E. 2 LADSON

This is the NASA program that provides a reasonable approximation to the NACA 6 and 6A series airfoils. It was written by Charles Ladson and Cuyler Brooks (Ref E.2-1). Originally it ran on the NASA CDC computer. It has been ported to run on a personal computer (Macintosh). Only minor modifications were made to produce a program to generate a set of ordinates in the form required as standard input by the programs described in App. D.

The program is only an approximation to the ordinates because there is no simple algebraic formula available to describe the thickness distribution. I spoke briefly to Charles Ladson some years ago, and he said that he thought it would be impossible to generate a more accurate program. When he was doing this work he investigated the availability of more detailed notes on these airfoils and discovered that all the records have been destroyed. The only information available is that contained in the actual NACA reports. However, this program is much more accurate than attempts to simulate the 6 and 6 A series thickness envelope by using a modified NACA 4-digit airfoil formula. The program was developed to handles thicknesses from 6 to 15 percent.

Figure E.2-1 compares the program predictions with the official ordinates - which are given in Ref E.2-2, for 64 -series airfoils. If the thickness distribution could be obtained by scaling a reference airfoil, each curve would be a straight flat line. Note especially that below thickness of around six percent the program deviates significantly from the tabulated values.

One other possible problem is the value at the trailing edge. Originally further processing was required to find the value. The program was modified to linearly extrapolate the values near the trailing edge to get the final values. This was the approach recommended by Ladson. This is done in the new routine added to generate the file of points, stdout. The user should check this approximation if the results appear to be in error at the trailing edge.

References

E.2-1. Ladson, C.L., and Brooks, C.W., Jr., "Development of a Computer Program to Obtain Ordinates for NACA 6- and 6A-Series Airfoils," NASA TM X-3069, Sept., 1974.
E.2-2. Patterson, E.W., and Braslow, A.L., "Ordinates and Theoretical Pressure Distribution Data for NACA 6- and 6A- Series Airfoil Sections with Thicknesses from 2 to 21 and from 2 to 15 Percent Chord Respectively," NASA R-84, 1961.

E-6 Applied Computational Aerodynamics

a. $\mathrm{x} / \mathrm{c}=0.10$

Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values.

b. $\mathrm{x} / \mathrm{c}=0.075$

c. $\mathrm{x} / \mathrm{c}=0.050$

d. $\mathrm{x} / \mathrm{c}=0.025$

Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values. (continued)

g. $x / c=0.0050$

Fig. E.2-1 Comparison of tabulated and computed airfoil ordinate values. (concluded)

Input Description

The user first creates a data file as described below. Then, the program runs interactively. It queries the user for the name of the input data file. After the airfoil ordinates are found, the user is asked for the name of the output file containing the ordinates in standard format. The file names can be up to twenty characters long. Because the program was developed in the era of cards, it is critically important that the input be placed in the specified column.
$\frac{\text { Card }}{1 .} \frac{\text { Field }}{2-80} \quad \frac{\text { Variable }}{\text { TITLE }} \quad \frac{\text { Description }}{\text { Case title card. Any values can be used, from columns } 2 \text { to } 80}$
2. Airfoil and camber line series designations as follows:

NACA airfoil thickness family:	card designation	column
63-series	63	9,10
64-series	64	9,10
65-series	65	9,10
66-series	66	9,10
67-series	67	9,10
63A-series	63 A	$8,9,10$
64A-series	64 A	$8,9,10$
65A-series	65 A	$8,9,10$
NACA Camber line	card designation	column
NACA 6-series	63	19,20
	64	19,20
	65	19,20
	66	19,20
	63 A	$18,19,20$
NACA 6A-series	64 A	$18,19,20$
	65 A	$18,19,20$

Airfoil Parameter card (Note cards 3 to 6 are in floating point mode. Numbers are entered with a decimal point.
\(\left.$$
\begin{array}{llll}\text { 3. } & 1-10 & \text { TOC } & \text { Thickness to chord ratio of airfoil, i.e., } 0.120 \\
11-20 & \text { LER } & \begin{array}{l}\text { Published leading-edge radius may be entered if } \\
\text { desired (not used in program) }\end{array} \\
21-30 & \text { CHD } & \begin{array}{l}\text { model chord used for listing ordinates in dimensional units } \\
31-40\end{array} & \text { CLI }\end{array}
$$ \begin{array}{l}Design lift coefficient (i.e., 0.20)

set to 0.0 for a symmetrical airfoil\end{array}\right]\)| mean line chordwise loading (use 0.8 for 6A-series airfoils) |
| :--- | :--- | :--- |

and as required:

$\underline{\text { Card }}$	$\underline{\text { Field }}$		Variable		
	$1-10$		Description		
	$11-20$	A			losign lift for second mean line
	$21-30$	CLI		design lift for third mean line	
	$31-40$	A		loading for third mean line	
	$41-50$	CLI		design lift for fourth mean line	
	$51-60$	A		loading for fourth mean line	
	$61-70$	CLI		design lift for fifth mean line	
	$71-80$	A		loading for fifth mean line	

$\frac{\text { Card }}{5 .}$	$\frac{\text { Field }}{1-10}$		Variable	
	$11-20$	A		
	Description			
	21-30	CLI		loading for sixth mean line
	design lift for seventh mean line			
	31-40	A		loading for seventh mean line
	41-50	CLI		design lift for eighth mean line
	51-60	A		loading for eighth mean line
	61-70	CLI		design lift for ninth mean line
	$71-80$	A		loading for ninth mean line
6.	$1-10$	CLI		design lift for tenth mean line
	$11-20$	A		loading for tenth mean line

Sample input:

```
    NACA 65(1)213 A=0.5,CL=0.2
        65 0.00 65 1.0 0.0 0.2 0.5 1.0
```


Output

The program files also contain the sample output of the program. Because the program was written many years ago, it uses 133 column output, and doesn't fit on a normal page. The output file corresponds to the input data set given above and also available in the program files. This case should be verified before further use of the program.

Eighty values of the upper and lower surface are contained in the disk file. The following is the file generated from the sample input listed above. All numbers are output in 2F10.6 format.

```
    NACA 65(1)213 A=0.5,CL=0.2
80.000000 80.000000
    UPPER SURFACE
    0.000000 0.000000
    0.000294 0.004049
    0.000862 0.005724
    0.001472 0.007026
    0.002106 0.008120
    0.002756 0.009078
    0.003416 0.009940
0.004095 0.010729
0.004801 0.011465
0.005750 0.012363
0.006706 0.013187
0.007668 0.013957
0.008635 0.014674
0.009605 0.015351
0.010578 0.015999
0.013509 0.017790
0.018419 0.020432
0.023349 0.022801
0.028292 0.024990
0.033243 0.027041
0.038202 0.028978
0.043167 0.030816
0.048138 0.032564
0.053113 0.034230
0.058093 0.035824
0.063077 0.037355
0.068064 0.038829
0.073053 0.040252
0.078045 0.041628
```

E-10 Applied Computational Aerodynamics

0.083040	0.042963
0.088036	0.044256
0.093035	0.045510
0.098035	0.046725
0.108042	0.049051
0.118054	0.051242
0.138096	0.055281
0.158154	0.058909
0.178228	0.062180
0.198314	0.065122
0.218410	0.067761
0.238517	0.070119
0.258632	0.072209
0.278755	0.074040
0.298885	0.075621
0.319022	0.076953
0.339166	0.078041
0.359316	0.078893
0.379473	0.079505
0.399636	0.079849
0.419807	0.079905
0.439987	0.079653
0.460179	0.079093
0.480389	0.078208
0.500661	0.076988
0.520914	0.075401
0.541078	0.073489
0.561197	0.071293
0.581282	0.068840
0.601339	0.066166
0.621370	0.063297
0.641379	0.060250
0.661367	0.057038
0.681337	0.053682
0.701290	0.050202
0.721229	0.046629
0.741156	0.042982
0.761071	0.039263
0.780978	0.035493
0.800877	0.031693
0.820771	0.027893
0.840662	0.024115
0.860553	0.020383
0.880445	0.016732
0.900341	0.013196
0.920244	0.009825
0.940156	0.006682
0.960082	0.003866
0.980027	0.001528
0.990009	0.000616
1.000000	-0.000015
$L 0 W E R 5 U R F A$	
0.000000	0.000000
0.001206	-0.003782
0.002138	-0.005234
0.003028	-0.006330
0.003894	-0.007228
0.004744	-0.008000
0.005584	-0.008681
0.006405	-0.009295
0.007199	-0.009859
0.008250	-0.010536
0.009294	-0.011145
0.010332	-0.011704
0.011365	-0.012216
0.012395	-0.012692
0.013422	-0.013143
0.016491	-0.014363

Tuesday, January 21, 1997

```
0.021581 -0.016110
0.026651 -0.017640
0.031708 -0.019033
0.036757-0.020325
0.041798-0.021536
0.046833-0.022676
0.051862 -0.023751
0.056887-0.024766
0.061907 -0.025730
0.066923-0.026652
0.071936 -0.027533
0.076947-0.028381
0.081955 -0.029197
0.086960-0.029988
0.091964 -0.030750
0.096965-0.031487
0.101964 -0.032198
0.111958-0.033552
0.121946 -0.034818
0.141904 -0.037129
0.161846-0.039182
0.181772 -0.041014
0.201686-0.042644
0.221590-0.044089
0.241483-0.045366
0.261368-0.046480
0.281245 -0.047440
0.301115 -0.048251
0.320978-0.048913
0.340834 -0.049428
0.360684-0.049806
0.380527 -0.050043
0.400364 -0.050111
0.420192 -0.049996
0.440012 -0.049680
0.459821 -0.049171
0.479611-0.048463
0.499339 -0.047570
0.519085-0.046504
0.538922 -0.045258
0.558802 -0.043842
0.578717 -0.042267
0.598660-0.040559
0.618629 -0.038730
0.638620 -0.036789
0.658632 -0.034743
0.678662 -0.032603
0.698709 -0.030384
0.718770-0.028110
0.738843-0.025795
0.758928-0.023432
0.779021 -0.021039
0.799122 -0.018629
0.819228-0.016226
0.839337-0.013846
0.859446-0.011507
0.879554 -0.009237
0.899658-0.007062
0.919755 -0.005023
0.939843-0.003175
0.959916 -0.001603
0.979971-0.000444
0.989990-0.000089
1.000000-0.000015
```

