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Chapter 1: Introduction
     The phenomenon known as “wing drop” was identified several years ago and still remains the

source of much curiosity, as well as the motivation for this investigation. Wing drop tendencies

have been noted on several existing aircraft with a variety of configurations, from the F/A-18E/F

to the NASA F-111 TACT.1 Many aircraft encounter a form of wing drop at high angles of

attack, which is not the focus of this investigation. The aircraft mentioned above, in early

development stages, have encountered wing drop at relatively low angles of attack. This results in

unexpected forces in the middle of the operational envelope. Ultimately, the cause of this

phenomenon is asymmetric separation on the wings of the aircraft. The result is an asymmetric

lift producing a sudden and uncommanded rolling moment.2 Considering the fact that each wing

is exposed to relatively similar airflow conditions, it can be assumed that only a slight variation in

flow is causing the sudden increase in the separation region on one wing.

     Investigation of this phenomenon requires a breakdown of the three dimensional components

of the complicated wing. This particular study is focused on the two dimensional airfoil

incorporated in the wing of an aircraft that frequently encountered wing drop in its development

phases. An investigation of the flow characteristics is aimed at the sensitivity of the airfoil to

changes in the encountered flow (i.e. Mach number and angle of attack).

     In particular, the movement of the shock wave is of special interest. The recompression that

occurs across the shock wave is a major contributor to flow separation. A similar airfoil, one from

an aircraft wing that does not exhibit strong wing drop tendencies, was used for comparison

purposes.

     In addition to the comparative study for these two airfoils, it was desired to investigate the role

of the leading edge and trailing edge devices on the airfoil. Control surfaces give a symmetric

airfoil variable camber and increase its performance over a range of design conditions. However,

altering the shape of the airfoil alters the behavior of the shock movement and separation region.
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Of particular interest is the interference of the flow pattern caused by the hinge-lines.3 A

combination of the shock wave and the trailing edge pressure gradient have a tendency to thicken

the boundary layer so that small flap deflections can lead to separation.4 The details of this type of

corner flow analysis can be found in the papers of Mason3 or Chung5. It is the overall behavior of

this separation region that is of interest for this particular study.
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Chapter 2: Airfoil Geometry

Selection from 3D Wing

     To do a two dimensional analysis that would be relevant, it was critical to select an airfoil

directly related to wing drop problems. Three dimensional CFD data provided by the Navy made

it possible to match the geometry of a generic airfoil with one used in an existing, moderately

swept, wing that had exhibited wing drop during early development testing. Figure 1 shows the

separation progression on the upper surface of this wing. The red areas correspond to reversed

axial flow and the blue regions indicate positive axial flow. Note the large increase in separation

between 6o and 8o, indicating a rapid forward movement of the shock together with separation.

There is no guarantee that the blue regions are entirely attached flow, but the assumption is

sufficient for selecting the spanwise position of interest for the two-dimensional investigation. It

is important to note the expansion in the region of separation near the midspan of the wing. An

investigation of the isobars in this region shows that the flow here is essentially unswept. It is the

combination of airfoils that make up this section of the wing that are of interest for this analysis.

A cross section of the spanwise location indicated by the black line in Figure 1 was used to select

the airfoil used for the two dimensional analysis, presented here.

Figure 1:  Directional flow patterns (M = 0.8)
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Description of Airfoil

     The airfoil used in this particular section of the wing closely resembles a NACA 65A series

airfoils with a thickness to chord ratio of 5.7% (NACA 65A005.7). The flap schedule used in this

CFD code was matched with that for a wind-up-turn maneuver. It is under these conditions that

wing drop was found for early configurations of this particular aircraft. For this spanwise position

the leading edge is deflected down approximately 10o and the trailing edge is deflected down 9o.

The original, uncambered airfoil was obtained by means of the airfoil generating code known as

LADSON6.

     The output from this code includes a list of the two-dimensional airfoil coordinates.  These

coordinates were then altered near the leading and trailing edge to match the shape of the original

three-dimensional cross section with device deflections. With the aid of a spreadsheet, the

coordinates for the leading 15% of the airfoil were rotated 9o down. Similarly the coordinates for

the trailing 30% of the airfoil were rotated down 10o. With these deflections, as seeen in Figure 2,

the NACA 65A airfoil more closely matched the airfoil extracted from the three-dimensional

wing.

Figure 2. NACA 65A005.7 with deflected surfaces
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Chapter 3: Airfoil Analysis Methodology
     Here we describe the methodology used in the two dimensional analysis.  The size and

coarseness of the grid, the turbulence model, and the convergence sequence are all variables that

must be considered in the validity of any two-dimensional results.

Generating the Grid

    The process of analyzing the two dimensional airfoil began with generating a grid that

encompasses the airfoil. The grid generating package consists of three programs that construct a

C-mesh around the input airfoil coordinates. Gair2 is the first of the codes, which defines the

surface points for the c-mesh. Hyperg2 is then used to solve two equations, one enforcing

orthogonality and the other maintaining constant cell area for a line of cells around the airfoil.

This is the actual grid generating process. The final code, printn, is used to organize the grid

points in a file for visualization.7

     This grid generating code is capable of producing a mesh of any size prescribed by the user.

For the NACA 65A series airfoils, a 480 x 64 cell grid was constructed. This means that the grid

is assigned to 480 cells on the surface of the airfoil, and 64 cells perpendicular to the surface. In

addition to the cells surrounding the airfoil there are also 64x64 cells that make up the wake

region behind the airfoil. A critical option in the input file for the grid generating code deals with

the assignment of the distribution of surface cells. Proper manipulation allows the user to

concentrate the cells in regions of interest. For regions of changing geometry, such as around the

nose, this produces a more accurate analysis. Notice in Figure 3, the concentration of cells around

the nose in comparison to the larger less abundant cells at the mid-chord region, where the

geometry varies in a less abrupt manner.
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Figure 3. Grid for NACA 65A005.7

     Generally, for a turbulent analysis it is desired to have a grid with normal grid points starting

inside the laminar sublayer (y+ < 10, where y+ = yu*/ν). The grid used in this study had relatively

large y+ values for the first gridpoints off the surface, extending up to y+ ≈ 30. When this was

discovered another grid was generated with grid points much closer to the surface of the airfoil.

The new grid had gridpoints ¼ of the distance off the airfoil compared to the original grid. This

produced y+ values within the laminar sublayer, but the results of the calculated pressure

distributions were very similar as seen in Figure 4. There was a slight variation in the quantitative

results, but the behavior of the changing pressure distribution was similar. Since the focus of this

study is on the shock behavior, the original grid is sufficient for the investigation.
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Figure 4. Grid comparison through CP distributions, showing the
effect of assigning grid points within the laminar sublayer

Flow Analysis

    FLOMG8, a two dimensional analysis code provided by NASA Langley, was used to produce

the aerodynamic data for all airfoils. This code is “based on central differencing and Runge-Kutta

time stepping. It uses a multigrid method and variable coefficient implicit residual smoothing for

convergence acceleration.”8 FLOMG approximates the flow based on the solutions of unsteady

Euler or Navier-Stokes equations. There are several options for running the FLOMG code. It can

be run using a thin layer Navier-Stokes solution, or turbulence models can be incorporated. The

program can use either the Baldwin-Lomax9 or Johnson-King10,11 turbulence model. The results in

this report were obtained by using the former of these two models.

     As mentioned above, FLOMG uses a multigrid method to accelerate convergence. There were

three multigrid levels used for this particular analysis. Limitations of this program in converging

for relatively high Mach numbers and angles of attack prevented us from obtaining solutions for

some conditions. Convergence can be interpreted through several variables in the output files.

The easiest variable to follow in convergence is the residual itself, which should be decreasing to

zero assuming the approximation is converging on a solution. Convergence of the residual should

be accompanied by other variables, such as the lift coefficient. If the lift coefficient is not

converging to a constant value,  then a converged solution has not been found. Figure 5 shows the

difference between a converging and non-converging case. Convergence time varied with each

case, and depending on the complexity of the flow, would take anywhere from twenty minutes to

just over an hour to produce results. These times estimates are based on the performance of an
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Origin 2000 with 16 195mHz MIPs R10000 CPUs, and 16 250mHz CPUs. This is a computer of

the Virginia Tech ICAM (Interdisciplinary Center for Applied Mathematics) computer system,

which was used to process the FLOMG code. With the output from FLOMG and the post

processing code, pltcon, it is possible, using Tecplot , to produce velocity profiles, streamtraces,

Mach number variation, pressure profiles, and density contours for any given airfoil.

Figure 5. FLOMG Output: convergence vs. non-convergence

Turbulence Models

     It was stated in the previous section that the FLOMG code contains the option of using a

Baldwin-Lomax or Johnson-King turbulence model. The significance of which turbulence model

is used can not be determined without data from each case to compare. W.K. Londenberg12,13
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published the results of an evaluative study on turbulence models in 1993. Included in

Londenberg’s study were the Baldwin-Lomax and Johnson-King turbulence models. Based on

pressure distributions, both turbulence models produced results that “compared well” with the

experimental data of an undeflected airfoil. However, once the control surfaces were deflected,

the Baldwin-Lomax model produced less favorable results.

     Terry L. Holst14 showed in a transonic airfoil study that the Johnson-King turbulence model is

capable of producing an upper surface pressure distribution very similar to that of experimental

data for the NACA 0012 airfoil. Holst shows that the Baldwin-Lomax model fails to accurately

predict the shock location on transonic airfoils, placing it consistently further aft than the data for

the NACA 0012 airfoil. Holst notes in his study that one drawback of the Johnson-King model is

an underprediction in the lower surface pressure distribution. As a result, the lift coefficient is low

and drag polar results are actually less favorable then those predicted by the Baldwin-Lomax

model. The lower surface pressure distribution and the drag polar plots are less significant than

the accuracy in predicting the upper surface pressure distribution, at least in this particular

investigation. It is the movement of the shock on the upper surface that is of primary concern.

Therefore, the Johnson-King model, based on the studies of Londenberg, Holst, Johnson and

Coakley11, appears the be the better choice of these two turbulence models for a two dimensional

analysis focused on the shock behavior.

     Using FLOMG, two-dimensional data was collected for several cases of the 65A series airfoil

using both the Baldwin-Lomax and the Johnson-King turbulence model. Overall, the results

provided by the two turbulence models are comparable. There is a slight variation in the shock

location, seen in Figure 6, as can be expected based on the studies of Holst, and Londenberg.

Figure 6. Turbulence model comparison
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   Without experimental data to compare, it is impossible to draw any conclusion as to which

turbulence model is producing the most accurate results. Based on the comparison shown in

Figure 6, it is safe to assume that for this airfoil both models produce qualitatively similar results.

The variation, as mentioned above, is minimal and does not effect the pattern of the shock

movement. If both turbulence models display a similar shock behavior, it is irrelevant which

model is used for this investigation. However, for our study we could not get FLOMG to

converge using the Johnson-King model at the higher Mach numbers. Thus, in this study we used

the Baldwin-Lomax turbulence model.
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Chapter 4: Investigation of Flow

Characteristics for NACA 65A005.7 Airfoil

     To compare a two-dimensional analysis with the three-dimensional case, it is necessary to

match certain characteristics, preferably the lift coefficient. Analyzing the two-dimensional airfoil

at the same Mach number and angle of attack as those of the three-dimensional case would not

produce similar results. The lack of 3D effects requires that the Mach number and angle of attack

be adjusted to produce flow characteristics (i.e. CP and Cl) similar to the three-dimensional

values. Figure 7 shows the three-dimensional pressure distribution in comparison with the two

dimensional CP distributions at select Mach numbers and angles of attack. Notice the difference

between the three-dimensional CP
 profile and the two-dimensional results for M=0.8 and α=6o.

Clearly it is not acceptable to simply expose the two-dimensional airfoil to the same conditions as

the three-dimensional wing. Through comparison, it was found that the two-dimensional airfoil

exposed to Mach numbers from 0.7 to 0.8 and α’s varying from 0o to 2o produced Cl values

similar to the section lift coefficient extracted from the three-dimensional wing. Obviously we

could pick a constant angle of attack and find the corresponding Mach number that produces a

matching Cl value, but as seen in Figure 1 of Chapter 2 the separation increase on the wing occurs

as a result of increasing angle of attack. Therefore, it was desired to focus primarily on a Mach

number or range of Mach numbers that produce a lift coefficient similar to the three dimensional

case at varied angles of attack.
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Figure 7: 2D and 3D CP’s for the same conditions, illustrating
the need to use “equivalent” 2D M and α

     It is clear from Figure 7 that the two-dimensional airfoil  is producing a Cl higher than the

corresponding three-dimensional case.  This variation is interesting because it is due to the chord-

wise location of the shock.  It is the position of the shock and its migration that are of particular

interest in this investigation.

     The most important characteristic of the airfoil for this study was the movement of the shock

wave as Mach number and angle of attack varied.  The significance here is due to the fact that the

sudden pressure recovery across a shock wave often results in separated flow.  Therefore it is

fairly easy to follow the separation on an airfoil surface by studying the migration of the shock

wave.  In this case, interest is focused on the possibility of a sudden shock shift forward or in

essence an airfoil that is unusually sensitive to minor flow changes in a specific regime.  For

instance, does the 5.7% thick 65A series airfoil tend to display unconventional characteristics for

conditions between M=0.7 and M=0.8.  With this in mind, it seems most reasonable to examine

the changing pressure distributions for the 5.7% airfoil.

     Figure 8 shows the behavior of CP and Cf with respect to increasing angle of attack (α) for

M=0.7.  For each α the initial expansion occurs at the same chordwise position, this is the

location of the hinge-line for the leading edge control surface.  This is the beginning of the

supersonic flow region on the upper surface of the airfoil.  The flow, in each case, remains

supersonic for some stretch across the upper surface, until it encounters the shock wave where it

returns to subsonic speeds.  This shock location is clearly indicated in the CP plots by the sharp

recompression at the back side of the pressure “plateau”.
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Figure 8. Cp and Cf vs α (M0.7)

     For the α=0o case the shock is just aft of the leading edge hinge-line containing the supersonic

flow to a fairly small region.  As α increases the shock moves aft fairly ‘quickly’.  At α=2o the

shock is almost as far back as the trailing edge hinge-line.  One thing to notice is the expansion

and recompression that occurs at the hinge-line for the trailing edge flaps.  This is important for

two reasons.  It demonstrates the effect that the hinge-line has on the flow over the airfoil surface.

Non-separated flow will not pass over the discontinuity formed at the joint without being

affected. Another reason that this characteristic is significant is the fact that it is a clear indication

that the flow is not separated at this point. If the flow were separated by the shock in any of these

cases it would pass over this hinge-line without the expansion and recompression that is prevalent

here, in other words, if a large region of separated flow occurs, it will not “see” the hinge-line.

     As mentioned above, the flow remains attached in each case of Figure 8. This is verified by

the skin friction plot on the right hand side. Sharp drops in the skin friction value correspond to

the flow passing across the shock wave. The fact that Cf  remains positive for all three cases

verifies that the flow does not separate under these conditions.

     Slightly increasing the Mach number(M = 0.725) for these angles of attack results in the

pressure distribution seen in Figure 9. The shock has continued to shift towards the aft of the

airfoil. For α = 0o the shock is still only as far back as mid chord, and the flow remains attached

as it passes through this shock. What is starting to become prevalent here can be seen in the

location of the shock for the 1o and 2o cases. For these angles of attack, at M = 0.725, the shock

has migrated all the way to the trailing edge hinge-line. Here it remains fixed for both cases.
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Figure 9. CP and Cf vs α (M0.725)

     The skin friction plot is beginning to show regions of separated flow at this Mach number.

For all three cases there is some sign of separation, and in each case it occurs immediately

following the pressure recovery at the trailing edge hinge-line.  For the α = 0o case the flow is

able to reattach on the flap, but for the higher angles of attack, the flap is submerged in separated

flow.

     When the Mach number is to increased to 0.75, the shock for the α = 0o case moves all the

way to the hinge-line of the trailing edge, as can be seen in Figure 10.  Here it becomes fixed and

the pressure distributions for all three angles of attack begin to look very much the same.  The

shock has not moved for the 1o and 2o cases with respect to the previous Mach number.  The flow

at this Mach number is entirely separated on the upper surface of the flap for all three angles of

attack.

Figure 10. CP and Cf vs α (M0.75)
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     Figure 11 and Figure 12 verify that the pattern seen in the previous plots continues for even

higher Mach numbers.  The most significant characteristic to notice in these plots is the fact that

the shock has become stationary at the trailing edge hinge-line.  The result of this situation is a

loss of effectiveness for the trailing edge flap.  The separation on the upper surface of the flap is

clear in the skin friction plots of Figure 9 through Figure 12.  Even more interesting is the fact

that there is no indication that the shock may shift forward and allow the flow to separate forward

of the hinge-line.

Figure 11. CP and Cf vs α (M0.775)

Figure 12. CP and Cf vs α (M0.8)

     The skin friction plots show fairly clearly where the flow is separated, and if the flow remains

separated. However, it is helpful to see the effect the separation is having on the flow. The

streamtrace plots seen in Figure 13 show how the flow has changed due to the separated region

on the flap surface. Notice how the streamlines are pushed upward as the separation grows.
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Figure 13. Streamlines over the trailing edge flap

     The previous data summarizes the flow characteristics in response to the variation of angle of

attack, for fixed Mach numbers.  Even though the data has already been plotted in the previous

plots, it is necessary to compile and compare the behavior of the flow with respect to changing

Mach number.  Holding angle of attack constant and varying the Mach number reveals similar

results to that shown above.

     Figure 14 shows the effect of Mach number at α=0o. Even for an angle of attack as low as 0o,

only the two lowest Mach numbers produce a shock that is located forward of the trailing edge

hinge-line. The CP distributions for M0.7 and M0.725 show the migration of the shock wave

towards the trailing edge. Again, once the shock wave reaches the trailing edge hinge-line it

becomes fixed and is altered little by increasing Mach number. The Cf plot on the right hand side

reveals the development of separation on the flap for Mach numbers greater than 0.725. There

appears to be no separation occurring in front of the trailing edge hinge-line.

Figure 14: CP and Cf  vs M (α = 0o)
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Figure 15. CP and Cf vs M (α = 1o)

Figure 16. CP and Cf vs M (α = 2o)

     Figure 15 and Figure 16 confirm conclusions from Figure 14. The shock continues to shift

rearward on the surface of the airfoil, and eventually all cases have a Cp profile similar to the

ones seen in Figure 16. The large region of supersonic flow covers the entire section of the airfoil

between the leading and trailing edge hinge-lines. As for separated flow, it appears that above an

α of 0o
 the only flow that remains attached for the entire airfoil is the M0.7 case. All higher Mach

numbers show separated flow through the negative Cf values. It is important to notice that once

again all separation is confined to the surface of the flap, or aft of the trailing edge hinge-line.
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Chapter 5: Airfoil Comparison
     Standing alone, the data from the NACA 65A005.7 airfoil does not provide a complete story

on the relative sensitivity of the airfoil. To gain more conclusive information, it is necessary to do

a comparative study of the airfoil. In order to limit the number of variables, the airfoil that was

extracted for comparison purposes was also from a similar moderately swept wing. The

comparative airfoil is a 3.5% thick NACA 65A series airfoil with a leading edge deflected at

6.34o and a trailing edge deflected at 8.4o. These device deflection angles were obtained from a

control log written for this particular aircraft. Figure 17 shows the two 65A series airfoils.

Figure 17: NACA 65A series airfoils

       The airfoils shown in Figure 17 are not shown to scale, the thickness is exaggerated to better

show the thickness and control surface differences. With this in mind it is important to note that

the ‘corners’ formed at the control surface hinge-lines are not as profound as they appear in this

figure. However, the effects of these geometric features on the airflow are significant, as seen in

the previous chapter.
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     The geometry of the airfoils alone gives some indication that there will be a notable difference

in the behavior of the flow pattern.  This is verified by examining the CP distributions for both

airfoils at several angles of attack and Mach numbers.

     Figure 18 introduces the flow characteristics of the 3.5% airfoil and its relation to that of the

5.7% airfoil. The first difference that one might notice is the behavior of the flow at the leading

edge of the airfoil. The thinner airfoil obviously has a sharper leading edge than that of the 5.7%

airfoil, in addition to a smaller deflection angle of the leading edge control surface. As a result,

there is a more dramatic expansion and recompression near the leading edge.  Similar to the 5.7%

airfoil, the comparative airfoil has a notable pressure expansion at the leading edge hinge-line,

followed by a recompression at some point downstream. As discussed in the previous chapter, the

shock and thus the recompression is progressing towards the trailing edge of the airfoil as the

angle of attack is increased.   

Figure 18. CP and Cf vs. α comparison (M0.7)

     As Mach number is increased, the effect on the thinner airfoil is similar to that of the 5.7%

airfoil, as shown in Figure 19. The supersonic region in front of the shock wave is becoming

noticeably larger as the shock is pushed aft. As a result, the airfoil is producing a larger Cl value.

There is a sharp expansion and recompression located at the trailing edge hinge-line of the 3.5%

airfoil. For α’s  of 0o and 1o there appears to be a slight separation bubble behind the trailing edge

hinge-line. As the shock nears the hinge-line, the expansion/recompression here is reduced, and

separation is nonexistent.



20

Figure 19. CP and Cf vs α comparison (M0.725)

The plot displayed in Figure 20 shows what might be called the ‘fully developed’ CP distribution

for the 5.7% airfoil.  The shock has become fixed at the trailing edged hinge-line for all cases of

α that are higher than 0o. In addition, the flow on the trailing edge flap has become separated. In

comparison, the thinner airfoil for these conditions exhibits a CP profile very similar to the 5.7%

results seen in Figure 19, and it’s progression is unmistakably the same.  The Cf plot in Figure 20

for the 3.5% case is beginning to indicate separation in the flow over the trailing edge control

surface.
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Figure 20. CP and Cf vs. α comparison (M0.75)

     The progression for the thinner airfoil is unmistakable, and the final result is nothing less than

could be expected. In Figure 21 the CP distribution for the 3.5% airfoil indicates that that the

shock  has migrated to the trailing edge hinge-line, and remains fixed for all three angles of

attack. To confirm the stability of the shock at this position, Figure 22 shows the results for an

even higher Mach number. In this figure the results for the 5.7% and 3.5% airfoil exhibit an

unmistakable similarity in pressure distribution across the surface and flow separation on the

trailing edge flap.
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Figure 21. CP and Cf vs. α comparison (M0.775)

Figure 22. CP and Cf vs. α comparison (M0.8)

     It is difficult to draw any significant conclusions from this particular comparison, primarily

because there is no sign of unconventional behavior or dramatic difference between the two

airfoils. The main variation in the behavior of the flow over the two airfoils is in the rate of
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development. The flow characteristics of the thinner airfoil at given conditions resemble

characteristics of the 5.7% airfoil at a lower Mach number or angle of attack. The thicker, 5.7%

airfoil reaches the “fully developed” state at a lower Mach number and angle of attack than the

3.5% airfoil. Particularly, the migration of the shock on the thicker airfoil is a step ahead of the

thinner airfoil. This variation could be contributed to something as simple as the thickness

difference in the airfoils. Regardless, this is not the level of variation that is of interest. Consistent

variations are not of concern to this investigation, it is abrupt or opposing characteristics that are

of interest.
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Chapter 6: Significance of Control

Surface Deflections on Shock Movement

     The progression of the CP distributions shown from the two-dimensional analysis have not

resembled the data from the 3D CFD analysis. The CP distribution for the NACA 65A airfoils

described in chapter 4 have maintained an aft moving shock wave that becomes fixed on the

trailing edge hinge-line. The result is a region of separation restricted to the trailing edge control

surface.  This is clearly not what has been exhibited by the three-dimensional analysis of the

wing. A plot of the shock migration with respect to alpha in Figure 23 reveals the opposing

results.

Figure 23. 2D vs. 3D shock movement
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     From Figure 23 it is clear that something significantly different is occurring between the two-

dimensional and three-dimensional cases.  One thing that can not be ignored is the fact that the

shock continually becomes fixed at the trailing edge hinge-line for the two-dimensional cases.

This occurrence sparks an interest in the effect of the trailing edge deflection. The leading edge

and trailing edge control surfaces give the basic symmetric airfoil camber. In comparison an

analysis was done on the NACA 65A005.7 airfoil without deflections.

     Figure 24 shows the relation between the uncambered and cambered airfoils used in the

analysis. Note the trailing edge hinge-line. The figure shown here is not to scale, the thickness is

exaggerated to emphasize the deflections.

Figure 24. NACA 65A005.7 with and w/o deflections

     Several cases were examined for the uncambered model of the airfoil. The results are plotted

in Figure 25 and summarize the behavior without deflected surfaces.  At low angles of attack, the

shock begins to move steadily aft on the tail of the airfoil.  The behavior is similar to that of the

cambered case, at least until the angle of attack reaches 6o.  For alphas greater than 6o there is a

noticeable change in the shock migration. At this point the shock is actually moving forward on

the airfoil.  Obviously there is no hinge-line on this airfoil, and the shock does not become fixed

at one location.
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Figure 25. CP & shock behavior for NACA 65A005.7 w/ no deflections (M0.8)

     These results indicate a shock movement opposing that which has been exhibited by the

original airfoil with flap deflections. In an attempt to understand this difference, the streamtraces

were examined for select cases, as seen in Figure 26.

Figure 26. Streamtraces for cambered and uncambered airfoils
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         The first thing one may notice about the comparison in Figure 26 is the difference in the

angles of attack used for the two airfoils. The reason for this is based on the location of the shock

as seen in Figure 27. At this Mach number the shock on the cambered airfoil has become fixed at

the trailing edge hinge-line for alphas as low as 0o. Similarly the shock on the uncambered airfoil

reaches its aftmost position around an alpha of 6o. In other words, it was desired to compare the

streamtraces of the cases where the shock has reached its aftmost position.  For the cambered

airfoil, this occurs around α=0o, 1o and 2o, for the uncambered airfoil it occurs around α=6o, 7o

and 8o.

Figure 27. Cp comparison for camber & no camber

        The reason for investigating the streamtraces displayed in Figure 26 is to gain an

understanding of the forward migration in the shock on the uncambered airfoil. Obviously as the

angle of attack is increased for these airfoils, the separation region grows. It is visible in Figure

26 that the thickness of the separation bubble is becoming larger, and the inviscid flow is forced

upward. However, comparing the cambered and uncambered airfoil shows that the inviscid flow

on the upper surface of the uncambered airfoil is effected more dramatically than that over the

cambered airfoil.

     As far as the inviscid flow is concerned, the increase in the size of the separation bubble is

nothing more than a shape change, or an altered geometry. Since the separation bubble is

increasing on both the cambered and uncambered airfoil, why is the shock moving forward only

on the uncambered airfoil? The answer may lie in the relativity of the shape change.  It may help
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to examine the streamtraces with respect to a line drawn horizontal from the maximum aft

location of the shock, as in Figure 28.

Figure 28. Cambered and uncambered airfoils

     If this line were visualized in the plots of Figure 26, it would be clear that the separation

region has a greater effect on the inviscid flow above the uncambered airfoil. With the flap

deflected downward, there is an initial low pressure region encountered by the inviscid flow. As

the separated region grows, the streamlines approach the horizontal line. As a result, the inciscid

flow does not encounter the low pressure region caused by the deflected surface, and the effect on

the shock location is minimal. As for the uncambered case, the increasing separation region rises

above the horizontal line and causes the inviscid flow to push upwards, and the separation moves

forward. The effect is visible in the streamtraces of Figure 26. The inviscid flow encounters the

separation region as a ‘hump’ in the geometry. As a result, the shock is pushed forward.

     The concept here is relatively simple, but the conclusion is profound.  This behavior is nothing

new, and the shock movement is as expected, but the implication is of interest. The fact that the

shock doesn’t move forward of the hinge-line in the two-dimensional analysis is an indication

that the forward migration of the shock seen in the three-dimensional case is primarily a three-

dimensional phenomenon. From the results shown in this chapter, it appears that the only way

that the shock could jump forward of the trailing edge hinge-line would be for the flow to be

forced to separate in front of the hinge-line. Of course, this is a two dimensional analysis.  For a

three-dimensional wing, spanwise flow can separate and alter the two-dimensional results.
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Chapter 7: Conclusion
     It’s easy to disregard the results of a two-dimensional analysis on the basis that in a wing the

flow is entirely three-dimensional. However, the purpose of this investigation was an attempt to

isolate the source of the abrupt wing stall. The two-dimensional airfoil is a key component in the

wing, and its characteristics remain prevalent even in the three-dimensional wing, especially

considering the low sweep and two-dimensional type isobars. Therefore, if the airfoil used in the

wing is prone to abrupt shock movements, the wing will likely retain the same characteristics.

     The NACA 65A series airfoil of 5.7% thickness did not exhibit any tendency to abrupt shock

movement.  The aft movement of the shock was steady with increasing Mach number or

increasing angle of attack.  Supercritical expansion at the hingeline of the leading edge control

surface is prevalent for all conditions.  Following the expansion in each case is a sharp pressure

recovery identifying the location of the shock.  Eventually, as the shock shifts rearward, it

becomes fixed on the trailing edge hingeline. An understanding of this behavior may be found in

the work of Mason3, but regardless of the explanation, this is where the shock remains as the flow

separates over the flap.

     In comparison with a similar airfoil, one extracted from a wing which does not exhibit wing

stall characteristics, the results show similar patterns, but at different flow conditions. The shock

behavior on the two airfoils is very similar, with the main difference most likely the result of

thickness variation. In both cases, the shock eventually migrates to the trailing edge hingeline,

where it becomes fixed for a reasonable range of Mach numbers and angles of attack. It can be

concluded from this comparison, that the NACA 65A005.7 airfoil is not exceptionally sensitive to

shock movement. There is no evidence of abrupt or opposing characteristics between the two

comparative airfoils.

        The fact remains that there is a definite disagreement between the motion of the two-

dimensional shock and the three-dimensional shock (see Figure 23). An understanding of this

difference was obtained from the comparison between the 5.7% airfoils with and without
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deflected control surfaces. The deflection of the trailing edge flap allows the separation region to

grow with a minimum effect on the upper surface inviscid flow. Typically the inviscid flow

encounters a separation bubble as a shape change on the airfoil. As a result the shock in front of

the separation region is pushed forward as the separation region grows. With the trailing edge

deflected, the effect on the inviscid flow is reduced and the shock remains at the trailing edge

hingeline. This does not explain why the shock behaves differently for the three-dimensional

case, but it verifies that the forward movement of the shock is a three-dimensional phenomenon.
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