponds
1               rolling flag for panel 3
0.5  0.15 0.1     x,y,z for 4 corners of panel 4
0.5  0.35 0.1
0.55 0.35 0.1
0.55 0.15 0.1
20              number of vortices for panel 4
0               vortex spacing for panel 4
2               aircraft number to which panel 4 corresponds
0               rolling flag for panel 4
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Appendix B.3

Sample design output file. Spanload optimization for formation flight. Equal aircraft
configuration.

idrag output file
equal formation design
    0    = input mode
    1    = write flag
    2    = number of aircraft
    0    = moment coefficient flag
    0.25 = center of pressure for airfoil sections

 Design parameters for aircraft 1
    0.60 = design lift coefficient
    0.00 = design moment coefficient
    0.00 = reference y location for root bending moment
    0.00 = reference z location for root bending moment
    0.03 = x cg position
    0.50 = reference area
    0.25 = reference chord

 Design parameters for aircraft 2
    0.60 = design lift coefficient
    0.00 = design moment coefficient
    1.78 = reference y location for root bending moment
    0.02 = reference z location for root bending moment
    6.03 = x cg position
    0.50 = reference area
    0.25 = reference chord

    3    = number of panels

    x        y        z    for panel 1
    0.00     0.00     0.00
    0.13     1.00     0.00
    0.25     1.00     0.00
    0.38     0.00     0.00
   40    = number of vortices
    0    = vortex spacing flag
    1    = aircraft to which it corresponds
    1    = rolling moment flag for panel

    x        y        z    for panel 2
    6.13     0.78     0.02
    6.00     1.78     0.02
    6.38     1.78     0.02
    6.25     0.78     0.02
   40    = number of vortices
    0    = vortex spacing flag
    2    = aircraft to which it corresponds
    1    = rolling moment flag for panel

    x        y        z    for panel 3
    6.00     1.78     0.02
    6.13     2.78     0.02
    6.25     2.78     0.02
    6.38     1.78     0.02
   40    = number of vortices
    0    = vortex spacing flag
    2    = aircraft to which it corresponds
    1    = rolling moment flag for panel

    i   x        y        z        load     cn
    1   0.0945   0.0125   0.0000   0.6919   0.4651
    2   0.0961   0.0375   0.0000   0.6918   0.4730
    3   0.0977   0.0625   0.0000   0.6917   0.4812
    4   0.0992   0.0875   0.0000   0.6914   0.4895
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    5   0.1008   0.1125   0.0000   0.6911   0.4981
    6   0.1023   0.1375   0.0000   0.6907   0.5070
    7   0.1039   0.1625   0.0000   0.6903   0.5161
    8   0.1055   0.1875   0.0000   0.6897   0.5255
    9   0.1070   0.2125   0.0000   0.6891   0.5352
   10   0.1086   0.2375   0.0000   0.6884   0.5453
   11   0.1102   0.2625   0.0000   0.6876   0.5556
   12   0.1117   0.2875   0.0000   0.6867   0.5663
   13   0.1133   0.3125   0.0000   0.6857   0.5774
   14   0.1148   0.3375   0.0000   0.6846   0.5889
   15   0.1164   0.3625   0.0000   0.6834   0.6008
   16   0.1180   0.3875   0.0000   0.6821   0.6131
   17   0.1195   0.4125   0.0000   0.6806   0.6258
   18   0.1211   0.4375   0.0000   0.6790   0.6391
   19   0.1227   0.4625   0.0000   0.6773   0.6528
   20   0.1242   0.4875   0.0000   0.6753   0.6670
   21   0.1258   0.5125   0.0000   0.6732   0.6817
   22   0.1273   0.5375   0.0000   0.6709   0.6970
   23   0.1289   0.5625   0.0000   0.6683   0.7128
   24   0.1305   0.5875   0.0000   0.6654   0.7292
   25   0.1320   0.6125   0.0000   0.6621   0.7460
   26   0.1336   0.6375   0.0000   0.6583   0.7632
   27   0.1352   0.6625   0.0000   0.6538   0.7807
   28   0.1367   0.6875   0.0000   0.6483   0.7980
   29   0.1383   0.7125   0.0000   0.6413   0.8143
   30   0.1398   0.7375   0.0000   0.6311   0.8276
   31   0.1414   0.7625   0.0000   0.6128   0.8309
   32   0.1430   0.7875   0.0000   0.5703   0.8004
   33   0.1445   0.8125   0.0000   0.5187   0.7545
   34   0.1461   0.8375   0.0000   0.4648   0.7016
   35   0.1477   0.8625   0.0000   0.4087   0.6411
   36   0.1492   0.8875   0.0000   0.3505   0.5723
   37   0.1508   0.9125   0.0000   0.2903   0.4941
   38   0.1523   0.9375   0.0000   0.2277   0.4049
   39   0.1539   0.9625   0.0000   0.1625   0.3023
   40   0.1555   0.9875   0.0000   0.0927   0.1809
   41   6.1555   0.7925   0.0200   0.0685   0.1337
   42   6.1539   0.8175   0.0200   0.1245   0.2316
   43   6.1523   0.8425   0.0200   0.1804   0.3208
   44   6.1508   0.8675   0.0200   0.2375   0.4043
   45   6.1492   0.8925   0.0200   0.2960   0.4832
   46   6.1477   0.9175   0.0200   0.3558   0.5581
   47   6.1461   0.9425   0.0200   0.4169   0.6293
   48   6.1445   0.9675   0.0200   0.4793   0.6972
   49   6.1430   0.9925   0.0200   0.5426   0.7615
   50   6.1414   1.0175   0.0200   0.5972   0.8098
   51   6.1398   1.0425   0.0200   0.6204   0.8137
   52   6.1383   1.0675   0.0200   0.6335   0.8044
   53   6.1367   1.0925   0.0200   0.6428   0.7911
   54   6.1352   1.1175   0.0200   0.6503   0.7765
   55   6.1336   1.1425   0.0200   0.6568   0.7615
   56   6.1320   1.1675   0.0200   0.6626   0.7466
   57   6.1305   1.1925   0.0200   0.6679   0.7319
   58   6.1289   1.2175   0.0200   0.6728   0.7177
   59   6.1273   1.2425   0.0200   0.6774   0.7038
   60   6.1258   1.2675   0.0200   0.6818   0.6904
   61   6.1242   1.2925   0.0200   0.6859   0.6775
   62   6.1227   1.3175   0.0200   0.6899   0.6650
   63   6.1211   1.3425   0.0200   0.6936   0.6528
   64   6.1195   1.3675   0.0200   0.6972   0.6411
   65   6.1180   1.3925   0.0200   0.7006   0.6298
   66   6.1164   1.4175   0.0200   0.7039   0.6188
   67   6.1148   1.4425   0.0200   0.7069   0.6081
   68   6.1133   1.4675   0.0200   0.7098   0.5977
   69   6.1117   1.4925   0.0200   0.7125   0.5876
   70   6.1102   1.5175   0.0200   0.7151   0.5778
   71   6.1086   1.5425   0.0200   0.7174   0.5682
   72   6.1070   1.5675   0.0200   0.7196   0.5589
   73   6.1055   1.5925   0.0200   0.7215   0.5497
   74   6.1039   1.6175   0.0200   0.7233   0.5408
   75   6.1023   1.6425   0.0200   0.7249   0.5320
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   76   6.1008   1.6675   0.0200   0.7262   0.5234
   77   6.0992   1.6925   0.0200   0.7273   0.5149
   78   6.0977   1.7175   0.0200   0.7282   0.5066
   79   6.0961   1.7425   0.0200   0.7289   0.4984
   80   6.0945   1.7675   0.0200   0.7292   0.4902
   81   6.0945   1.7925   0.0200   0.7294   0.4903
   82   6.0961   1.8175   0.0200   0.7292   0.4986
   83   6.0977   1.8425   0.0200   0.7288   0.5070
   84   6.0992   1.8675   0.0200   0.7280   0.5154
   85   6.1008   1.8925   0.0200   0.7270   0.5239
   86   6.1023   1.9175   0.0200   0.7256   0.5325
   87   6.1039   1.9425   0.0200   0.7239   0.5412
   88   6.1055   1.9675   0.0200   0.7218   0.5499
   89   6.1070   1.9925   0.0200   0.7193   0.5587
   90   6.1086   2.0175   0.0200   0.7165   0.5675
   91   6.1102   2.0425   0.0200   0.7132   0.5763
   92   6.1117   2.0675   0.0200   0.7095   0.5852
   93   6.1133   2.0925   0.0200   0.7054   0.5940
   94   6.1148   2.1175   0.0200   0.7008   0.6028
   95   6.1164   2.1425   0.0200   0.6957   0.6116
   96   6.1180   2.1675   0.0200   0.6900   0.6203
   97   6.1195   2.1925   0.0200   0.6838   0.6288
   98   6.1211   2.2175   0.0200   0.6771   0.6372
   99   6.1227   2.2425   0.0200   0.6697   0.6455
  100   6.1242   2.2675   0.0200   0.6616   0.6534
  101   6.1258   2.2925   0.0200   0.6529   0.6611
  102   6.1273   2.3175   0.0200   0.6434   0.6684
  103   6.1289   2.3425   0.0200   0.6331   0.6753
  104   6.1305   2.3675   0.0200   0.6219   0.6815
  105   6.1320   2.3925   0.0200   0.6098   0.6871
  106   6.1336   2.4175   0.0200   0.5967   0.6918
  107   6.1352   2.4425   0.0200   0.5825   0.6955
  108   6.1367   2.4675   0.0200   0.5671   0.6980
  109   6.1383   2.4925   0.0200   0.5504   0.6989
  110   6.1398   2.5175   0.0200   0.5322   0.6979
  111   6.1414   2.5425   0.0200   0.5123   0.6947
  112   6.1430   2.5675   0.0200   0.4906   0.6886
  113   6.1445   2.5925   0.0200   0.4667   0.6788
  114   6.1461   2.6175   0.0200   0.4402   0.6645
  115   6.1477   2.6425   0.0200   0.4107   0.6442
  116   6.1492   2.6675   0.0200   0.3773   0.6160
  117   6.1508   2.6925   0.0200   0.3389   0.5768
  118   6.1523   2.7175   0.0200   0.2935   0.5218
  119   6.1539   2.7425   0.0200   0.2372   0.4414
  120   6.1555   2.7675   0.0200   0.1598   0.3118

 Calculated parameters for aircraft           1
    0.60000 = actual lift coefficient
    -.21946 = actual moment coefficient
    0.00000 = rolling moment coefficient
    0.01478 = induced drag coefficient
    0.96893 = span efficiency factor

 Calculated parameters for aircraft           2
    0.60000 = actual lift coefficient
    -.21789 = actual moment coefficient
    0.00000 = rolling moment coefficient
    0.00322 = induced drag coefficient
    4.45273 = span efficiency factor

    0.00707 = formation induced drag coefficient
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Appendix B.4

Sample design output file. Spanload optimization for formation flight. Different aircraft
size configuration.

idrag output file
diff. formation design
    0    = input mode
    1    = write flag
    2    = number of aircraft
    1    = moment coefficient flag
    0.25 = center of pressure for airfoil sections

 Design parameters for aircraft 1
    0.60 = design lift coefficient
    0.00 = design moment coefficient
    0.00 = reference y location for root bending moment
    0.00 = reference z location for root bending moment
    0.03 = x cg position
    0.20 = reference area
    0.20 = reference chord

 Design parameters for aircraft 2
    0.60 = design lift coefficient
    0.00 = design moment coefficient
    0.80 = reference y location for root bending moment
    0.01 = reference z location for root bending moment
    3.02 = x cg position
    0.05 = reference area
    0.10 = reference chord

    4    = number of panels

    x        y        z    for panel 1
    0.00     0.00     0.00
    0.00     0.50     0.00
    0.20     0.50     0.00
    0.20     0.00     0.00
   20    = number of vortices
    0    = vortex spacing flag
    1    = aircraft to which it corresponds
    1    = rolling moment flag for panel

    x        y        z    for panel 2
    1.00     0.00     0.10
    1.00     0.20     0.10
    1.10     0.20     0.10
    1.10     0.00     0.10
   10    = number of vortices
    0    = vortex spacing flag
    1    = aircraft to which it corresponds
    0    = rolling moment flag for panel

    x        y        z    for panel 3
    3.00     0.55     0.01
    3.00     1.05     0.01
    3.10     1.05     0.01
    3.10     0.55     0.01
   40    = number of vortices
    0    = vortex spacing flag
    2    = aircraft to which it corresponds
    1    = rolling moment flag for panel

    x        y        z    for panel 4
    3.50     0.70     0.11
    3.50     0.90     0.11
    3.55     0.90     0.11
    3.55     0.70     0.11
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   20    = number of vortices
    0    = vortex spacing flag
    2    = aircraft to which it corresponds
    0    = rolling moment flag for panel

    i   x        y        z        load     cn
    1   0.0500   0.0125   0.0000   0.6886   0.6886
    2   0.0500   0.0375   0.0000   0.6877   0.6877
    3   0.0500   0.0625   0.0000   0.6860   0.6860
    4   0.0500   0.0875   0.0000   0.6833   0.6833
    5   0.0500   0.1125   0.0000   0.6798   0.6798
    6   0.0500   0.1375   0.0000   0.6754   0.6754
    7   0.0500   0.1625   0.0000   0.6702   0.6702
    8   0.0500   0.1875   0.0000   0.6642   0.6642
    9   0.0500   0.2125   0.0000   0.6576   0.6576
   10   0.0500   0.2375   0.0000   0.6504   0.6504
   11   0.0500   0.2625   0.0000   0.6424   0.6424
   12   0.0500   0.2875   0.0000   0.6333   0.6333
   13   0.0500   0.3125   0.0000   0.6227   0.6227
   14   0.0500   0.3375   0.0000   0.6098   0.6098
   15   0.0500   0.3625   0.0000   0.5938   0.5938
   16   0.0500   0.3875   0.0000   0.5731   0.5731
   17   0.0500   0.4125   0.0000   0.5453   0.5453
   18   0.0500   0.4375   0.0000   0.5057   0.5057
   19   0.0500   0.4625   0.0000   0.4442   0.4442
   20   0.0500   0.4875   0.0000   0.3325   0.3325
   21   1.0250   0.0100   0.1000  -0.0400  -0.0800
   22   1.0250   0.0300   0.1000  -0.0395  -0.0790
   23   1.0250   0.0500   0.1000  -0.0385  -0.0769
   24   1.0250   0.0700   0.1000  -0.0369  -0.0738
   25   1.0250   0.0900   0.1000  -0.0348  -0.0695
   26   1.0250   0.1100   0.1000  -0.0321  -0.0641
   27   1.0250   0.1300   0.1000  -0.0287  -0.0575
   28   1.0250   0.1500   0.1000  -0.0247  -0.0494
   29   1.0250   0.1700   0.1000  -0.0196  -0.0393
   30   1.0250   0.1900   0.1000  -0.0129  -0.0259
   31   3.0250   0.5563   0.0100   0.2545   0.2545
   32   3.0250   0.5688   0.0100   0.3607   0.3607
   33   3.0250   0.5813   0.0100   0.4294   0.4294
   34   3.0250   0.5938   0.0100   0.4801   0.4801
   35   3.0250   0.6062   0.0100   0.5201   0.5201
   36   3.0250   0.6187   0.0100   0.5530   0.5530
   37   3.0250   0.6313   0.0100   0.5809   0.5809
   38   3.0250   0.6438   0.0100   0.6051   0.6051
   39   3.0250   0.6563   0.0100   0.6264   0.6264
   40   3.0250   0.6687   0.0100   0.6452   0.6452
   41   3.0250   0.6812   0.0100   0.6621   0.6621
   42   3.0250   0.6937   0.0100   0.6773   0.6773
   43   3.0250   0.7063   0.0100   0.6909   0.6909
   44   3.0250   0.7188   0.0100   0.7030   0.7030
   45   3.0250   0.7312   0.0100   0.7138   0.7138
   46   3.0250   0.7437   0.0100   0.7232   0.7232
   47   3.0250   0.7562   0.0100   0.7312   0.7312
   48   3.0250   0.7688   0.0100   0.7378   0.7378
   49   3.0250   0.7813   0.0100   0.7429   0.7429
   50   3.0250   0.7937   0.0100   0.7466   0.7466
   51   3.0250   0.8062   0.0100   0.7487   0.7487
   52   3.0250   0.8187   0.0100   0.7491   0.7491
   53   3.0250   0.8312   0.0100   0.7478   0.7478
   54   3.0250   0.8437   0.0100   0.7448   0.7448
   55   3.0250   0.8562   0.0100   0.7399   0.7399
   56   3.0250   0.8687   0.0100   0.7330   0.7330
   57   3.0250   0.8812   0.0100   0.7242   0.7242
   58   3.0250   0.8937   0.0100   0.7131   0.7131
   59   3.0250   0.9062   0.0100   0.6998   0.6998
   60   3.0250   0.9187   0.0100   0.6839   0.6839
   61   3.0250   0.9312   0.0100   0.6654   0.6654
   62   3.0250   0.9437   0.0100   0.6438   0.6438
   63   3.0250   0.9562   0.0100   0.6187   0.6187
   64   3.0250   0.9687   0.0100   0.5895   0.5895
   65   3.0250   0.9812   0.0100   0.5554   0.5554
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   66   3.0250   0.9937   0.0100   0.5152   0.5152
   67   3.0250   1.0063   0.0100   0.4673   0.4673
   68   3.0250   1.0187   0.0100   0.4086   0.4086
   69   3.0250   1.0313   0.0100   0.3334   0.3334
   70   3.0250   1.0437   0.0100   0.2267   0.2267
   71   3.5125   0.7050   0.1100  -0.0073  -0.0146
   72   3.5125   0.7150   0.1100  -0.0123  -0.0246
   73   3.5125   0.7250   0.1100  -0.0168  -0.0336
   74   3.5125   0.7350   0.1100  -0.0210  -0.0420
   75   3.5125   0.7450   0.1100  -0.0249  -0.0499
   76   3.5125   0.7550   0.1100  -0.0286  -0.0572
   77   3.5125   0.7650   0.1100  -0.0319  -0.0637
   78   3.5125   0.7750   0.1100  -0.0348  -0.0696
   79   3.5125   0.7850   0.1100  -0.0373  -0.0746
   80   3.5125   0.7950   0.1100  -0.0393  -0.0787
   81   3.5125   0.8050   0.1100  -0.0409  -0.0818
   82   3.5125   0.8150   0.1100  -0.0419  -0.0837
   83   3.5125   0.8250   0.1100  -0.0423  -0.0845
   84   3.5125   0.8350   0.1100  -0.0420  -0.0840
   85   3.5125   0.8450   0.1100  -0.0410  -0.0820
   86   3.5125   0.8550   0.1100  -0.0392  -0.0784
   87   3.5125   0.8650   0.1100  -0.0364  -0.0728
   88   3.5125   0.8750   0.1100  -0.0324  -0.0648
   89   3.5125   0.8850   0.1100  -0.0268  -0.0536
   90   3.5125   0.8950   0.1100  -0.0183  -0.0367

 Calculated parameters for aircraft           1
    0.60000 = actual lift coefficient
    0.00000 = actual moment coefficient
    0.00000 = rolling moment coefficient
    0.02421 = induced drag coefficient
    0.94682 = span efficiency factor

 Calculated parameters for aircraft           2
    0.60000 = actual lift coefficient
    0.00000 = actual moment coefficient
    0.00000 = rolling moment coefficient
    0.00405 = induced drag coefficient
    5.65475 = span efficiency factor

    0.01413 = formation induced drag coefficient
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