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ABSTRACT 

A structural optimization procedure for a high-speed civil transport resulted in inaccurate optimal wing structural 
weight due to premature convergence. The optimization error in wing structural weight appeared noisy and one 
sided. Probabilistic models were applied to the optimization error and the Weibull model was successfully fit to the 
optimization errors. Previous work showed that the probabilistic model enabled us to estimate average errors 
without performing very accurate optimization runs. We show that two sets of optimization results, obtained by 
using a different initial design point for each set, can serve to estimate the mean and standard deviation of the 
optimization errors. 
 
 
1. Introduction 

 
Optimization is an iterative procedure, which is rarely allowed to converge to high precision due to 

computational cost considerations. In design optimization of a complex system, sub-optimization problems are often 
solved within the system level optimization. Consequently, the optimization results are usually a noisy function of 
the parameters of the design problem. When a single optimization is flawed, it may be difficult to find the problem 
due to the ill-conditioning of the design space. However, when many optimization results are available such as 
building a response surface model based on the sub-optimization results, statistical models can be used to estimate 
the average error of the multiple optimization runs. 

A structural optimization procedure was used to obtain accurate wing structural weight (Ws) for various 
configurations of a high-speed civil transport (HSCT). The structural optimization was solved as a sub-optimization 
within a configuration design optimization of the HSCT, but it resulted in noisy Ws in terms of the aircraft 
configuration variables. The structural optimization was performed a priori on a carefully selected set of HSCT 
configurations to build a response surface model (c.f. Ref. 1) of Ws. An advantage of the response surface approach 
is that it naturally smoothes out the noise in the Ws data. However, the standard assumption of the response surface 
fit, that the error is normal with zero mean, may not apply well to optimization errors, which tend to be one-sided2.  
In addition, a data driven model of the optimization error can be useful to consider the effects of the error in a robust 
design study. 

Numerical optimization errors are deterministic in that computer simulation gives the same output for the 
same input for repeated runs. However, an optimization procedure can be very sensitive to small changes of input 
parameters. For example, the structural optimization of the HSCT may result in substantially different Ws for slightly 
different HSCT configurations. Therefore, a probabilistic model can be useful to characterize the noise error of 
optimization problems. Moreover, other input parameters such as the convergence criteria or the initial design can 
affect the accuracy of the optimization procedure. The effect of the initial design point is of particular interest 
because one can easily change it and repeat the optimization to improve a possibly erroneous run due to 
convergence difficulties or local optima. We apply probabilistic models to a set of structural optimization runs of the 
HSCT intended for a Ws response surface model, to estimate mean and standard deviation of the optimization error.  



 
2. Noise Error from Structural Optimization 

 
The application problem in this paper is a HSCT design model developed by the Multidisciplinary Analysis 

and Design (MAD) Center for Advanced Vehicles at Virginia Tech. A simplified version of the problem is used 
following Knill et al.3 with five configuration design variables including wing root chord, wing tip chord, inboard 
leading edge sweep angle, airfoil thickness ratio, and fuel weight. Takeoff gross weight is minimized at the system 
level as a function of the five configuration variables. To improve wing weight equations based on historical data, 
GENESIS4 structural optimization software based on finite element models is used. The structural optimization is a 
sub-optimization below the system level configuration optimization, and wing structural weight (Ws) is minimized in 
terms of 40 structural design variables, including 26 to control skin panel thickness, 12 to control spar cap areas, and 
two for the rib cap areas5. The structural optimization is performed a priori for many aircraft configurations and a 
response surface model is constructed.  For the response surface construction, the five design variables are coded so 
that each ranges between –1 and +1. 

The structural optimization resulted in a noisy Ws in term of the HSCT configuration variables5, 2. Figure 1 
shows Ws response for 21 HSCT configurations generated by a linear interpolation between two extreme designs. 
Design 1 corresponds to (-1, -1, -1, -1, -1) and design 21 corresponds to (1, 1, 1, 1, 1) in a coded form of the HSCT 
configuration variables. Case 0 corresponds to the original results we obtained by using the default convergence 
criteria of GENESIS. A conservative structural design from a previous study is used as an initial design point for all 
of the structural optimization runs of Case 0. Designs 13, 16, and 19 of Case 0 seem to have relatively large errors. 
For Case 1, an initial design point perturbed from that of Case 0 was used, by multiplying each of the 40 structural 
design variables by factors between 0.1 – 1.9. It is seen that the results are still noisy. One interesting observation is 
that the noise error tends to be one-sided (greater Ws than the true). That is because the noise error comes from 
incomplete minimization due to local optima or convergence difficulties.  

Efforts have been made to reduce the error of the HSCT structural optimization. Papila and Haftka6 
repaired erroneous optimizations by changing optimization algorithms or trying different initial designs. After 
extensive experiments with convergence criteria, it was found that the most effective way to improve the 
optimization was to tighten one of the convergence criteria7. However, it was not trivial to choose the right 
convergence tolerances, and the tightened convergence tolerances more than doubled the cost of the optimization. 

The authors7 applied probabilistic models to the optimization error. The Weibull distribution successfully 
modeled the error for several cases of different GENESIS convergence criteria. In addition, an indirect approach 
was devised, using two sets of optimization results for different convergence criteria. The indirect approach gave 
reasonable estimates of the average error without requiring high-fidelity optimization runs. In this paper, we will 
show that the Weibull model is useful for optimization runs with different initial design points and that the indirect 
approach can be applied to optimization runs with two different initial designs. Changing the initial design of the 
optimization is straightforward and may have a computational advantage over tightening the convergence criteria. 
 To study the error in Ws from the structural optimization, we used a mixed experimental design of 126 
HSCT configurations6, intended to permit fitting a quadratic or cubic polynomial of the five-variable HSCT design 
problem to create a Ws response surface approximation. Optimization error, e, is defined as  
 

e = Ws - Ws
t,            (1) 

 
where Ws is the calculated optimum and Ws

t is the true optimum, which is unknown for many practical engineering 
optimization problems. To estimate Ws

t, we need to perform high-fidelity optimization runs that can be expensive. 
We estimated Ws

t by taking the best of repeated GENESIS runs: Case 0 and Case1 with different initial designs as 
described above and additional six cases with different sets of convergence criteria7. The optimization error, e, was 
calculated for each of the 126 HSCT configurations. Then, the mean and standard deviation of e were estimated for 
each case of different GENESIS parameters, 
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where n (= 126) is the sample size. Table 1 shows that the average errors were not much different between Case 0 
and Case 1, 5.51% and 5.34%, respectively. In terms of computational cost, Cases 0 and 1 took almost the same 
CPU time per GENESIS run since the only difference is the initial design point. 
 
3. Probabilistic Modeling of Optimization Error 
 
 With multiple structural optimization runs available, we can obtain a data driven model of the optimization 
error by fitting a probability distribution. We use the maximum likelihood estimation (MLE) method for the 
distribution fit8. In MLE, we find a vector of distribution parameters, β, to maximize the likelihood function, l(β), 
which is a product of the probability density function, f, over the sample data xi (i = 1, …, n), 
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The quality of fit is checked via the χ2 goodness-of-fit test8, which is essentially a comparison of histograms 
between the data and the fit. The test results will be given in terms of the p-value. A p-value near one implies a good 
fit and a small chance that the data is inconsistent with the distribution. Conversely, a small p-value implies a poor 
fit and a high chance that the data is inconsistent with the distribution. 
 Considering the one-sidedness of the optimization error, we selected the Weibull distribution8, 9, which is 
defined by a shape parameter, α, and a scale parameter β. The probability density function (PDF) of the Weibull 
distribution is 
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Once we obtain the fit parameters, α and β, estimates of mean and standard deviation of e can be calculated from 
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where Γ is the gamma function.  
 
 
4. Direct Fit of Probabilistic Model to Optimization Error 
 

A straightforward approach to finding a probabilistic model of the optimization error is to fit a model 
distribution to e, calculated from Eq. 1. This approach is denoted a direct fit. The Weibull model was fitted to Case 0 
and Case 1, and the results are summarized in Table 2. p-values of the χ2 test indicated a poor fit for Case 0, while 
the fit was acceptable for Case 1 with a 5% confidence level. Figure 2 compares histograms of the optimization 
error, e, with the predicted frequencies from the fitted Weibull models. It is seen that the error distribution has a 
mode near zero and decreases rapidly for large error. The Weibull fits give reasonable descriptions of the error 
distribution for both Case 0 and Case 1, although the χ2 test implied an unsatisfactory fit for Case 0.  

The average errors estimated from the fit, 
fitµ̂ , were in reasonable agreements with 

dataµ̂ : -5.63% and –8.54% 

discrepancies for Case 0 and Case 1, respectively. The estimates of standard deviation from the fits, 
fitσ̂ , were less 

accurate particularly for Case 1, with a discrepancy of –14.6% and –23.4%, for Case 0 and Case 1, respectively. 
Figure 3, comparing cumulative frequencies of e between the data (bars) and the direct fit (solid line), indicates that 
the Weibull model is suited for the optimization errors for both Case 0 and Case 1. As a result, we obtained data 
driven probabilistic models for the optimization error. 

 



 
5. Indirect Fit of Probabilistic Model to Optimization Error 
 

The direct fit approach is expensive because Ws
t needs to be estimated from higher-fidelity optimizations 

with tightened convergence criteria. Moreover, high-fidelity optimizations are not always available. Alternatively, 
Kim et al.7 used an indirect fit approach of finding a distribution of differences of optimal values from two different 
convergence settings. For the indirect fit, however, it is not necessary to use different convergence parameters. The 
approach can be extended to using different initial points (e.g., Cases 0 and 1). The basic idea of the indirect fit is to 
generate two sets of optimization results with different optimization parameters such as convergence criteria or 
initial design, which can affect results of the optimization. Changing convergence settings may require expert level 
knowledge depending on the optimization software, whereas it is simpler to change initial designs to generate other 
sets of optimization results for many optimization problems.  
 For two optimization results, Ws

1 with optimization parameter setting #1 and Ws
2 with optimization 

parameters setting #2, model the optimization errors as random variables s and t,  
 

  s = Ws
1 – Ws

t                 (6) 
  t = Ws

2 – Ws
t.        

 
To remove Ws

t from the equation, the difference of s and t is defined as the optimization difference x, 
 

     x = s – t = (Ws
1 – Ws

t) – (Ws
2 – Ws

t) = Ws
1 – Ws

2.               (7) 
 
If s and t are independent, the probability density function (PDF) of x can be obtained by a convolution of the PDF 
functions g(s; β1) and h(t; β2), 
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Note that the optimization difference x is easily calculated from Ws

1 and Ws
2 that are readily available. Then, we can 

fit Eq. 8 to the optimization differences via MLE. 
 The indirect fit was performed using the Weibull distribution on the pair of Cases 0 and 1. Recall that 
relatively large perturbations (multiplication factors between 0.1 – 1.9) were applied to the initial design point. The 
large perturbation was intended to reduce dependence (correlation) of Ws between Case 0 and Case 1. The χ2 test on 
the optimization difference indicated a reasonable fit with a p-value of 0.5494. From the indirect fit, we estimate the 
mean and standard deviation of the optimization error of each of the two cases involved. Table 3 shows that the 
estimates of mean error by the indirect fit, 

fitµ̂ , have reasonable agreements with 
dataµ̂ : -14.7% and –19.4% 

discrepancies for Case 0 and Case 1, respectively. The estimates of standard deviation, 
fitσ̂ , are also in a reasonable 

match with 
dataσ̂ : 12.0% and 0.704% discrepancies for Case 0 and Case 1, respectively.  

Figure 3 shows that the cumulative frequencies predicted by the indirect fit are in reasonable agreement 
with the data, and the indirect fits are comparable to the direct fits. The indirect approach is computationally more 
efficient than the direct fit because it does not require expensive higher-fidelity optimization runs. We extended the 
indirect approach by utilizing a simpler procedure of using different initial design points, and the Weibull model 
allowed us to estimate well the mean and standard deviation of the error from two sets of low-fidelity optimizations. 
The results demonstrate a usefulness of the probabilistic model of the optimization error. 



 
6. Concluding Remarks 
 

The structural optimization procedure for our HSCT design studies produced inaccurate optimal wing 
structural weight (Ws) because of convergence difficulties. Probabilistic models were applied to the noise error in 
Ws, by utilizing multiple optimization runs originally used for a response surface model. The Weibull model was 
successfully fit to the optimization errors and gave reasonable estimates of average errors. As a result, we obtained a 
data-driven probabilistic model of the optimization error. 

An indirect fit approach using differences between two optimization results enabled us to estimate the 
average errors of low fidelity optimizations without performing expensive high-fidelity optimizations. We extended 
the indirect fit approach by using different initial design points instead of different convergence settings. Since 
initial design points are optimization parameters that are simple and straightforward to change, one may apply the 
indirect approach to estimate errors of various optimization problems.  
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Table 1: Average error of the HSCT structural optimization runs on 126 HSCT configurations for two cases with 
different initial design points. 

 Case 0 Case 1 
Description Using the original initial point  Using a perturbed initial point from the 

original 
Mean Ws  85340 lb. 85202 lb. 

Mean error  
(Percentage error to the 

true Ws) 

4458 lb. 
(5.51%) 

4321 lb. 
(5.34%) 

Average CPU time on a 
SGI Origin 

75.5 sec. 76.5 sec. 

 
 

Table 2: Results of direct fit of the Weibull model. 
 Case 0 Case 1 

dataµ̂  4458 4321 

fitµ̂  

(discrepancy w.r.t. dataµ̂ ) 

4207 
(-5.63%) 

3952 
(-8.54%) 

dataσ̂  8383 9799 

fitσ̂  

(discrepancy w.r.t. dataσ̂ ) 

7157 
(-14.6%) 

7505 
(-23.4%) 

α 0.6161 0.5646 
β 2891 2415 

p-value of χ2 test 0.0005 0.0925 
 
 

Table 3: Results of indirect fit of the Weibull model. 
 Case 0 Case 1 

dataµ̂  4458 4321 

fitµ̂  

(discrepancy w.r.t. dataµ̂ ) 

3804 
(-14.7%) 

3481 
(-19.4%) 

dataσ̂  8383 9799 

fitσ̂  

(discrepancy w.r.t. dataσ̂ ) 

9393 
(12.0%) 

9868 
(0.704%) 

α 0.4666 0.4262 
β 1659 1236 

p-value of χ2 test 0.5494 
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Figure 1: Noisy Ws response from structural optimization. Case 0 and Case 1 used different initial design points. 
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(a) For Case 0 
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(b) For Case 1 

 
Figure 2: Comparison of histograms of error and direct fits of the Weibull model. 
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(a) For Case 0 
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(b) For Case 1 

 
Figure 3: Comparison of cumulative frequencies between direct and indirect fit of the Weibull model. 

 


