

AIAA TEAM 1

Electrical Systems in Aircraft

- Avionics
- Hydraulics
- Environmentalcontrol
- Lighting
- Subsystems

Electrical System Composition

- Batteries
- Alternators/Generators
- Transformer-rectifiers
- APU (Auxiliary Power Unit)
- Electrical Controls
- Circuit Breakers
- Wires
- Ram Air Turbines

GENERATORS

- Usually produces AC current
- 115/220 V
- Most aircraft have two generators
- Generally a 3 phase, 400 HZ generator
- Large aircraft may have back-up generators

TRANSFORMER-RECTIFIERS

Used to convert to DC current

Typically 28V

BATTERIES

- Power APUs
- Emergency locator transmitters
- Starting general aviation aircraft

VT AIAA TEAM 1

APU

- The APU is used to start the engine and provide ground power
- Can provide in-flight emergency power
- Can be continuously operated if needed
- Most common is the jet-fuel APU
 - Small jet engine
 - Requires inlet and exhaust, both facing up to minimize noise
 - Inlet must be in high pressure, exhaust in low pressure area
 - Must be fire-walled
 - High maintenance, so easy access is essential
- Must be considered early in design because of these reasons
- Usually located near tail for transports and fuselage for fighters

RAM-AIR TURBINES

- Used in some cases to generate power
- Windmill is inserted in slipstream
- Can be used in emergencies

AVIONICS

- Powered by generators and transformerrectifiers
- Include radios, instruments, navigational aids, flight control computers, radar, infrared, anti-icing, detectors, sensors, and other mission-specific equipment
- Integral part of design in terms of placing, weight, and costs

CATEGORIES OF AVIONICS

- Communication and Navigation
- Mission Equipment
- Vehicle Management

COMMUNICATION AND NAVIGATION

- Radios
- Weather
- Autopilot
- Radar, air-to-air and air-to-ground
- Infrared seekers and sensors
- Aircraft identification, friend and enemy
- GPS

MISSION EQUIPMENT

- Gun/Missile aiming and control
- Electronic Stealth

VEHICLE MANAGEMENT

- Necessary for flight
- Fly-by-wire systems and flight control systems
 - Unstable aircraft stabilized by computers and actuators
 - Pilots give "suggestions" and computer allows them
- Fly-by-optics
 - Faster data transmission
 - Immunity from electromagnetic interference
- Systems to dampen flutter, suppress oscillations, re-distribute lift over the wing

VEHICLE MANAGEMENT con't.

VT AIAA TEAM 1

DETERMINING SIZE AND WEIGHT

General aviation

- FAA regulates what radios, navigational aids, and equipment that can be used for certain operations
- Becomes a matter of picking from a catalog
- Industry/commercial aircraft
 - In-house expert can size avionics and electronics
 - This expert communicates with manufacturers
- Military
 - Usually state of the art systems, so little may be known
 - Drawings might not even exist
 - Estimates are required and usually made by in-house expert

A NOTE ON AVIONICS WEIGHT

- Devices are smaller, but quality and quantity are greater.
- Previous weight estimates are often used in design so when new advances are made, there is usually extra space/weight.
- This extra space/weight has been used for more advanced features and not just eliminated

VT AIAA TEAM 1

NEW DEVELOPMENTS

Electrical actuators

- Replace hydraulics
- Similar to RC models
- Small electric motors drive control surfaces
- Comparable in weight to hydraulics but faster and more reliable
- Electric brakes
 - Replace hydraulics
 - Like disc brakes on cars
 - Run by electric motor
 - Faster response
 - Can be used to prevent skids more reliably
 - Comparable in weight to hydraulics

NEW DEVELOPMENTS con't.

- Miniaturization of electronics
 - Smaller More volume for payload
 - Lighter More weight for payload
 - Allows for components to be embedded in aircraft skin
 - Allows for smaller aircraft → UAVS
- Advances in computers
 - Advanced auto-pilots and flight controls
 - Can fly more unstable aircraft
 - Pilot may not be necessary
 - Bugs in computer code may lead to problems
- LEDs
 - Light emitting diodes
 - Brighter, easier to read, longer lasting displays and lights

. NEW ADVANCES AT WORK

- Example: Honeywell "More Electric Architecture", MEA
 - Basically a combination of the ideas above
 - Elimination of pneumatics and hydraulics
 - Lighter
 - Easier to maintain

ELECTRICAL DESIGN

- Size
- Weight
- Where will it go?
- Wiring long wires will lead to signal loss and more weight
- Environmental effects lighting and electromagnetic effects

AIAA Tactical STOL Transport

- Will require most of what was presented
 - o APU
 - Batteries
 - o Generators
 - Transformer-rectifiers
 - Avionics

Forestry UAV

- Require advanced electronics and avionics
- Could use electrical motors for propulsion
- Require batteries or some way to generate power in flight

Human Powered Aircraft

- None for final design
- For model:
 - Electric motor
 - o Servos

Next 10 years...

- Fuel cells
 - Cleaner, quieter, more efficient
 - Won't replace engines anytime soon, but have applications in APU
- Electric propulsion
- Eventually...all electric aircraft?

AIAA TEAM 1 MEMBERS

- Robert Adams
- Ryan Arnaudin
- LaMar Berry
- Shelley Biagi
- William Black
- Angela Brooks
- Stephen Bruso
- Nick Carlson

