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Appendix A Geometry for Aerodynamicists
Aerodynamicists control the flowfield through geometry definition, and are always interested in
possible geometric shapes that would be useful in design. This appendix provides the detailed
definition of many of the classic shapes frequently specified in aerodynamics. It is not
encyclopedic. Section A.1.1 gives some other sources for airfoils.

 A.1 Airfoil Geometry

 The NACA Airfoils

The NACA airfoils were designed during the period from 1929 through 1947 under the direction
of Eastman Jacobs at the NACA’s Langley Field Laboratory. Most of the airfoils were based on
simple geometrical descriptions of the section shape, although the 6 and 6A series were
developed using theoretical analysis and don’t have simple shape definitions. Although a new
generation of airfoils has emerged as a result of improved understanding of airfoil performance
and the ability to design new airfoils using computational methods, the NACA airfoils are still
useful in many aerodynamic design applications. A number of references have been included to
allow the reader to study both the older NACA literature and the new airfoil design ideas. Taken
together, this literature provides a means of obtaining a rather complete understanding of the
ways in which airfoils can be shaped to obtain desired performance characteristics.

The NACA airfoils are constructed by combining a thickness envelope with a camber or mean
line. The equations that describe this procedure are:

xu = x − yt x( )sinθ
yu = yc x( ) + yt x( )cosθ

(A-1)

and
xl = x + yt x( )sinθ
yl = yc x( ) − yt x( )cosθ

(A-2)

where yt(x) is the thickness function, yc(x) is the camber line function, and

θ = tan−1 dyc
dx

⎛
⎝⎜

⎞
⎠⎟

(A-3)

is the camber line slope. It is not unusual to neglect the camber line slope terms in Eqns. A-1 and
A-3. This simplifies the equations and makes the reverse problem of extracting the thickness
envelope and mean line for a given airfoil straightforward.

The primary reference volume for all the NACA subsonic airfoil studies remains:

Abbott, I.H., and von Doenhoff, A.E., Theory of Wing Sections, Dover, 1959.

The following paragraphs provide a brief history of the development of the NACA Airfoils.
References to the development of the NASA advanced airfoils, which were developed from 1966
to approximately 1977 are given below also. The original NACA Reports are now available as
pdf files through NASA, and are well worth reading.
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Primary
Evolution of the NACA airfoils NACA Report Authors Date
1. The 4-digit foils: According to Abbott,     R-460 Jacobs, Ward 1933

Pinkerton found that the thickness and Pinkerton
distribution of the Clark Y and Gottingen 398
airfoils were similar, and Jacobs selected
a function to describe this thickness distribution.
The mean lines were selected to be described
by two parabolic arcs which were tangent
at the position of maximum camber.

2. The 4-digit modified foils: The camber     R-492 Stack and 1934
lines were identical to the 4-digit series, von Doenhoff
and a more general thickness distribution
was defined, which allowed variations in
the leading edge radius and position of
maximum thickness to be investigated.

3. The 5-digit foils: The thickness distribution     R-537 Jacobs, 1935
was kept identical to the 4-digit series, and     R-610 Pinkerton and 1937
a new camber line was defined which Greenberg
allowed for camber to be concentrated near
the leading edge. A reflexed camber line was
designed to produce zero pitching moment,
but has generally not been used. These foils
were derived to get good high lift with
minimum Cm0.

4. The 6-series foils: The foils were designed     R-824* Abbott, 1945
to maintain laminar flow over a large von Doenhoff
portion of the chord by delaying the adverse and Stivers
pressure gradient. The thickness envelope
was obtained using exact airfoil theory,
and no simple formulas are available to describe
the shapes. The camber lines were designed
using thin airfoil theory and simple formulas are
available which describe their shape.

5. The 6A-series foils: To improve the trailing edge     R-903* Loftin 1948
structurally, the 6-series foils were redesigned to
provide sections with simple (nearly straight) surface
geometry near the trailing edge, while maintaining
the same general properties as the original foils.
The camber line can be described by a simple
alteration of the standard 6-series mean line.

These airfoils, in virtually any combination of camber lines and thickness envelopes, can be
constructed using program FOILGEN, described in App. E.
Historical accounts of the NACA airfoil program are contained in:

Abbott, I.H., “Airfoils,” Evolution of Aircraft Wing Design, AIAA Dayton Section
Symposium, March 1980, AIAA Paper 80-3033.

                                                
* Additional section data is contained in NASA R-84, 1958, by Patterson and Braslow.
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and

Jones, R.T., “Recollections From an Earlier Period in American Aeronautics,” Annual
Review of Fluid Mechanics, Vol. 9, pp. 1-11, 1977.

NASA has published two reports describing computer programs that produce the NACA airfoil
ordinates:

Ladson, C.L., and Brooks, C.W., Jr., “Development of a Computer Program to Obtain
Ordinates for the NACA 4-Digit, 4-Digit Modified, 5-Digit, and 16-Series Airfoils,” NASA
TM X-3284, November 1975.
Ladson, C.L., and Brooks, C.W., Jr., “Development of a Computer Program to Obtain
Ordinates for the NACA 6- and 6A-Series Airfoils,” NASA TM X-3069, September 1974.
This program is included in the utility programs described in App. E, as LADSON. It is not
extremely accurate for sections less than 6% thick or greater than 15% thick.

An extensive and excellent survey of the older airfoils is contained in the German book
(available in English translation):

Riegels, Airfoil Sections, Butterworths, London, 1961. (English language version)
NASA supercritical airfoil development is described in the following references:

Whitcomb, “Review of NASA Supercritical Airfoils,” ICAS Paper 74-10, August 1974
(ICAS stands for International Council of the Aeronautical Sciences)
Harris, C.D., “NASA Supercritical Airfoils,” NASA TP 2969, March 1990.
Becker, J.V., “The High-Speed Airfoil Program,” in The High Speed Frontier, NASA SP-
445, 1980.

The NACA 4-Digit Airfoil
The numbering system for these airfoils is defined by:

NACA MPXX
where XX is the maximum thickness, t/c, in percent chord.

M is the maximum value of the mean line in hundredths of chord,
P is the chordwise position of the maximum camber in tenths of the chord.

Note that although the numbering system implies integer values, the equations can provide 4
digit foils for arbitrary values of M, P, and XX.
An example: NACA 2412 • a 12% thick airfoil,

• a max value of the camber line of 0.02, at x/c = 0.4.
The NACA 4-digit thickness distribution is given by:

yt
c
=

t
c

⎛
⎝⎜

⎞
⎠⎟
a0 x /c − a1 x /c( ) − a2 x /c( )2 + a3 x /c( )3 − a4 x /c( )4⎡⎣ ⎤⎦

(A-4)

where:
a0 = 1.4845 a2 = 1.7580 a4 = 0.5075
a1 = 0.6300 a3 = 1.4215

Note that this definition results in a small but finite trailing edge thickness. Many computational
methods require a zero thickness trailing edge, and the coefficient definitions are frequently
modified to produce a zero thickness trailing edge. This can lead to the wrong value of drag from
calculations. Van Dam (1999) cites a value of wave drag 15.3% too high for the 0012 modified
to zero trailing edge thickness at M = 0.78.



A-4 Configuration Aerodynamics

1/17/06

The maximum thickness occurs at x/c = 0.30, and the leading edge radius is

rLE
c

⎛
⎝⎜

⎞
⎠⎟
= 1.1019 t

c
⎛
⎝⎜

⎞
⎠⎟
2

(A-5)

The included angle of the trailing edge is:

δTE = 2 tan−1 1.16925 t
c

⎛
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⎞
⎠⎟
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⎨
⎩
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⎬
⎭

(A-6)

As noted above, it is important to realize that the airfoil has a finite thickness at the trailing
edge.
The camber line is given by:

yc
c
=
M
P2

2P x /c( ) − x /c( )2⎡⎣ ⎤⎦
dyc
dx

=
2M
P2

P − x /c( )( )

⎫

⎬
⎪⎪

⎭
⎪
⎪

x
c

⎛
⎝⎜

⎞
⎠⎟
< P (A-7)

and

yc
c
=

M
1− P( )2

1− 2P + 2P x /c( ) − x /c( )2⎡⎣ ⎤⎦

dyc
dx

=
2M
1− P( )2

P − x /c( )( )

⎫

⎬
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c
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⎞
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≥ P (A-8)

The camber line slope is found from Eqn. A-3 using Eqns. A-7 and A-8, and the upper and lower
surface ordinates resulting from the combination of thickness and camber are then computed
using equations Eqns. A-1 and A-2.

The NACA 5-Digit Airfoil

This airfoil is an extension of the 4 digit series that provides additional camber lines. The
numbering system for these airfoils is defined by:

NACA LPQXX

where XX is the maximum thickness, t/c, in percent chord.

L is the amount of camber; the design lift coefficient is 3/2 L, in tenths

P is the designator for the position of maximum camber, xf, where xf = P/2,
and P is given in tenths of the chord

Q = 0; standard 5 digit foil camber
= 1; “reflexed” camber
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An example: the NACA 23012, is a 12% thick airfoil, the design lift coefficient is 0.3, the
position of max camber is located at x/c = 0.15, and the “standard” 5 digit foil camber line is
used.

The thickness distribution is the same as the NACA 4 digit airfoil thickness distribution
described above in equation (A-4).

The standard five-digit series camber line is given by:

yc
c
=
K1
6

x / c( )3 − 3m x / c( )2 + m2 3− m( ) x / c( )⎡⎣ ⎤⎦
dyc
dx

=
K1
6
3 x / c( )2 − 6m x / c( ) + m2 3− m( )⎡⎣ ⎤⎦

⎫

⎬
⎪⎪

⎭
⎪
⎪

0 ≤ x / c( ) ≤ m (A-9)

and
yc
c
=
K1
6
m3 1− x / c( )⎡⎣ ⎤⎦

dyc
dx

= −
K1
6
m3

⎫

⎬
⎪⎪

⎭
⎪
⎪

m < x / c( ) ≤ 1 (A-10)

where m is not the position of maximum camber, but is related to the maximum camber position
by:

x f = m 1− m
3

⎛

⎝⎜
⎞

⎠⎟
(A-11)

and m is found from a simple fixed point iteration for a given xf. K1 is defined to avoid the
leading edge singularity for a prescribed Cli and m:

K1 =
6Cli

Q
(A-12)

where:

Q =
3m − 7m2 + 8m3 − 4m4

m 1− m( )
−
3
2
1− 2m( ) π

2
− sin−1 1− 2m( )⎡

⎣⎢
⎤
⎦⎥

(A-13)

Note that K1 is a linear function of Cli and the K1’s were originally tabulated for Cli  = 0.3.
The tabulated K1’s are multiplied by (Cli/0.3) to get values at other Cli. To compute the
camber line, the values of Q and K1 must be determined. In some cases the computed values
of K1 and Q differ slightly from the official tabulated values (remember these were computed
in the 1930s). The tabulated values should be used to reproduce the official ordinates. The
following table illustrates the differences.
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 K1
Mean        m           using             using
 Line xf tabulated computed         tabulated    tabulated m  computed m

210 0.05 0.0580 0.0581 361.4 351.56 350.332
220 0.10 0.1260 0.1257 51.65 51.318 51.578
230 0.15 0.2025 0.2027 15.65 15.955 15.920
240 0.20 0.2900 0.2903 6.643 6.641 6.624
250 0.25 0.3910 0.3913 3.230 3.230 3.223

Once the camberline parameters are chosen, the airfoil is constructed using the equations given
above.

Camber lines designed to produce zero pitching moment.

The reflexed mean line equations were derived to produce zero pitching moment about the
quarter chord.

yc
c
=
K1
6

x / c( ) − m{ }3 − K2

K1
1− m( )3 x / c( ) − m3 x / c( ) + m3⎡

⎣
⎢

⎤

⎦
⎥ 0 ≤ x / c( ) ≤ m (A-14)

=
K1
6

K2

K1
x / c( ) − m{ }3 − K2

K1
1− m( )3 x / c( ) − m3 x / c( ) + m3⎡

⎣
⎢

⎤

⎦
⎥ m < x / c( ) ≤ 1 (A-15)

where

K2

K1
=
3 m − x f( )2 − m3

1− m( )3
(A-16)

The parameters are defined as follows: i) given xf , find m  to give Cmc/4 = 0 from thin airfoil
theory; ii) given xf and m, calculate K1 to give Cli = 0.3.

The tabulated values for these camber lines are:

Mean (P/2)
 Line x   f   m K    1    K    1    /K    2    
211 .05    -  - -
221 .10 0.1300 51.99 0.000764
231 .15 0.2170 15.793 0.006770
241 .20 0.3180 6.520 0.030300
251 .25 0.4410 3.191 0.135500
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The NACA Modified 4-Digit Airfoil

This airfoil is an extension of the 4-digit series to allow for a variation of leading edge radius and
location of maximum thickness. The numbering system is defined by:

NACA MPXX-IT

where MPXX is the standard 4-digit designation and the IT appended at the end describes the
modification to the thickness distribution. They are defined as:

 I - designation of the leading edge radius
T - chordwise position of maximum thickness in tenths of chord

rle
c
= 1.1019 I

6
⋅
t
c

⎛
⎝⎜

⎞
⎠⎟

2

      for I ≤ 8 (A-17)

and
rle
c
= 3 x 1.1019 t

c
⎛
⎝⎜

⎞
⎠⎟

2

      for I = 9 (A-18)

I = 6 produces the leading edge radius of the standard 4-digit airfoils.

An example: NACA 0012-74 denotes an uncambered 12% thick airfoil, with a maximum
thickness at x/c = 0.40 and a leading edge radius of 0.0216, which is 36% larger than the
standard 4-digit value.

The NACA 16 series is a special case of the modified 4-digit airfoil with a leading edge radius
index of I = 4 and the maximum thickness located at x/c = 0.5 (T = 5). As an example, the
NACA 16-012 is equivalent to an NACA 0012-45.

The thickness distribution is given by:

yt
c
= 5 t

c
⎛
⎝⎜

⎞
⎠⎟
a0

x
c
+ a1

x
c

⎛
⎝⎜

⎞
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x
c

⎛
⎝⎜

⎞
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2

+ a3
x
c

⎛
⎝⎜

⎞
⎠⎟
3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 < x
c
< T (A-19)

and
yt
c
= 5 t

c
⎛
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⎞
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x
c

⎛
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⎞
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x
c

⎛
⎝⎜

⎞
⎠⎟
2
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x
c

⎛
⎝⎜

⎞
⎠⎟
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⎣
⎢
⎢
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⎦
⎥
⎥

T <
x
c
≤ 1 (A-20)

The coefficients are determined by solving for the d’s first, based on the trailing edge slope and
the condition of maximum thickness at x/c = T. Once these coefficients are found, the a’s are
found by relating a0 to the specified leading edge radius, the maximum thickness at x/c = T, and
the condition of continuity of curvature at x/c = T . These constants are all determined for t/c =
0.2, and then scaled to other t/c values by multiplying by 5(t/c). The value of d1 controls the
trailing edge slope and was originally selected to avoid reversals of curvature. In addition to the
tabulated values, Riegels has provided an interpolation formula. The official (tabulated) and
Riegels approximate values of d1 are given in the following table.
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T Tabulated d1 Approximate d1
0.2 0.200 0.200
0.3 0.234 0.234
0.4 0.315 0.314
0.5 0.465 0.464
0.6 0.700 0.722

where the Riegels approximation is given by:

d1 ≅
2.24 − 5.42T +12.3T 2( )
10 1− 0.878T( )

(A-21)

Once the value of d1 is known, d2 and d3 are found from the relations given by Riegels:

d2 =
0.294 − 2 1− T( )d1

1− T( )2
(A-22)

and

d3 =
−0.196 + 1− T( )d1

1− T( )3
(A-23)

With the d’s determined, the a’s can be found. a0 is based on the leading edge radius:

a0 = 0.296904 ⋅ χLE
(A-24)

where
χ
LE =

I
6

for I ≤ 8

= 10.3933 for I = 9
(A-25)

Defining:

ρ1 =
1
5

⎛
⎝⎜

⎞
⎠⎟

1− T( )2
0.588 − 2d1 1− T( )⎡⎣ ⎤⎦

(A-26)

the rest of the a’s can be found from:

a1 =
0.3
T

−
15
8
⋅
a0
T

−
T
10ρ1

(A-27)

a2 = −
0.3
T 2 +

5
4
⋅
a0
T 3/2 +

1
5ρ1

(A-28)

a3 =
0.1
T 3 −

0.375a0
T 5 /2 −

1
10ρ1T

(A-29)

The camber lines are identical to the standard 4-digit airfoils described previously. The upper
and lower ordinates are then computed using the standard equations.
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The NACA 6 and 6A-Series Mean Lines*

The 6-series mean lines were designed using thin airfoil theory to produce a constant loading
from the leading edge back to x/c = a, after which the loading decreases linearly to zero at the
trailing edge. Theoretically, the loading at the leading edge must be either zero or infinite within
the context of thin airfoil theory analysis. The violation of the theory by the assumed finite
leading edge loading is reflected by the presence of a weak singularity in the mean line at the
leading edge, where the camber line has an infinite slope. Therefore, according to Abbott and
von Doenhoff, the 6-series airfoils were constructed by holding the slope of the mean line
constant in front of x/c = 0.005, with the value at that point. For round leading edges the
camberline values are essentially not used at points ahead of the origin of the leading edge
radius. The theory is discussed by Abbott and von Doenhoff on pages 73-75, 113, and 120.
Tabulated values are contained on pages 394-405. The derivation of this mean line is a good
exercise in thin airfoil theory.

By simply adding various mean lines together, other load distributions can be constructed.
From Abbott and von Doenhoff: “The NACA 6-series wing sections are usually designated

by a six-digit number together with a statement showing the type of mean line used. For
example, in the designation NACA 65,3-218, a = 0.5, the 6 is the series designation. The 5
denotes the chordwise position of minimum pressure in tenths of the chord behind the leading
edge for the basic symmetrical section at zero lift. The 3 following the comma (sometimes this is
a subscript or in parenthesis) gives the range of lift coefficient in tenths above and below the
design lift coefficient in which favorable pressure gradients exist on both surfaces. The 2
following the dash gives the design lift coefficient in tenths. The last two digits indicate the
thickness of the wing section in percent chord. The designation a = 0.5 shows the type of mean
line used. When the mean-line is not given, it is understood that the uniform-load mean line (a =
1.0) has been used.”

The 6A series airfoils employed an empirical modification of the a = 0.8 camberline to allow
the airfoil to be constructed of nearly straight line segments near the trailing edge. This
camberline is described by Loftin in NACA R-903.

Basic Camberline Equations

When a = 1 (uniform loading along the entire chord):

y
c
= −

Cli

4π
1− x

c
⎛
⎝⎜

⎞
⎠⎟
ln 1− x

c
⎛
⎝⎜

⎞
⎠⎟
+
x
c
ln x

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

(A-30)

and
dy
dx

=
Cli

4π
ln 1− x

c
⎛
⎝⎜

⎞
⎠⎟
− ln x

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

(A-31)

                                                
* Only the mean lines have analytical definitions. The thickness distributions are the result of
numerical methods which produced tabulated coordinates. In addition to the values tabulated in
the NACA reports, the closest approximation for the thickness distributions is available in
program LADSON, see App. E.
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where Cli is the “ideal” or design lift coefficient, which occurs at zero angle-of-attack.
For a < 1,

 y
c
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2
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with

g = −1
1− a( ) a2 1

2
lna − 1

4
⎛
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⎞
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4

⎡
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⎤
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(A-33)

h = 1− a( ) 1
2
ln 1− a( ) − 1

4
⎡
⎣⎢

⎤
⎦⎥
+ g (A-34)

and
dy
dx

=
Cli

2π 1+ a( )
1
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The associated angle-of-attack is:

α i =
Cli h

2π 1+ a( )
(A-36)

a = .8 (modified), the 6A-series mean line

For 0 < x/c < .87437, use the basic a = .8 camberline, but with a modified value of the ideal lift
coefficient, Climod = Cli/1.0209. For .87437 < x/c < 1, use the linear equation:

yc /c
Cli

= 0.0302164 − 0.245209 x
c
− 0.87437⎛

⎝⎜
⎞
⎠⎟

(A-37)

and
dy
dx

= −0.245209Cli
(A-38)

Note that at x/c = 1, the foregoing approximate relation gives y/c = -0.000589, indicating an α
shift of .034° for Cli = 1.
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Other airfoil definition procedures

Interest in defining airfoils by a small number of parameters for use in numerical
optimization has led to several recent proposed parametric representations that might be useful.
In particular, the work by August and co-workers at McDonnell Douglas in St. Louis, MO, uses
Chebyshev functions to obtain functions with can represent very general airfoil shapes with from
5 to 20 coefficients required. This work is described in AIAA Papers 93-0099 and 93-0100, “An
Efficient Approach to Optimal Aerodynamic Design,” Parts 1 and 2.

Another approach using Bezier methods frequently used in CAD surface representation
software has been used by Ventkataraman. This approach uses 14 design variables to represent
the airfoil, and is described in AIAA Paper 95-1875, “A New Procedure for Airfoil Definition,”
and AIAA Paper 95-1876, “Optimum Airfoil Design in Viscous Flows.” Smith and co-workers
at NASA Langley have used a similar approach based on non-uniform rational B-splines
(NURBS). A description of their approach appears in AIAA Paper 93-0195, “Grid and Design
Variables Sensitivity Analysis for NACA Four-Digit Wing-Sections.”
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A.1.1. Tabulated Airfoil Definition and the Airfoil Library

Most modern airfoils are not described by equations, but are defined by a table of
coordinates. Frequently, these coordinates are the results of a computational aerodynamic design
program, and simple algebraic formulas cannot be used to define the shape (this was the case
with the NACA 6-series airfoils described above). The following table provides a list of the
tabulated airfoils currently available on the web site. The subsequent tables provide a guide to
these airfoils. A standard 2F10 format (the Jameson input format) is used with each set of
coordinates. The values are given from leading edge to trailing edge, top followed by bottom.

Airfoil Library Files:
file name comments

NACA 4 digit airfoils
NACA 0010 N0010.DAT
NACA 0010-35 N001035.DAT (Abbott & VonDoenhoff)
NACA 0012 N0012.DAT
NACA 4412 N44122.DAT

NACA 6 & 6A airfoils
NACA 63(2)-215 N632215.DAT NASA TM 78503
NACA 63(2)-215 mod B N632215m.DAT
NACA 64A010 N64A010.DAT
NACA 64A410∗ N64A410.DAT
NACA 64(3)-418 N643418.DAT
NACA 65(1)-012 N651012.DAT
NACA 65(1)-213 N651213.DAT
NACA 65(1)A012 N65A012.DAT

N658299M.DAT
N658299R.DAT

NACA 65(2)-215 N652215.DAT
NACA 66(3)-018 N663018.DAT

NASA General Aviation Series
LS(1)-0417 GAW1.DAT originally known as: GA(W)-1
LS(1)-0417 mod LS10417M.DAT
LS(1)-0413 GAW2.DAT originally known as: GA(W)-2
LS(1)-0013 LS10013.DAT

NASA Medium Speed Series
MS(1)-0313 MS10313.DAT
MS(1)-0317 MS10317.DAT

                                                
∗ Be aware that the coordinates for this airfoil, widely used as a test case, on page 356 of the book by Abbott and von
Doenhoff, contain some typos. In particular, the value of y at x = 7.5 is supposed to be 2.805. Also, it is obvious that
the x value between 30 and 40 is 35. Finally, the table is mislabeled. The y typo was responsible for the widely
circulated story that the coordinates contained in Abbott and von Doenhoff were not accurate enough to be use in
modern computational airfoil codes.
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Airfoil Library Files (continued):
file name comments

NASA Laminar Flow Series
NLF(1)-1215F NL11215F.DAT
NLF(1)-0414F NL10414F.DAT
NLF(1)-0416 NL10416.DAT
NLF(1)-0414Fmod NL0414FD.DAT drooped le
NLF(2)-0415 NL20415.DAT
HSNLF(1)-0213 HSN0213.DAT
HSNLF(1)-0213mod HSN0213D.DAT drooped le

NASA Supercrtical Airfoils∗

SC(2)-0402 SC20402.DAT
SC(2)-0403 SC20403.DAT
SC(2)-0503 SC20503.DAT
SC(2)-0404 SC20404.DAT
SC(2)-0406 SC20406.DAT
SC(2)-0606 SC20606.DAT
SC(2)-0706 SC20706.DAT
SC(2)-1006 SC21006.DAT
SC(2)-0010 SC20010.DAT
SC(2)-0410 SC20410.DAT
SC(2)-0610 SC20610.DAT
SC(2)-0710 SC20710.DAT also known as Foil 33
SC(2)-1010 SC21010.DAT
SC(2)-0012 SC20012.DAT
SC(2)-0412 SC20412.DAT
SC(2)-0612 SC20612.DAT
SC(2)-0712 SC20712.DAT
SC(3)-0712(B) SC20712B.DAT
SC(2)-0414 SC20414.DAT
SC(2)-0614 SC20614.DAT
SC(2)-0714 SC20714.DAT Raymer, Ref. NASA TP 2890
SC(2)-0518 SC20518.DAT
FOIL31 FOIL31.DAT
SUPER11 SUPER11.dat 11% thick, from ICAS paper
SUPER14 SUPER14.dat 14% thick, NASA TM X-72712

NYU Airfoils
82-06-09 K820609.DAT
79-03-12 K790312.DAT
72-06-16 K720616.DAT
71-08-14 K710814.DAT
70-10-13 K701013.DAT
65-14-08 K651408.DAT
65-15-10 K651510.DAT
75-06-12            KORN.DAT the “Korn” Airfoil
75-07-15 K750715.DAT

                                                
∗ These coordinates were typed in by students when NASA TP 2969 was issued. They are exactly the values printed
in the TP. It turns out that those values were developed by taking the original set of coordinates and enhancing them
to 100 points upper and lower using straight line interpolation. As such, they are not really usable. Our experience is
that we can identify the original values and weed out the straight-line interpolated values. This works.
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Airfoil Library Files (continued):
file name comments

Miscellaneous Transonic Airfoils
CAST 7 CAST7.DAT
DSMA 523 DSMA523.DAT from AIAA Papre 75-880
NLR HT 731081 NLRHT73.DAT from AGARD AR-138
ONERA M6 ONERAM6.DAT
RAE 2822 RAE2822.DAT
WILBY A WILBYA.DAT
WILBY B WILBYB.DAT
WILBY C WILBYC.DAT
WILBY R WILBYR.DAT
SUPER10 NASA10SC.DAT AGARD AR-138

MBB-A3.DAT AGARD AR-138
Eppler Airfoils

EPPLER 662               EPP662.DAT Raymer’s book, ref NASA CP 2085
EPPLER 746               EPP746.DAT Raymer’s book, ref NASA CP 2085
Wortman Airfoils
FX-63-137-ESM FX63137.DAT
FX-72-MS-150A FX72M15A.DAT
FX-72-MS-150B FX72M15B.DAT

Miscellaneous Foils
ClarkY CLARKY.DAT
Early Liebeck High Lift RHLHILFT.DAT
NLR-1 NLR1.DAT Rotorcraft foil (NASA CP 2046, V.II)
RAE 100 RAE100.DAT
RAE 101 RAE101.DAT
RAE 102 RAE102.DAT
RAE 103 RAE103.DAT
RAE 104 RAE104.DAT

VariEze Airfoils
VariEze wing bl23 VEZBL32.DAT
VariEze winglet root VEZWLTR.DAT
VariEze winglet tip VEZWLTT.DAT
VariEze canard VEZCAN.DAT

Human powered aircraft airfoils
DAE 11 DAE11.DAT Daedalus airfoils (Mark Drela)
DAE 21 DAE21.DAT
DAE 31 DAE31.DAT
DAE 51 DAE51.DAT (propeller foil?)
Lissaman 7769 LISS769.DAT Gossamer Condor airfoil

Many other airfoils are available on the world wide web. In particular, the Applied
Aerodynamics group at the University of Illinois, under the direction of Prof. Michael Selig, has
established a massive online source for airfoil definitions and includes data from wind tunnel
tests on the airfoils. Their focus is directed toward airfoils designed for low speeds and low
Reynolds numbers, see http://www.ae.uiuc.edu/m-selig/ads.html. Finally, Richard Eppler has
published an entire book of his airfoils, Airfoil design and data, Springer-Verlag, 1990.
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The NASA low and medium speed airfoil program:

NASA Low Speed, Medium Speed, and natural Laminar Flow Airfoil Chart
Airfoil

Designation
Design

Lift
Design

Thickness
Design
Mach

Test? Ordinates
in Airfoil
Library?

Ref.
Comment

GA(W)-1 0.4/1.0 0.17 yes yes TN D-7428 Low
Speed

LS(1)-
0417mod 0.17 yes "

GA(W)-2 0.13 yes yes TM X-
72697 "

mod 0.13 yes yes TM X-
74018 "

? 0.21 yes TM 78650 "
LS(1)-0013 0.13 yes yes TM-4003 "

MS(1)-0313 0.13 yes yes TP-1498 Medium
Speed

MS(1)-0317 0.30 0.17 0.68 yes yes TP-1786 "

mod 0.17 yes TP-1919 "

NLF(1)-
0215F 0.20? 0.15 yes Raymer’s

Book
Natural
Laminar

Flow
NLF(1)-
0414F yes "

NLF(1)-
0416 yes "

NLF(1)-
0414F

drooped
L.E.

yes "

NLF(2)-
0415 0.40? 0.15? ? yes yes Raymer’s

Book "

HSNLF(1)-
0213 0.20? 0.13? ? yes TM-87602 "

HSNLF(1)-
0213 mod yes
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The NASA Phase 2 supercritical airfoils are listed in the following chart.

NASA Supercritical Airfoils – Phase 2,
from NASA TP 2969, March 1990, by Charles D. Harris

Airfoil
Designation

Design
Lift

Design
Thickness

Design
Mach

Test? Ordinates
in Airfoil
Library?

Ref. Comment

SC(2)-0402 0.40 0.02 yes
SC(2)-0403 0.40 0.03 yes
SC(2)-0503 0.50 0.03 yes
SC(2)-0404 0.40 0.04 yes
SC(2)-0406 0.40 0.06 yes unpubl.
SC(2)-0606 0.60 0.06 yes
SC(2)-0706 0.70 0.06 0.795 yes yes unpubl.
SC(2)-1006 1.00 0.06 yes yes unpubl.
SC(2)-0010 0.00 0.10 yes
SC(2)-0410 0.40 0.10 0.785 yes
SC(2)-0610 0.60 0.10 0.765 yes

SC(2)-0710 0.70 0.10 0.755 yes yes TM X-
72711 Airfoil 33

SC(2)-1010 1.00 0.10 0.70 yes
SC(2)-0012 0.0 0.12 ? yes TM-89102
SC(2)-0412 0.40 0.12 yes
SC(2)-0612 0.60 0.12 yes
SC(2)-0712 0.70 0.12 0.735 ? yes TM-86370 TM-86371
SC(2)-0414 0.40 0.14 yes
SC(2)-0614 0.60 0.14 yes

SC(2)-0714 0.70 0.14 0.715 Yes yes TM X-
72712

Low Speed
TM-81912

SC(2)-0518 1.00 0.18 yes
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Several transonic airfoils were developed at New York University by a group led by Paul
Garabedian. The following table provides a list of the airfoils they published.

Garabedian and Korn Airfoil Chart
Airfoil

Designation
Design

Lift
Design

Thickness
Design
Mach

Test? Ordinates
in Airfoil
Library?

Pages in
Ref., Korn
II Book

Comment

79-03-12 0.293 0.123 0.790 yes 37,41-43
72-06-16 0.609 0.160 0.720 yes 48,52-54
71-08-14 0.799 0.144 0.710 yes 55,59-61
70-10-13 0.998 0.127 0.700 yes 62,66-68
65-14-08 1.409 0.083 0.650 yes 73,77-79
65-15-10 1.472 0.104 0.650 yes 80,84-86
82-06-09 0.590 0.092 0.820 yes 91,95
75-06-12 0.629 0.117 0.750 yes yes 96,99-101 the “Korn”
75-07-15 0.668 0.151 0.750 yes 102,106

Their airfoils are included in:

Bauer, F., Garabedian, P., and Korn, D., A Theory of Supercritical Wing Sections with
Computer Programs and Examples, Lecture Notes in Economics and Mathematical Systems,
Vol. 66, Springer-Verlag, 1972.

Bauer, F., Garabedian, P., Jameson, A. and Korn, D., Supercritical Wing Sections II, A
Handbook, Lecture Notes in Economics and Mathematical Systems, Vol. 108, Springer-
Verlag, 1975.

Bauer, F., Garabedian, P., and Korn, D., Supercritical Wing Sections III, Lecture Notes in
Economics and Mathematical Systems, Vol. 150, Springer-Verlag, 1977.
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A.2 Classic Bodies of Revolution

Bodies of revolution form the basis for a number of shapes used in aerodynamic design and
are also often used in comparing computational methods. The bodies defined in this section are
generally associated with supersonic aerodynamics.

a. Summary of Relations

The body radius r is given as a function of x, r/l = f(x/l). Once r is known, a number of other
values characterizing the shape can be determined.

The cross-sectional area and derivatives are:
 S(x) = πr2 (A-39)

   dS
dx

= 2πr dr
dx

(A-40)

d 2S
dx2

= 2π dr
dx

⎛
⎝⎜

⎞
⎠⎟
2

+ r d
2r
dx2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(A-41)

Basic integrals are:
Volume,

V = S(x)dx
0

l

∫ (A-42)

Surface area,

Swet = 2π r(x)dx
0

l

∫ (A-43)

Length along the contour,

p(x ) = 1+ dr
dx

⎛
⎝⎜

⎞
⎠⎟
2

dx
0

l

∫ (A-44)

Note that the incremental values can be found by changing the lower limit of the integrals.
The local longitudinal radius of curvature is given by:

R(x) =
1+ dr

dx
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

d 2r
dx2

3/2

(A-45)

Several simple shapes are also of interest in addition to those presented in detail. They are:

Parabolic Spindle:
r
l
= 4 rmid

l
x
l
1− x

l
⎛
⎝⎜

⎞
⎠⎟

(A-46)
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Ellipsoid of revolution:

r
l
= 2 rmid

l
x
l
1− x

l
⎛
⎝⎜

⎞
⎠⎟

(A-47)

and the power law body:

r
l
=
r0
l

x
xN

⎛
⎝⎜

⎞
⎠⎟

n

(A-48)

where xN is the nose length, and r0 is the radius at x = xN. The nose is blunt for 0 < n < 1.

Another common shape is the spherical nose cap, and is discussed in detail in the reference
by Krasnov. References that discuss geometry of bodies of revolution are:

Krasnov, N.F., Aerodynamics of Bodies of Revolution, edited and annotated by D.N.
Morris, American Elsevier, New York, 1970.

Handbook of Supersonic Aerodynamics, Volume 3,  Section 8, “Bodies of
Revolution, NAVWEPS Report 1488, October 1961.

b). Tangent/Secant Ogives

The tangent or secant ogives are frequently used shapes in supersonic aerodynamics. The
nomenclature is illustrated in the following sketch.

.

x

r

r0

xn

x = l

R

δr

δN
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Note that the ogive is actually the arc of a circle and when δr = 0 the ogive ends tangent to
the body, so that δ r = 0 represents the tangent ogive body. If δ r = δN, the cone-cylinder is
recovered. If δr = 0 and δN = 90°, the spherical cap case is obtained.

The expression for the radius r is determined using three basic constants for a particular case:

A =
r0
l

cosδN

cosδr − cosδN

⎛
⎝⎜

⎞
⎠⎟

(A-49)

B = 2 r0
l

sinδN

cosδr − cosδN

⎛
⎝⎜

⎞
⎠⎟

(A-50)

and

C =
r0
l

(A-51)

The radius is then given by:

r
l
= A2 + B x

l
⎛
⎝⎜

⎞
⎠⎟
−

x
l

⎛
⎝⎜

⎞
⎠⎟
2

− A 0 < x
l
<
xN
l

= C xN
l

<
x
l
< 1

(A-52)

where xN is found as follows.
For a tangent ogive (δr = 0), the ogive can be defined by specifying either xN/r0 or δN. The

other value can then be found using:
Given δN,

xN
r0

=
sinδN

1− cosδN

(A-53)

Or given xN/r0,

δN = cos−1
xN
r0

⎛
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−1

xN
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⎢
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(A-54)

For the secant ogive, the simplest analytical procedure is to define the ogive in terms of δN
and δr, and then find xN/l from:

xN
l

=
r0
l

sinδN − sinδr
cosδr − cosδN

⎛
⎝⎜

⎞
⎠⎟

(A-55)

If xN/l is not satisfactory, δN and δr can be adjusted by trial and error to obtain the desired
nose length. A program can be set up to handle this process quite simply.
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The first and second derivatives are then given by:

d r / l( )
d x / l( ) =

B − 2 x / l( )
2 r / l( ) + A⎡⎣ ⎤⎦

(A-56)

and
d 2 r / l( )
d x / l( )2

= −
B − 2 x / l( )⎡⎣ ⎤⎦
4 r / l( ) + A⎡⎣ ⎤⎦

3

2

−
1

r / l( ) + A⎡⎣ ⎤⎦
(A-57)

The relationships between radius and area derivatives given in section a) are then used to
complete the calculation.

c) The von Kármán Ogive

The shape that produces minimum wave drag for a specified base area and length, according
to slender body theory. This ogive has a very slightly blunted nose, and is described by Ashley
and Landahl, Aerodynamics of Wings and Bodies, Addison-Wesley, 1965, pp. 178-181.

In this case it is convenient to work with the cross-sectional area and a new independent
variable:

θ = cos−1 2 x
xN

⎛
⎝⎜

⎞
⎠⎟
−1

⎡

⎣
⎢

⎤

⎦
⎥ (A-58)

or
x
xN

=
1
2
1+ cosθ( ) (A-59)

where the nose is at θ = π, and the base is located at θ = 0.
Here we use xN to denote the “nose length” or length of the ogive, and allow this shape to be

part of an ogive-cylinder geometry.
The shape is then given as:

S(x)
l2

=
SB
l2
1− θ

π
+
sin2θ
2π

⎡
⎣⎢

⎤
⎦⎥

(A-60)

and
r
l
=

S / l2

π
(A-61)

where SB is the prescribed base area and l is the total length.

Defining

S =
S
l2
, x =

x
l , (A-62)

We have
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dS
dθ

= −
SB
π
1− cos2θ[ ] (A-63)

d 2S
dθ 2

= −
2
π
SB sin2θ (A-64)

and
dS
dx

= ′S =
4
π

l
xN

⎛
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⎞
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SB sinθ

d 2S
dx 2

= ′′S = −
8
π

l
xN

⎛
⎝⎜

⎞
⎠⎟

2
SB
tanθ
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The radius derivatives are then computed by:

dr
dx

= ′S
2πr

, d 2r
dx 2

= ′′S
2πr

− ′r 2

r
(A-66)

d) The Sears-Haack Body
This is the minimum wave drag shape for a given length and volume according to slender

body theory. The body is closed at both ends and has a very slightly blunted nose, and is
symmetric about the mid-point. It is described by Ashley and Landahl, Aerodynamics of Wings
and Bodies, Addison-Wesley, 1965, pp. 178-181.

Although the notation used in section c) for the von Kármán Ogive section could be used, it
is more common to describe the Sears-Haack body in the manner presented below. This form
uses the fineness ratio, f = l/dmax to scale the shape. However, it is important to realize that the
Sears-Haack shape is the minimum drag body for a specified volume and length, not for a
specified fineness ratio. The minimum drag body for a specified fineness ratio is described below
in section e) below.

Defining

ς = 1− 2 x
l

⎛
⎝⎜

⎞
⎠⎟

, (A-67)

the Sears-Haack body is defined as
r
l
=
1
2 f

1− ς 2( )3/4 . (A-68)

The derivatives are given by:
d r / l( )
d x / l( ) =

3ς
1− ς 2

r
l
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(A-69)

and
d 2 r / l( )
d x / l( )2

= −
1

1− ς 2
⎛
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⎞
⎠⎟
ς
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d(x / l)

+ 6 r
l
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. (A-70)

The fineness ratio is related to the length and volume by:

f = 3π 2

64
l 3

V
. (A-71)
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In terms of f and either V or l, the other value can be found from the following:
Given f and l:

V =
3π 2

64
l 3

f 2
. (A-72)

Given f and V:

l = V 64
3π 2 f

2⎡
⎣⎢

⎤
⎦⎥

1/3

. (A-73)

The relationships between radius and area derivatives given in Section a) are then used to
complete the calculation.

e) The Haack-Adams Bodies

The Haack-Adams bodies define a number of minimum drag shapes, as described by M.C.
Adams in “Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag,”
NACA TN 2550, November 1951. These bodies correspond to the following cases:

I. Given length, base area, and contour passing through a specifically located radius.
II. Given length, base area, and maximum area.
III. Given length, base area, and volume.

In case I, the specified radius will not necessarily be the maximum radius.
The notation used in TN 2550 is employed in the equations, leading to the following

definitions:

S = 4 S (x)
l2
, B = 4 SBASE

l2
, A = 4 SA

l2
, V = 8 V

l 3
⎛
⎝⎜

⎞
⎠⎟

(A-74)

where S(x) is the area, SA corresponds to either the specified area at a given location, or the
maximum area, and V is the volume. The independent variable is defined with its origin at the
body mid-point:

ς = 2 x
l

⎛
⎝⎜

⎞
⎠⎟
−1 (A-75)

and the location of the specified radius (Case I) and maximum radius (Case II) is designated C
and given in ζ coordinates. When referred to the x coordinate, this value is designated Cx.

The equation for each case can be written in a standard form:

Case I — Given SBASE, SA, Cx:

πS
B

=
πA
B

− cos−1(−c)⎡
⎣⎢

⎤
⎦⎥
1− ς 2 (1− cς )
1− c2( )3/2

+
1− ς 2 ς − c( )
(1− c2 )

+
πA
B

− cos−1(c) − c 1− c2⎡
⎣⎢

⎤
⎦⎥
ς − c( )2
1− c( )2

lnN + cos−1(−ς )

(A-76)
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where

N =
1− cς − 1− c2 1− ς 2

ς − c
. (A-77)

Case II — Given SBASE, SMAX:

First find the location of the maximum thickness from the implicit relation

f (c) = 0 = πA
B
c − 1− c2 − ccos−1(−c). (A-78)

Use Newton’s iteration

ci+1 = ci − f (ci )
′f (ci )

(A-79)

where

′f (c) = πA
B

− cos−1(−c) . (A-80)

An initial guess of c = 0 is sufficient to start the iteration. Given c, the relation for the area is:

πS
B

=
1− ς 2

c
+

ς − c( )2

c 1− c2
lnN + cos−1(−ς ) (A-81)

where N is the same function as given in Case I.

Case III — Given SBASE and V:

πS
B

=
8
3
V
B
−1⎡

⎣⎢
⎤
⎦⎥
1− ς 2( )3/2 + ς 1− ς 2 + cos−1(−ς ) (A-82)

The maximum thickness for this case is located at:

e = 1
4(V / B −1)

(A-83)

and in x coordinates

ex =
1
2
1+ e( ) (A-84)

Note that if SBASE = 0, the Sears-Haack body is recovered.
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A.3 Cross-Section Geometries for Bodies

The axisymmetric bodies described above can be used to define longitudinal lines for
aerodynamic bodies. However, many aerodynamic bodies are not axisymmetric (the fuselage
cross section is not round). In this section we define a class of cross section shapes that can be
used to develop more realistic aerodynamic models. In particular, they have been used to study
geometric shaping effects on forebody aerodynamic characteristics using an analytical forebody
model with the ability to produce a wide variation of shapes. This generic model makes use of
the equation of a super-ellipse to define cross sectional geometry. The super-ellipse, used
previously to control flow expansion around wing leading edges, can recover a circular cross
section, produce elliptical cross sections and can also produce chine-shaped cross sections. Thus
it can be used to define a variety of different cross sectional shapes.

The super-ellipse equation for a cross section is:

z
b

⎛
⎝⎜

⎞
⎠⎟
2+n

+
y
a

⎛
⎝⎜

⎞
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2+m

= 1  (A-85)

where n and m are adjustable coefficients that control the surface slopes at the top and bottom
plane of symmetry and chine leading edge. The constants a and b correspond to the maximum
half-breadth (the maximum width of the body) and the upper or lower centerlines respectively.
Depending on the value of n and m, the equation can be made to produce all the shapes described
above. The case n = m = 0 corresponds to the standard ellipse. The body is circular when a = b.

When n = -1 the sidewall is linear at the maximum half breadth line, forming a distinct crease
line. When n < -1 the body cross section takes on a cusped or chine-like shape. As n increases,
the cross-section starts to become rectangular.

The derivative of z / b with respect to y / a is:

dz
dy

= −

2 + m
2 + n

⎛
⎝⎜

⎞
⎠⎟

1− y 2+m( )⎡⎣ ⎤⎦
1+n
2+n

⎛
⎝⎜

⎞
⎠⎟

(A-86)

where z = z / b and y = y / a. As y → 1, the slope becomes:

dz
dy

=
∞ n > −1
0 n < −1
− 2 + m( )y1+m n = −1

⎧

⎨
⎪

⎩
⎪

(A-87)

The following sketch shows a quadrant of the cross section for various values of n ranging from
a chine to a rectangle.
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Different cross sections can be used above and below the maximum half-breadth line. Even
more generality can be provided by allowing n and m to be functions of the axial distance x. The
parameters a and b can also be functions of the planform shape and varied to study planform
effects. Notice that when n = -1 the value of m can be used to control the slope of the sidewall at
the crease line. Also, observe that large positive values of n drive the cross section shape to
approach a rectangular or square shape.

Connecting various cross section shapes is part of the subject of lofting, described in Chapter
9 of the Applied Computational Aerodynamics notes. One of the few other textbook discussions
is contained in Raymer, Aircraft Design: A Conceptual Approach, published by the AIAA, in his
Chapter 7. Dan Raymer worked at North American Aviation (actually Rockwell), where Liming∗

literally wrote the book on the analytic definition of aircraft lines.

                                                
∗ Roy Liming, Practical Analytic Geometry with Applications to Aircraft, MacMillan, New York, 1944. The book
emphasizes conic sections, and the examples in the book are for the P-51 Mustang.
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A.4 Planform Analysis

Several local and integral planform properties are of interest in aerodynamic analysis. They
are summarized in this section. (Note: Biplanes use the total area of both wings as the reference
area). For a more complete presentation see DATCOM.

The local values are the leading and trailing edge locations, xLE(y) and xTE(y), the local
chord, c(y), and the leading and trailing edge sweep angles: ΛLE(y) and ΛTE(y). The following
sketch illustrates the standard nomenclature.

y

x

c

c

x

b
2

T

R
LE

xTE

LEΛ

ΛTE

The integral properties are (assuming the planform is symmetric):
1. Planform Area, S

S = 2 c(y) dy
0

b /2

∫ (A-88)

2. Mean aerodynamic chord, mac

c =
2
S

c2 (y) dy
0

b /2

∫ (A-89)

3. X position of centroid of area, xcen

xcen =
2
S

c(y) xLE (y) +
c(y)
2

⎧
⎨
⎩

⎫
⎬
⎭
dy

0

b /2
⌠

⌡

⎮
⎮

(A-90)

4. Spanwise position of mac

ymac =
2
S

yc(y) dy
0

b /2

∫ (A-91)
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5. Leading edge location of mac.

xLEmac =
2
S

xLE (y)c(y) dy
0

b /2

∫ (A-92)

In addition, the following derived quantities are often of interest:
Aspect Ratio:

AR =
b2

Sref
(A-93)

Average Chord:

cA =
Sref
b

(A-94)

Taper Ratio:

λ =
cT
cR

(A-95)

Sref is usually chosen to be equal to the area of a basic reference trapezoidal planform, and
thus the actual planform area, S, may not equal Sref.

When considering two areas, recall that the centroid of the combined surfaces is:

Sx = S1x1 + S2x2
Sy = S1y1 + S2y2

. (A-96)

For a standard trapezoidal wing it is convenient to collect the following formulas, where the
sketch shows the nomenclature:

y

x

cT

LEΛ
x
0

cR

b
2

xLE (y) = xLE0 + y tanΛLE (y)
xTE (y) = xTE0 + y tanΛTE (y)

(A-97)

and the local chord is:



Appendix A: Geometry A-29

1/17/06

c y( )
cR

= 1− 1− λ( )η (A-98)

where:

y = b
2
η or η =

y
b 2

     and    λ =
cT
cR

.    (A-99)

The sweep at any element line can be found in terms of the sweep at any other by:

tanΛn = tanΛm −
4
AR

n − m( ) 1− λ
1+ λ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

(A-100)

where n, m are fractions of the local chord. An alternate formula is available using the trailing
edge sweep angle:

tanΛn = (1− n) tanΛLE + n tanΛTE (A-101)
The integral and other relations are given by:

S = b
2
cR 1+ λ( )

cave =
S
b

c
cR

=
2
3
1+ λ + λ2

1+ λ
⎛
⎝⎜

⎞
⎠⎟

AR =
b2

S
=
b 2
cR

4
1+ λ

⎛
⎝⎜

⎞
⎠⎟

            

ymac =
b
6
1+ 2λ
1+ λ

⎛
⎝⎜

⎞
⎠⎟

xLEmac
cR

=
xLE0
cR

+
1+ 2λ
12

⎛
⎝⎜

⎞
⎠⎟
AR tanΛLE

xcen = xLEmac +
c
2

(A-102)

When computing the projected planform area of an entire configuration, the following
formula is useful:

S = yk+1 + yk( )
k=1

k=N

∑ xk+1 − xk( ) (A-103)

where the sketch below defines the nomenclature.
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At k = N, yk+1,xk+1 refer to the initial points y1,x1. For normal planforms,yn+1 = y1 = 0, so
that the summation can be terminated at N-1. This formula assumes planform symmetry and
provides the total planform area with only one side of the planform used in the computation.

A.4.1 A note on reference chords and aerodynamic center location

Looking at the aerodynamics literature, especially the older literature and textbooks, you find
that the nomenclature for reference chords is not uniform. However, there is a standard in use
today in the US industry. The issue is what value to use when nondimensionalizing the pitching
moment:

Cm =
M

qSref cref
(A-104)

The USAF DATCOM defines the standard. They define cref to be the mean aerodynamic chord
or mac:

c =
2
S

c2 (y)dy
0

b /2

∫ (A-89)

Which for a straight tapered wing is:

c
cr

=
2
3
1+ λ + λ2

1+ λ
⎛
⎝⎜

⎞
⎠⎟

(A-102)

The use of the symbol c  to represent the mean aerodynamic chord is confusing because c  is
sometimes used to represent the average chord, ca = S/b in other literature. For example, ESDU
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Item 76003 uses c  to be the standard (or geometric) mean chord, that I have defined here as the

average chord. They use c  as the mac defined by Eqn. A-89. The main problem occurs when the
report or paper does not specifically define the terms used.  For example, Lamar and Alford
(1966) use Eqn. A-89 to nondimensionalize the pitching moment, but they call it the mean
geometric chord.

Another issue to be aware of is that the mac does not necessarily lie on the actual planform if
the wing is not a simple straight tapered configuration.

A.5 Conical Camber
An important class of camber distributions is associated with the planform, and not the

airfoil. Conical camber has been widely used. Many forms have been used, however the NACA
defined a specific type of conical camber that is known as NACA conical camber. The most
recent example of NACA conical camber is the F-15 wing. It improves the drag characteristics of
wings in the subsonic and transonic flow region even though it was developed to reduce the drag
at supersonic speeds!

The key references are:
Hall, C.F., “Lift, Drag, and Pitching Moment of Low Aspect Ratio Wings at Subsonic
and Supersonic Speeds,” NACA RM A53A30, 1953.

This report provided the original mathematical definition of NACA conical camber.
It also provided a large range of test conditions for which the camber was effective.

Boyd, J.W., Migotsky,E., and Wetzel, B.E., “A Study of Conical Camber for Triangular
and Swept Back Wings,” NASA RM A55G19, Nov. 1955.

This report provided more details of the derivation of the formulas for NACA conical
camber, and corrected errors in the equations presented in the first report. Additional
experimental results were also presented.

An advanced form of conical camber addressing so-called supercritical crossflows cases is
Supercritical Conical Camber (SC3). It is described in: Mason, W.H., “A Wing Concept for
Supersonic Maneuvering,” NASA CR 3763, Dec. 1983 (see also AIAA Paper 83-1858, July,
1983).

A.6 Three-Dimensional Wing Geometry
Wing geometry is often defined by interpolating between airfoil section-specified at particular
spanwise stations. Some care some be taken to interpolate properly. See Chapter 9, Geometry
and Grids, in the Applied Computational Aerodynamics notes for a discussion of wing lofting.
Program WNGLFT is described in App. E, Utility Codes. This program provides an example of
a lofting scheme to provide wing ordinates at any desired location. It can be used to provide wing
ordinates for a wide class of wings. It in fact will produce a very good approximation to the wing
design employed by a successful Navy airplane.


