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 (Abstract) 

 

This report presents a general method of unsteady thin airfoil theory for analytically determining 

the aerodynamic characteristics of deforming camberlines.  This method provides a systematic 

approach to the calculation of both the unsteady aerodynamic forces and the load distribution.  

The contributions of the various unsteady aerodynamic effects are made clear and the relationship 

of these effects to steady airfoil theory concepts is emphasized. A general deforming camberline, 

which consists of two quadratic segments with arbitrary coefficients, is analyzed using this 

method.  It is found that the unsteady aerodynamic effect is largely dependent on the shape of the 

deforming camberline.  The drag and power requirements for deforming or unsteady thin airfoils 

are investigated analytically using the unsteady thin airfoil method.  Both the oscillating and 

transient cases are investigated.  The relationship between the aerodynamic energy balance and 

the required actuator energy for transient and oscillating camberline cases is discussed. It is 

shown that the unsteady aerodynamic effects are required to accurately determine the power 

required to deform an airfoil.  The actuator energy cost of negative and positive power is shown 

to be an important characteristic of an airfoil actuator.  Flapping wing flight is also investigated 

using these actuator energy concepts and shown to benefit greatly from springs or elastic 

mechanisms.  An approximate extension of this method to three-dimensional wings is discussed 

and applied to flapping wing flight.                 
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Chapter 1 

 

Introduction and Overview of 

Unsteady Thin Airfoil Theory 
 

1.1 Report Overview 
This report presents a convenient method for determining the unsteady aerodynamic 

characteristics of deforming thin airfoils in incompressible flow.  In particular, equations for the 

lift, pitching moment, drag, work, and pressure distribution for arbitrary time-dependent 

camberline shapes will be presented and applied to a general deforming camberline.       

 

This chapter presents a brief overview of the unsteady thin airfoil theory literature and then 

provides an instructive derivation of incompressible thin airfoil theory.  This derivation, based on 

McCune’s [1990 and 1993] derivation of nonlinear unsteady airfoil theory, is an alternative 

approach to obtaining von Karman and Sears’s [1938] formulation of unsteady airfoil theory.  

Chapter 2 presents a new method of determining the unsteady lift, pitching moment and pressure 

distribution for arbitrary time-dependent airfoil motion.  This method is based on a combination 

of von Karman and Sears’s approach to unsteady thin airfoil theory and Glauert’s [1947] 

approach to steady thin airfoil theory.  The advantage of this method is that it makes clear the 

relationship between the steady and unsteady pressure distribution and force coefficients.  

Chapter 3 applies the method of Chapter 2 to a general deforming camberline.  This general 

camberline consists of two quadratic curves connected at an arbitrary location along the chord.  

The coefficients of the quadratic curves may be chosen so that the camberline represents a wide 

variety of camberline shapes.  Results for conventional and conformal leading and trailing edge 

flaps along with NACA 4-digit camberlines will be presented and discussed.  Chapter 4 presents a 
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discussion and derivation of the drag acting on an unsteady thin airfoil.  The derivation is based 

on the unsteady thin airfoil method presented in Chapter 2, which allows for significant 

simplifications of the drag equation.  Both transient and oscillatory cases are discussed.  The 

asymptotic behavior of the unsteady drag for small and large oscillation frequencies is presented.  

Chapter 5 investigates the aerodynamic energy balance and relates it to the aerodynamic work 

and the actuator energy cost required for a deforming airfoil.  A general actuator model is 

proposed that allows the relative energy cost required by the actuator to produce positive and 

negative work to be specified.  This is applied to the various camberline shapes discussed in 

Chapter 3.  Chapter 6 examines flapping wing propulsion using the actuator energy concepts 

presented in Chapter 5.  The importance of springs in a flapping wing actuation system is 

discussed.  The application to a three-dimensional wing is discussed and examples presented.   

 

1.2 An Overview of Unsteady Thin Airfoil Theory Literature 
The two popular (in the English-speaking literature) formulations of unsteady thin airfoil theory 

for an incompressible flow were presented by Theodorsen [1935] and von Karman and Sears 

[1938].  Although they produce identical results, their representative equations appear 

significantly different.  Theodorsen’s approach requires “circulatory” and “noncirculatory” 

velocity potentials to be determined and then used in the unsteady Bernoulli equation to 

determine the resulting pressure distribution.  Although the unsteady pressure distribution is 

implied with this method, Theodorsen did not present any results for it.  von Karman and Sears 

formulated the problem in the framework of steady thin airfoil theory, as will be discussed in 

Section 1.3.  This makes their approach more appealing to those familiar with steady thin airfoil 

theory.  They also did not discuss the unsteady pressure distribution, although in Sears’s  

dissertation (Sears [1938], pp. 68-74), the problem is solved for an oscillating airfoil.   

 

Independently of Theodorsen and von Karman and Sears, Russian and German researchers 

developed analogous approaches to unsteady airfoil theory.  An excellent discussion of the global 

development of unsteady theory is given in the translated article by Neskarov [1947].  

Discussions (in English) of these alternate methods are given by Sedov [1965] and Garrick [1952 

and 1957].   

 

It is emphasized that these methods are for incompressible flow; compressibility effects 

significantly complicate the theory (Miles [1950]).  Introductions to the theory of unsteady thin 
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airfoils in compressible flow can be found in, for example, Bisplinghoff et al. [1955], Dowell 

[1995], Lomax [1960], Fung [1969] and Garrick [1957].  Some other relevant methods and 

discussions are given by Kemp [1973 and 1978], Graham [1970], Kemp and Homicz [1978], 

Osbourne [1973], Williams [1977 and 1980], and Amiet [1974].   

 

Unsteady thin airfoil theory is an inviscid theory which ignores thickness and applies the 

linearized boundary condition on a mean surface.  Therefore, the validity of the theory for various 

airfoil motions and Reynolds numbers is of interest.  For airfoils oscillating in pitch and plunge, 

Silverstein and Joyner [1939], Reid and Vincenti [1940], Halfman [1952], and Rainey [1957] 

present experimental results that show acceptable agreement with theory for the lift and pitching 

moment (see Lieshman [2000] pp. 316-319 for a comparison).  Satyanarayana and Davis [1978] 

show agreement, except at the trailing edge, between the theoretical and experimental pressure 

distribution for an airfoil oscillating in pitch.  The apparent failure of thin airfoil theory at the 

trailing edge has led to some debate over the validity of enforcing the Kutta condition for 

unsteady flows (Giesing [1969], Yates [1978a and 1978b], Katz and Weihs [1981], McCrosky 

[1982], Poling and Telionis [1986], and Ardonceau [1989]).  Albano and Rodden [1969] show 

that theory slightly over predicts the magnitude, but correctly predicts the shape, of the pressure 

distribution for an airfoil with an oscillating control surface.  For a ramp input of control surface 

deflection, Rennie and Jumper [1996] show reasonable agreement between theory and experiment 

for both the lift and pressure distribution.  Fung [1969] (pp. 454-457) also presents a comparison 

that shows agreement between theory and experiment.  Rennie and Jumper [1997] argue that at 

low Reynolds number (2x105) and high deflection rates, the viscous and unsteady effects cancel 

out and steady thin airfoil theory is then valid.              

 

A topic of considerable interest in applied unsteady aerodynamics is dynamic stall and unsteady 

boundary-layer separation. Semi-empirical methods of modeling dynamic stall in the framework 

of unsteady thin airfoil theory have been proposed by Ericsson and Redding [1971] and Leishman 

and Beddoes [1989].  These methods must be tuned by experimental data.  Sears [1956 and 1976] 

proposed a method of predicting boundary-layer separation for an unsteady airfoil.  This method 

uses the unsteady thin airfoil theory vorticity distribution along with a thickness induced velocity 

distribution to represent the outer flow.  Unsteady boundary layer separation concepts may then 

be applied to determine flow separation (Sears and Telionis [1975]).  The treatment of separated 

flow regions was discussed by Sears [1976].  Sears’s approach would allow dynamic stall to be 

determined analytically without any empiricism.  Application of this method has not been 
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presented in the literature.  McCroskey [1973] presents a modification to unsteady thin airfoil 

theory to account for the effect of thickness, which would be useful for the application of Sears’s 

proposed method.   

 

1.3 Fundamental Concepts in Unsteady Thin Airfoil Theory 
The following discussion is based on McCune’s [1990 and 1993] derivation of nonlinear 

unsteady airfoil theory.  The derivation for the linear case is presented here because it is felt that 

it provides insight into the meaning of the three separate lift terms found by von Karman and 

Sears.  Also, this derivation does not seem to be present in the literature. 

 

The fundamental differences between steady (time-independent) and unsteady (time-dependent) 

incompressible airfoil theory stem from two concepts; the unsteady Bernoulli equation and 

Kelvin’s theorem.  Under the assumptions of thin airfoil theory, the unsteady Bernoulli equation 

can be written as (Katz and Plotkin [2001], Eq. 13.35) 













∂
∂

+= ∫
x

dxtx
t

txtUp
0

00 ),(),()( γγρ∆                                          (1.1) 

where γ  is the vorticity (which is a function of time) on an airfoil that extends from x = 0 to c.  

Eq. (1.1) identifies the first fundamental difference between steady and unsteady airfoil theory, 

which is that ∆p is no longer proportional to γ (meaning the Kutta-Joukowski theorem no longer 

applies).  It is instructive to examine the consequences of Eq. (1.1) on the airfoil lift.  From Eq. 

(1.1), the lift can be written as 

  dxdxtx
t

dxtxtUL
c xc
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∂

+=
0 0

00
0

),(),()( γργρ                                   (1.2) 

Integrating the second term by parts results in 
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If it is recognized that 

∫∫ =
ccx

dxtxcdxtxx
000

00 ),(),( γγ                                                (1.4) 

then Eq. (1.3) can be written as 
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

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The first term in Eq. (1.5) will be defined as the Joukowski lift (Lj), because it corresponds to the 

lift due to the Kutta-Joukowski theorem, and the second term will be defined as apparent mass lift 

(La).  Before the significance of Eq. (1.5) is recognized, the nature of γ must be discussed.  This 

discussion is based on Kelvin’s condition, which is the second fundamental difference between 

steady and unsteady airfoil theory.  Kelvin’s condition states that the circulation (Γ) in a flow 

must remain constant.  The circulation around an airfoil is related to γ as follows 

                                                                  (1.6) ∫=
c

a dxtx
0

),(γΓ

From the definition of unsteady motion  

0),(
0

≠∫
c

dxtx
dt
d γ                                                        (1.3) 

which implies that vorticity is shed into a wake as follows 

∫∫
∞

=
c

w

c

dt
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ddxtx

dt
d ξξγγ ),(),(

0

                                             (1.7) 

From Helmholtz’s vortex laws, the strength of the wake vortices remain constant as they convect 

downstream.  An assumption of linear unsteady airfoil theory is that the wake vortices convect 

downstream with the freestream velocity and not with the local velocity.  This implies that the 

wake is planar and therefore wake rollup effects are ignored.  The presence of wake vortices 

means that γ may be written as 

      10 γγγ +=                                                               (1.8) 

where γ0 is the “quasi-steady” component and γ1 is the “wake induced” component of vorticity on 

the airfoil.  The quasi-steady component is the vorticity due to the instantaneous state of the 

airfoil as predicted from steady thin airfoil theory.  The wake induced component is the 

component of vorticity induced from the wake vortices.  Considering Figure 1.1, the induced 

vorticity from a single vortex can be written as 

  
cx

xc
x

w

−
−

−
=

ξ
ξ

ξ
γ

π
γ

)(
'

2
1'1                                                   (1.9) 

From this equation, the induced vorticity for the entire wake can be written as 

ξ
ξ

ξ
ξ

ξγ
π

γ d
cx

xc
xc

w∫
∞

−
−

−
=

)(
)(

2
1

1                                               (1.10) 
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where the wake starts at c and extends to infinity. 

z

x

ζ

airfoil surface discrete vortex (γw ')

 
Figure 1.1: Airfoil and a single wake vortex 

 

With it now known that 10 γγγ += , with the expression for γ1 given in Eq. (1.10), it useful to 

return to Eq. (1.5) for the lift.  Substituting Eqs. (1.8) and (1.10) into Eq. (1.5) results in 
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Eq. (1.11) can be separated into the two following terms 
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These two equations can be further reduced by manipulating the second and third term in Eq. 

(1.13).  From Eq. (1.10), the wake induced circulation can be evaluated as 

ξ
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Furthermore, the integral in the second term of Eq. (1.13) can be evaluated as follows 

ξξξξξγγ dccdxcx
c

w

c

∫∫
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 +−−=− 2/)()2/( 2
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The key to the cancellations occurring in Eq. (1.12) and (1.13) is taking the time derivative of Eq. 

(1.14).  This derivative is similar to von Karman and Sears’s Eq. (15), except in the current case, 

, which leaves an extra term.  Following von Karman and Sears’s discussion, the 

derivative is evaluated as follows 

0)( ≠cf
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Substituting Eq. (1.16) into (1.13) identifies the cancellation of the 1Γρ ∞∞U  terms.  This is a 

cancellation between, as previously defined, a Joukowski lift term and an apparent mass lift term.  

In fact, this cancellation eliminates all of the Joukowski lift terms due to γ1.  Considering now 

both Eqs. (1.9) and (1.10), the next cancellation occurs because of the Kelvin condition of Eq. 

(1.4), which implies 

010 =
∂

∂
+
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+
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∂
ttt
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                                                (1.17) 

This cancellation is between apparent mass lift terms only, but is a combination of terms due to γ0 

and γ1.  Recognizing these two cancellations, the total lift from Eqs. (1.12), (1.13) and (1.16) can 

be written as 

ξ
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This is von Karman and Sears’s result.  They label the first term the quasi-steady lift (L0), the 

second terms the apparent mass (L1), and the third term the wake induced component (L2).  Thus, 

in von Karman and Sears’s notation, the separate lift terms are written as follows 
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The significance of the derivation presented here is that it shows the mechanism of lift that 

produces each term of Eq. (1.19).  L0 is the complete Joukowski lift term due to γ0, which can be 

determined from steady airfoil theory.  L1 is only a fragment of the apparent mass term due to γ0 

because the cancelled 
t

c
∂

∂ 0

2
Γ

ρ  term is not present.  But, if 00 =
∂

∂
t

Γ
, then L1 is the entire 

apparent mass term due to γ0.  von Karman and Sears make this observation by noting that L1 is 
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the total apparent mass lift component of an airfoil without circulation.  From the current 

discussion, a more precise statement would be that L1 is the total apparent mass component of lift 

for an airfoil with a constant circulation (which still allows for a non-constant vorticity 

distribution).  The equivalence of this statement with von Karman and Sears’s statement may be 

obvious since a constant circulatory vorticity distribution can always be superimposed on an 

unsteady airfoil without changing the lift due to the unsteady motion.  A surprising result of Eq. 

(1.19) is that L2, which is the wake-induced component of lift, is due entirely to the apparent mass 

of the wake induced vorticity, and not the Joukowski lift of the wake induced vorticity.   

 

Equations analogous to the lift terms in Eq. (1.19) can be derived for the quarter-chord pitching 

moment. The resulting expressions are 
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This shows that the wake induces no quarter-chord pitching moment on the airfoil. 

 

1.4 The Unsteady Pressure Distribution 
Eqs. (1.19) and (1.20) present the total airfoil lift values. von Karman and Sears do not discuss 

the problem of determining the unsteady lift distribution.  Neumark [1952] presents equations for 

the unsteady load distribution that corresponds to the three lift and moment terms of Eq. (1.19) 

and (1.20).  The resulting equations are 

( )

( )
∫

∫
∞

−

−
=

=

=

c

x

n

d
x

xcUp

dxxdtdp

Up

ξ
ξξ

ξγ
π

ρ∆

γρ∆

γρ∆

22

0
01

00

)/(                                          (1.21) 

Neumark shows that the connection between ∆p0 and ∆p2 and their total force equivalents given 

in Eq. (1.19) and (1.20), is proved by simply integrating ∆p0 and ∆p2 over x.  The important 

contribution of Neumark is the ∆p1 term in Eq. (1.21).  This term requires γ0n, which is defined as 

the non-circulatory vorticity.  Neumark uses a result obtained by Betz [1920] which states that the 

 8



 9

vorticity on an airfoil may be separated into a circulatory (γ0c) and non-circulatory (γ0n) 

component.  The term non-circulatory means that integrating the vorticity over the chord results 

in a value of zero.     



 

 

Chapter 2 

 

An Unsteady Thin Airfoil Method for 

Deforming Airfoils 
 

2.1 Introduction 
This chapter will present a formulation of unsteady thin airfoil theory that is convenient for the 

analysis of deforming airfoils.  This method provides a systematic approach to the calculation of 

both the unsteady aerodynamic forces and the load distribution.  For the quasi-steady force 

coefficient and load distribution calculation, this method combines Glauret’s [1947] and Allen’s 

[1943] approaches.  von Karman and Sears’s [1938] approach to the unsteady force coefficient 

calculation is adopted along with Neumark’s [1952] method for the unsteady load distribution.  

The wake-effect terms are calculated using either the Wagner or Theodorsen function.  The 

breakup of “steady” and “damping” terms are discussed and shown to allow for a physical 

interpretation of the apparent mass terms.              

 

2.2 Determining L0, L1, M1, and M0 
Applying the following transformation  

 ( θcos1
2

−=
cx )                                                              (2.1) 

to Eqs. (1.19) and (1.20) results in the following 
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( )

( )
∫

∫
∞

−
=












∂
∂

=

=

c

dUcL

d
t

cL

UL

ξ
ξξ

ξγρ

θθθθγρ

Γρ
π

22

0
0

2

1

00

2

sincos
4

                                          (2.2)                                 

( )( )

( )

0

sin]cos2/1[cos
16

sin2/1cos
4

2

0

2
0

3

1

0
0

2

0

=











−−

∂
∂

=

−=

∫

∫

M

d
t

cM

dUcM

π

π

θθθθθγρ

θθθθγρ

                                (2.3) 

It is convenient to represent γ0 using Glauert’s Fourier series, which is written as  

( ) ( ) ( ) 







+



 +

= ∑
∞

=1
00 sin

sin
cos12,

n
n ntAtAUt θ

θ
θθγ                                    (2.4) 

 where the Fourier coefficients are defined as 

( )

( ) ( ) θθθ
π

θθ
π

π

π

dntwA

dtwA

n ∫

∫

=

−=

0

0
0

cos,2

,1

                                                  (2.5) 

In these equations, w is the instantaneous boundary condition for no flow through the camberline, 

which is written as 

x
z

t
z

U
w cc

∂
∂

+
∂

∂
=

1                                                            (2.5b) 

where z defines the camberline and the x-axis is specified to be parallel to the free-stream 

velocity.   

 

A benefit of representing γ0 by the Fourier series is that it allows for the simple evaluation of L1 

and M1 as well as the conventional representations of L0 and M0.  For L1, substituting Eq. (2.4) 

into Eq. (2.2) leads to the following 

∫ ∑ 







+



 +

∂
∂

=
∞

=

π

θθθθ
θ

θρ

0 1
0

2

1 sincossin
sin

cos1
2

dnAA
t

UcL
n

n                (2.6) 

Recall that  
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2
sincos

sin
cos1

0

πθθθ
θ

θπ

=



 +

∫ d                                             (2.7) 

and 





=
≠

=

= ∫

∫

2,)41(
2,0

2sin
2
1sin

sincossin

0

0

n
n

dn

dn

π

θθθ

θθθθ

π

π

                                                       (2.8) 

Substituting Eq. (2.7) and (2.8) into (2.6) results in 

)2(
8 20

2

1 AAUcL && += πρ
                                               (2.9) 

where the dot represents differentiation with respect to t.  For M1, substituting Eq. (2.4) into Eq. 

(2.3) leads to the following 

(∫ ∑ −−







+



 +

∂
∂

=
∞

=

π

θθθθθ
θ

θρ

0

2

1
0

3

1 sincos2/1cossin
sin

cos1
8

dnAA
t

UcM
n

n )        (2.10) 

where the integrals are evaluated as follows 

( )
2

sincos2/1cos
sin

cos1

0

2 πθθθθ
θ

θπ

−=−−



 +

∫ d                                      (2.11) 

( )










≥
=
=−
=−

=

−−∫

4,0
3,8/
2,4/
1,8/

sincos2/1cossin
0

2

n
n
n
n

dn

π
π
π

θθθθθ
π

                                          (2.12) 

Thus, M1 can be written as 

)24(
64 3210

3

1 AAAAUcM &&&& −++−=
πρ

                                 (2.13) 

Also, recall from steady theory that L0 and M0 may be represented as 

)2/( 10
2

0 AAcUL += πρ                                                  (2.14) 

)(
8 12

22

0 AAcUM −=
πρ

                                                 (2.15) 
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Eqs. (2.9), (2.13), (2.14) and (2.15) provide the relationships between the Fourier coefficients 

defined in Eq. (2.5) and the apparent mass and quasi-steady lift force and pitching moment.  Note 

that M1 requires A3 to be calculated, which is the only new term required in addition to those 

needed for the steady thin airfoil theory.   

 

2.3 Determining ∆p0 and ∆p1 

In Section 1.3, the equations for the three unsteady pressure distribution terms were presented.  

This section will discuss the practical calculation of two of these terms, ∆p0 and ∆p1.  The 

majority of this section will be on the calculation of ∆p1.  From Eq. (2.4), ∆p0  is written as 

( ) 







+



 +

== ∑
∞

=1
0

2
00 sin

sin
cos12

n
n nAAUUp θ

θ
θρθγρ∆                          (2.16) 

Applying the transformation of Eq. (2.1) to Eq. (1.21) results in the following equation for ∆p1 

( )∫=
θ

θθθγρ∆
0

01 sin)/(
2

ddtdcp n                                             (2.17) 

Eq. (2.16) requires that the circulatory (γ0c) and noncirculatory (γ0nc) quasi-steady vorticity 

distributions be defined.  Recall that the term non-circulatory means that integrating the vorticity 

over the chord results in a value of zero.  From Neumark [1952], γ0c and γ0nc can be written as 

( )

( ) 0
0 0

0
2

0
0

0
0

coscos
sin),(

sin
2

sin
2

θ
θθ
θθ

θπ
θγ

θπ
Γθγ

π

dtwU
c

n

c

∫ −
=

=

                                          (2.17b) 

where w represents the unsteady boundary condition on the airfoil, and Γ0 is defined as 

θθ
θ
θθΓ

π

dtwUb sin
cos1
cos1),(2

0
0 +

−
= ∫                                         (2.18) 

Instead of using Eqs. (2.17b) and (2.18) for the calculation of γ0, it is convenient to continue our 

use of Glauert’s Fourier series defined in Eq. (2.4).  To do this, we must separate Eq. (2.4) into 

circulatory and noncirculatory components using Eq. (2.17b) as a guide.  The quasi-steady 

circulation strength (Γ0) in Eq. (2.18) is obtained by integrating Eq. (2.4) across the chord, 

resulting in  







 +=

2
1

00
AAcUπΓ                                                     (2.19) 
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Substituting this representation of Γ0 into the γ0c expression in Eq. (2.17) results in the following 

( )
θ

θγ
sin

)2( 10
0

AAU
c

+
=                                                    (2.20) 

This equation is interesting because it shows that the entire θsin2 1AU∞ component of γ0 is not 

present in γ0c, as one may expect from the symmetry of sinθ from zero to π.  Instead, the 

θsin2 1AU∞  component of γ0 is separated into a circulatory and noncirculatory component by 

recognizing the following identity 

 



 −=

θ
θ

θ
θ

sin
2cos

sin
1

2
1sin                                                   (2.21) 

where the first term is the circulatory contribution present in Eq. (2.20) and the second term is the 

noncirculatory contribution of A1.  The portion of Eq. (2.4) not present in Eq. (2.20) is the 

noncirculatory component of the vorticity distribution (γ0n).  With the help of Eq. (2.21), this is 

written as 

( ) ∑
∞

=

+−=
2

100 sin2
sin

2cos
sin
cos2

n
nn nAUUAUA θ

θ
θ

θ
θθγ                      (2.22) 

To avoid the infinite series in Eq. (2.22), the following relationship is applied (Allen [1943]) 

( )
0

0 0

0

1 coscos
sin,1sin θ

θθ
θθ

π
θ

π

dtwnA
n

n ∫∑ −
=

∞

=

                                       (2.23) 

which can also be written as  

( )
θθ

θθ
θθ

π
θ

π

sin
coscos
sin,1sin 10

0 0

0

2

AdtwnA
n

n −
−

= ∫∑
∞

=

                              (2.24) 

Substituting this into Eq. (2.22) results in the following 

( ) ( )
0

0 0

0
100 coscos

sin,2sin2
sin

2cos
sin
cos2 θ

θθ
θθ

π
θ

θ
θ

θ
θθγ

π

dtwUUAUAn ∫ −
+



 +−=       (2.25) 

which simplifies to 

( ) ( )
0

0 0

0
100 coscos

sin,2
sin

1
sin
cos2 θ

θθ
θθ

πθθ
θθγ

π

dtwUUAUAn ∫ −
+−=                 (2.26) 

Eqs. (2.20) and (2.26) are exactly equivalent to Eq. (2.17), but are in terms of the Fourier 

coefficients and a somewhat simpler integral to evaluate.  Substituting Eq. (2.26) into ∆p1 in Eq. 

(2.16) and performing the integration results in  

( ) ]sinsin2)[/(
2

0
101 ∫+−= ∞

θ

θθθγθθρ∆ dUAUAdtdcp b               (2.27) 
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where the basic load distribution (γb) is written as 

( ) ( )
0

0 0

0

coscos
sin,2 θ

θθ
θθ

π
θγ

π

dtwU
b ∫ −

=                                          (2.28) 

Eqs. (2.27) and (2.28) provide a convenient method for calculating the apparent mass load 

distribution.  This representation allows the relationship to be seen between the time-rate-of-

change of quasi-steady load distribution parameters and the apparent mass load distribution.  Note 

that Garrick [1957]* presented an equation for the load distribution on an oscillating airfoil 

following Theodorsen’s [1935] approach.  This prompted Scanlan [1952] to criticize that 

Neumark’s equations for the load distribution, based on the von Karman and Sears approach, 

were unnecessary.  On the contrary, the present author believes that Neumark’s equations, or 

more specifically the formulation presented in this report based on Neumark’s equations, are 

superior in many ways to Garrick’s equations†.  The reason for this is that the current approach 

writes the apparent mass load distribution explicitly in terms of the components of the quasi-

steady load distribution (Eq. (2.27)).  There are two benefits of this.  The first is that the physical 

nature of the apparent mass terms is made clear.  This is because, as shown in Chapter 1 for the 

lift force, the apparent mass terms are dependent only on the time-rate-of-change of the quasi-

steady terms.  The second benefit is that the current approach requires simpler and fewer integral 

evaluations because the Fourier coefficients (as well as γb) required for the quasi-steady terms are 

reused for the apparent mass terms.  The only difficult integral to evaluate is the integral in Eq. 

(2.27), but this has been found easier to evaluate than Garrick’s equivalent equation.  

Furthermore, Section 2.7 will discuss cases for which this integral does not have to be evaluated 

at all.        

 

With the circulatory and noncirculatory vorticity distributions known in terms of the Fourier 

coefficients (Eqs. (2.20 and 2.26)), equations for the circulatory and noncirculatory quasi-steady 

pitching moment may be written as 

    )2(
8 20

22

,0 AAcUM c +=
πρ

                                             (2.29) 

)2(
8 10

22

,0 AAcUM n +−=
πρ

                                            (2.30) 

                                                 
* Fung [1969], pp. 408, presents the same equation, but credits it to Kussner and Schwarz [1940] 
†Garrick’s equation is recovered if the order of integration is reversed in Eq. (2.27) and the integration over 
θ is evaluated (see Eqs. (2.94) and (2.95)).   
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These equations will be useful for comparing results with those obtained by Theodorsen, whose 

method requires the separation of the lift and pitching moment into circulatory and noncirculatory 

components (note that, by definition, L0,n is zero).  In terms of Theodorsen’s notation, though, the 

apparent mass components are included in the noncirculatory terms.        

 

2.4 Determining L2 and ∆p2  

There are two different approaches available for determining the wake effect terms L2 and ∆p2 

(recall that from Eq. (2.3), M2 = 0 around the quarter chord).  The first of these, based on the 

concept of superimposing step functions, uses Wagner’s solution (Wagner’s function) for an 

impulsively started airfoil (Wagner [1925]), or more specifically a step change in the quasi-steady 

circulation (Γ0), to construct solutions for arbitrary time dependent changes in Γ0.  The second 

approach, intended for oscillatory motion, is based on Theodosen’s solution for a harmonically 

oscillating airfoil.  In both of these cases, the wake effect terms (L2 and ∆p2) are functions of only 

the time-rate-of-change of Γ0.  From Eq. (1.19) it is seen that L0 is proportional to Γ0.  Thus, the 

wake effect terms can be thought of as functions of L0.  Note that, as mentioned in Chapter 1, the 

wake is assumed to be planar.  The effect of a nonplanar wake is discussed, for example, by 

Chopra [1976] and Homentcovschi [1985].   

 

a) Applying the Wagner Function to Transient Variations in L0 

For transient variations in L0, the wake-effect terms (L2 and ∆p2) are determined using the 

Wagner function‡ (φ(t)).  The Wagner function, which represents the wake integral in Eqs. (1.19 

and 1.21), allows L2 to be written for a step input in L0 as: φ(t)∆L0.  Although there is no exact 

analytic representation of the Wagner function, accurate approximations have been suggested 

(Garrick [1938], von Karman and Sears [1938], and Jones [1940]).  It will be most convenient to 

use the approximation suggested by Jones, which is written as 

( ) τττφ 6.0091.0 335.0165.0 −− −−= ee                                       (2.31) 

where 
c

tU∞=τ , which is the number of chord lengths traveled between t = 0 and t = t.  Note that 

this approximation does not approach the asymptotic value of φ (equal to zero) at the correct rate.  

For limiting purposes, the Wagner function is written as 

                                                 
‡ Fung [1969], pp. 208, presents the exact form of φ, which requires the integration of Bessel functions. 
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( ) ...
2
1

+−=
τ

τφ                                                      (2.31b) 

for τ approaching infinity (Lomax [1960]).   

 

For arbitrary time-dependent L0 variations, the concept of linear superposition is exploited using 

the Duhamel integral (Appendix C of Bisplinghoff, et al., [1955]).  This can be thought of as 

creating an arbitrary time variation in airfoil circulation by combining the effect of many 

infinitesimal step changes in circulation.  Using the Duhamel integral and the Wagner function, 

L2 can be written as    

( ) ( ) ( ) σστφσ
σ

φτ∆τ
τ

τ

d
d
dLsLL −+= ∫

0

0
002 )()(                                (2.32) 

From Eqs. (1.20), (2.1) and (2.32), the wake-effect load distribution (∆p2) can be written as   

)(
sin

cos12)( 22 τ
θ

θ
π

τ∆ L
c

p 



 +

=                                            (2.33) 

Note that ∆p2 has exactly the same θ-dependence as a quasi-steady load distribution caused by 

angle of attack.  This is similar to lifting line theory, where the effect of the wake at each 

spanwise location is considered an induced angle of attack.  In the present case though, the 

induced angle of attack is time-varying.    

 

As an example of applying the equations presented in this chapter, consider a step change in L0 

(due to a step change in angle of attack, flap deflection, etc.).  The resulting total lift can be 

written as 

( ) )()( 100 ττφτ LLLL ++=                                         (2.34) 

where the combination of φ and L0 represents L2.  Because for a step input at t = 0 the time 

derivatives in Eq. (2.9) for L1 are infinite at t = 0 and zero elsewhere, the Dirac delta function is 

used to represent the time-derivatives in Eq. (2.9) as follows  

)2(
8

)(
20

2

1 AAUcL += πτδρ                                         (2.35) 

Recall that the Dirac delta function has the following properties 

1)(

0)0(
)0(

=

=≠
∞==

∫
∞

∞−

ττδ

τδ
τδ

d

                                                            (2.36) 
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The last property in Eq. (2.36) will be important when the energy of the system is discussed in 

Chapter 5. Similarly to L1, ∆p1 and M1 in Eqs. (2.13 and 2.27) are obtained by exchanging the 

Dirac delta function for the time derivative.   

 

As an example of applying Eq. (2.31) and (2.32), a ramp input of L0 will be considered.  For this 

case, L0 is defined to change linearly from t = 0 to t = t*.  This will written as 

*00 t
tLL ∆=                                                            (2.37) 

where ∆L0 is the change in L0 achieved between t equal to zero and t* and L0(t = 0) = 0.  Using 

this expression, Eq. (2.32) can be written as 

( ) ( ) σστφ
τ
∆τ

τ

dLL −= ∫
0

0
2 *

                                              (2.38) 

where 
c
tU ** ∞=τ .  From Eq. (2.31), Eq. (2.38) evaluates to the following 

( ) [ ]ττ

τ
∆τ 091.06.00

2 81319.155833.037152.2
*

−− ++−= eeLL                     (2.39) 

for  

*0 ττ <≤  

and 

( ) ( )( ) ( )( )[ ]ττττττ

τ
∆τ −−−− −+−= *091.0091.0*6.06.00

2 81319.155833.0
*

eeeeLL          (2.40) 

for  

10* ≤< sτ  

Figure 2.1 illustrates Eqs. (2.39) and (2.40) and compares them with the Wagner function of Eq. 

(2.31).   
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Note that L2 is not proportional to the wak

[1940] showed that Γ1, resulting from a 

The Kussner function is the equivalent t

edged gust.  For values of τ less than 4, S

        =
2

π
ψ

Analogously, Kemp [1952] shows that Γ

topic of the next subsection, is given by th

to a infinitely long sinusoidal gust (Sears

be determined from Eq. (1.17).       

 
b) Applying the Theodorsen Function t

For a sinusoidal variation of L0 that has

extends to infinity), it is necessary to u

[1935]).  Consider the following time vary

cos
)(0

tA
eiBAL

ω −=
+=

where A and B are constants and ω is the

sinusoidal variation of L0, and if it is ass

period of time, then L2 can be written as 

 

Response 
Eq. (2.31)
1 1.5 2
τ  

ce between a step input and a ramp input on L2  

e induced circulation (Γ1) as shown in Chapter 1.  Sears 

step input of L0, is given by the Kussner function (ψ).  

o the Wagner function for an airfoil entering a sharp- 

ears provides the following approximation for ψ 









−+−

1680
23

246
1

32 ττττ                                            (2.41) 

1 for a harmonically oscillating Γ0, which will be the 

e Sears function.  The Sears function is the lift response 

 [1941]).  Knowledge of Γ1 allows the wake vorticity to 

o Sinusoidal Variations in L0 

 occurred for a long period of time (so that the wake 

se Theodorsen’s function to determine L2 (Theodorsen 

ing L0 

)cossin(sin tBtAitB

ti

ωωω

ω

++
                            (2.42) 

 oscillation frequency.  Because Eq. (2.42) represents a 

umed that this oscillation has been occurring for a long 
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02 ]1)([ LkCL −=                                                    (2.43) 

where C(k) is Theodorsen’s function and 
U
ck

2
ω

=  is the reduced frequency.  Theodorsen’s 

function is a complex number, which is defined written as 

   
)()(

)()()()( )2(
0

)2(
1

)2(
1

kiHkH
kHkiGkFkC

+
=+=                                  (2.44) 

where H terms are Hankel functions.  Figure 2.2 shows the variation of these components with k. 

Note that when k = 0, indicating steady motion, F = 1 and G = 0.  For k<<1, F and G can be 

expanded as (Wu [1961]) 

)ln(
2

ln

)ln(
2

1

2

2

kkOkkG

kkOkF

+





 +=

+−=

γ

π

                                          (2.45) 

where γ is Euler’s constant (= 0.5771...). For k>>1, the expansions can be written as 

  






 +−−=







 ++=

−

−

)(
128

111
8
1

)(
8

11
2
1

4
2

4
2

kO
kk

G

kO
k

F
                                         (2.46) 

These representations of F and G will be used in Section 2.6 to show the importance of the 

unsteady aerodynamic terms in aircraft stability calculations.  Substituting Eqs. (2.42) and (2.44) 

into (2.43) allows the following general equation to be written for L2 

02 )cossin)(()sincos)(( LIMtBtAkGtBtAkFL −++−−= ωωωω              (2.47) 

where IM represent the imaginary terms, which are not of interest.  Note that only in Eq. (2.47), 

the last step, can the imaginary terms be ignored.  This is because imaginary terms in L0 and C(k) 

combine to form real terms.  Recall also, that the final equation for L consists of the real part of L0 

and L1 as well as the real part of L2.  Determining ∆p2 using the Theodorsen function is exactly 

analogous to that for using the Wagner function in Eq. (2.34).  Thus, it can be written as      

)(
sin

cos12)( 22 tL
c

tp ω
θ

θ
π

ω∆ 



 +

=                                        (2.48) 

where ∆p2 is, like for the transient case, seen to have the same form as a quasi-steady angle of 

attack increment. 
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Figure 2.2: The variation with k of the components of the Theodorsen function (Eq. (2.44)) 

 

In the previous definition of k, it was assumed that k was a real number, indicating that L0 in Eq. 

(2.42) was oscillating with a constant magnitude.  For a damped oscillation of L0, the exponent in 

Eq. (2.42) can be written as  

      ωµ ip +=                                                             (2.49) 

where µ and ω are real numbers.  This allows Eq. (2.42) to be rewritten as 

[ ] t

pt

etBtAitBtA

eiBAL
µωωωω )cossin(sincos

)(0

++−=

+=
                           (2.50) 

If k is redefined as 
U
pc
2

=k , can Eqs. (2.43) and (2.44) still be used to determine L2?  This was 

the topic of much discussion in the Reader’s Forum of the March 1952 issue of the Journal of the 

Aeronautical Sciences (Van de Vooren [1952], Laitone [1952], Jones [1952], Dengler, et al. 

[1952]).  For cases where µ > 0, indicating an unstable oscillation, it was found that the 

conventional Theodorsen function can be used with the newly defined k.  On the other hand, for a 

stable oscillation (µ < 0), it was shown that the conventional Theodorsen function cannot be used.  

Instead, the Wagner function and Duhamel integral (Eq. (2.32)) must be applied, which is 

referred to as the “Generalized Theodorsen Function.”  This was not considered by Luke, et al. 

[1951], whose values of C(k) for µ < 0 are therefore of no value.              
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2.5 The Separation of Quasi-Steady Terms into 

“Aerodynamic Damping” and “Steady” Terms   
The first step in applying the unsteady thin airfoil method described in Sections 2.1 – 2.4 is to 

obtain the quasi-steady terms, L0 and ∆p0.  From Eqs. (2.5b), it is seen that these depend on both 

the instantaneous slope of the camberline as well as the instantaneous time-rate-of-change of the 

camberline.  For steady motion, of course, w in Eq. (2.5b) consists of only the terms due to the 

slope of the camberline relative to the free-stream velocity, as shown in Figure 2.3.  For unsteady 

motion, though, there is the additional term due to the rate of change of the camberline shape, as 

shown in Figure 2.4.  An example of this additional term can be imagined as the aerodynamic 

force acting on a plate at zero free-stream velocity while in a heaving motion.  This force will 

always damp the unsteady motion, and will therefore be labeled the aerodynamic damping. 

 
Figure 2.3:  The steady terms of w (wd) for a pitching airfoil and a deflecting flap 
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Figure 2.4:  The damping terms of w (wd) for a pitching airfoil and a deflecting flap 

 

To distinguish between the aerodynamic forces resulting from these two components, w will be 

written as 

ds www +=                                                           (2.51) 

where ws is the “steady” component (Figure 2.3) and wd is the “damping” component (Figure 

2.4).  Defining a nondimensional time τ as 

c
Ut

=τ                                                               (2.52) 

the two terms in Eq. (2.51) can be written as 

x
zws ∂

∂
=                                                               (2.53) 
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τ∂
∂

=
z

c
wd

1                                                             (2.54) 

For many practical applications (as shown in Chapter 3) the function z has the following form 

)()(),( τβψτ xxz =                                                    (2.55) 

where ψ defines the shape of camberline (for example a flapped or a parabolic camberline) and β 

defines the time varying magnitude of the camberline (for example the flap deflection angle or 

magnitude of maximum camber).  Note that Eq. (2.55) cannot represent shapes such as a time 

varying flap-to-chord-ratio because these would require that ψ be a function of time.  Using Eq. 

(2.55), Eqs. (2.53) and (2.54) can be rewritten as 

    βψ
x

ws ∂
∂

=                                                           (2.56) 

τ
βψ

∂
∂

=
c

wd                                                            (2.57) 

which shows that ws is proportional to β and wd is proportional to dβ/dτ.  Recognizing this allows 

the L0 to be written as 

'
,0,00,

0 ββ dsL KKC
qc
L

+=≡                                             (2.58) 

where 
τ
ββ

∂
∂

=' .  The lift due to ws is represented by K0,s  and that due to wd is represented by K0,d.  

From Eq. (2.14), these K terms can be written as 
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where the steady and damping Fourier coefficients (the bar indicates that they are per-unit β or β’) 

are defined from Eqs. (2.5), (2.56) and (2.57) as 
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( ) θθψ
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Similarly, M0 can be written as  
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+=≡                                             (2.60) 

where from Eq. (2.15) 
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From Eqs. (2.16) and (2.23), the quasi-steady load distribution can also be separated into steady 

and damping components as follows 
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θ

θθχ
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cos14)(  

where T0,s and T0,d are due to the steady and damping basic load distributions, respectively.   

 

It is also convenient to separate the apparent mass terms (L1, M1 and ∆p1) into damping and 

steady components.  This is achieved by recognizing that time-rate-of-change of the quasi-steady 

damping and steady component each produce an apparent mass term.  Thus, L1 can be written as      

''
,1

'
,11,

1 ββ dsL KKC
qc
L

+=≡                                             (2.63) 

where from Eq. (2.9) 
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K1,s can be physically interpreted as the apparent mass lift due to the time-rate-of-change of γ0,s.  

Similarly, K1,d can be physically interpreted as the apparent mass lift due to the time-rate-of-

change of γ0,d.  Because γ0,d depends on , L'β 1,d is a function of .  Like L"β 1, M1 can be written as 

''
,1

'
,11,2

1 ββ dsM JJC
qc
M

+=≡                                              (2.65) 

where from Eq. (2.13) 
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Likewise, ∆p1 can be written as 
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where from Eq. (2.27) 
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The first term in Eq. (2.67) is the steady apparent mass term (∆p1,s), which is due to the time-rate-

of-change of γ0,s, and the second term is the damping term (∆p1,d),  which is due to the time-rate-

of-change of γ0,d.   

 

Collecting the terms defined in this section for the quasi-steady and apparent contributions to the 

lift, quarter-chord pitching moment, and load distribution, the following equations can be written 

2,
''

,1
'

,1,0,0 )( LdsdsL CKKKKC ++++= βββ                            (2.68) 

''
,1

'
,1,0,0 )( βββ dsdsM JJJJC +++=                                   (2.69) 

[ ] [ ] 2,
''

,1
'

,1,0,0,0,0 )()()()()()( pdsddssp CTTTATAC ∆βθβθθθχβθθχ∆ ++++++=  (2.70) 

where the wake-effect components (CL,2 and ∆Cp,2) depend on the time variation of β.  For 

transient variations of β, CL,2 can be written from Eqs. (2.32) and (2.59) as follows      
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( ) ( ) σστφσβσβφτβ∆τβ∆τ
τ

τ

dKKsKKC dsdsL −+++= ∫
0

))()(()())()(( ''
,0

'
,00

'
,00,02,     (2.71) 

For sinusoidal variations of β, CL,2 can be written from Eqs. (2.43) and (2.59) as follows      

( )'
,0,02, ]1)([ ββ dsL KKkCC +−=                                      (2.72)  

For both of these cases ∆Cp,2 can be written as                              

)(
2

)()( 2,2, τ
π
θχτ∆ Lp CC =                                               (2.73) 

where χ was defined in Eq. (2.62b).  Applying Eq. (2.72) for a sinusoidal β will be the topic of 

the next section.   

 

Two simple but important camberline motions, pitch and heave, provide a good example of 

determining the parameters defined in this section.   For an airfoil pitching around an axis xa 

(measured from the leading edge), the shape function ψ from Eq. (2.55) is 

   
)cos1)(2/( θ

ψ
−−=

−=
cx

xx

a

a                                               (2.74) 

For a heaving airfoil, ψ is written simply as 

1=ψ                                                                    (2.75) 

Tables 2.1 and 2.2 present the parameters defined in this section for the pitch and heave cases, 

which were obtained by applying Eqs. (2.56) and (2.57) to Eqs. (2.58-2.67).  The complete lift, 

pitching moment, and load distribution equations (Eqs. (2.68-2.70)) resulting from these values 

can be shown to agree with the well known result (pp. 262-272 of Bisplinghoff, et al., [1955]).    

  

Table 2.1: Lift and pitching moment parameters for a pitching and heaving airfoil 

 Pitch (about xa) Heave 
K0,s 2π 0 
K0,d ( )ax−4/32π  -2π 
K1,s π/2 0 
K1,d ( )( )ax−2/12/π  −π/2 
J0,s 0 0 
J0,d −π/8 0 
J1,s −π/8 0 
J1,d ( )( )ax−− 8/52/π  π/8 
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Table 2.2: Load distribution parameters for a pitching and heaving airfoil 

 Pitch (about xa) Heave 
A0,s 1 0 
A0,d ax−2/1  -1 
T0,s 0 0 
T0,d θsin2  0 
T1,d ( ) θθ sincos42)2/1( −− ax  θsin2−  

 

2.6 The Unsteady Aerodynamics for a Sinusoidal β 

Section 2.4 briefly discussed the application of Theodorsen’s function to a sinusoidal oscillation 

of L0.  This section will generalize this result by applying the separation of “steady” and 

“damping” terms defined in Section 2.5 to a sinusoidal oscillation of β.  Expressions will be 

obtained for the entire lift, pitching moment, and load distribution.  

 

Consider a time-varying β defined as follows 

  ( ) ( )[ ττβ

ββ τ

kik

e ki

sincos +=

=

]                                           (2.76) 

where β  is the magnitude of the oscillation and  

∞

=
U

ck ω                                                               (2.77) 

c
tU∞=τ                                                               (2.78) 

Note that k  is defined differently than the classically defined k, where k =2k.  From Eqs. (2.68) 

and (2.72), the total unsteady lift coefficient can be written as 

    ( ) [ ]( )'
,0,0

''
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'
,1,0,0 1)()( βββββτ dsdsdsL KKkCKKKKC +−++++=              (2.79) 

where C(k)  is Theodorsen’s function defined in Eq. (2.44).  Substituting Eq. (2.76) into (2.79) 

and keeping only the real part results in  

[ ] ( )
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                           (2.80) 

It will later be convenient to write this equation as 

( ) ( ) ( ) ( ) ( )τβτβτ kkZkkZkCL sincos, 21 +=                                 (2.81) 

where Z1 and Z2 are defined as 
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Obtained in the same manner, the equation for the quarter-chord pitching moment (CM) can be 

written as  

( ) ( ) ( ) ( )τβτβτ kkJJkJkJC sdsdM sincos)( ,1,0,0
2

,1 +−−−=                    (2.83) 

where recall that the wake-effect term is zero.  As for CL, it will be convenient to define CM as 
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where Y1 and Y2 are defined as 
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From Eqs. (2.70) and (2.73), the load distribution can be written as 
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Substituting Eqs. (2.44) and (2.76) into this equation and keeping only the real part results in the 

following expression for the unsteady load distribution 
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Again, it will be convenient to define ∆Cp as 

( ) ( ) ( ) ( )τβθΠτβθΠθτ∆ kkkkkC p sin,cos,),,( 21 +=                              (2.88) 

where Π1 and Π2 are defined as 
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          (2.89) 

The equations developed in this section will be applied in the later chapters. 

 

Some interesting features regarding the aerodynamic forces for low-frequency oscillations can be 

seen by investigating Eqs. (2.80) and (2.88) in the limit as k  approaches zero.  Substituting the 

limiting form of F and G (Eq. (2.45)) into Eq. (2.80) allows CL to be written as      
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         (2.90) 

For comparison, the result of steady thin airfoil theory (i.e. the quasi-steady terms) can be written 

from Eq. (2.90) as follows 

( ) ( )τβτβτ kkKkKkC dsL sincos),( ,0,00, −=                                 (2.91) 

Examining Eqs. (2.90) and (2.91) it is seen that CL,0 is accurate to )ln( 2 kkO  if  both K0,s and K1,s 

are equal to zero.  Because of the logarithmic term in Eq. (2.90), if K0,s is not equal to zero, CL,0 is 

only accurate to )ln( kkO , independent of K1,s.  From Table 2.1 it is seen that K0,s and K1,s are 

equal to zero for a heaving airfoil, but not for a pitching airfoil.  Thus, for a pitching airfoil (and 

most camberline deformations) the quasi-steady approximation, even if the apparent mass term 

(K1,s ) is included, is not very accurate.   A similar discussion was presented by Miles [1949], who 

also pointed out that the logarithmic term in Eq. (2.90) will reverse the sign of CL from the quasi-

steady value for small values of k  (< 0.2).  For dynamic stability calculations, Miles [1950] 

mentioned that it is very important to keep all the terms in brackets in Eq. (2.90) because these 

forces act out-of-phase with the aircraft inertia, which dominates the high order in-phase 

aerodynamic forces.  Goland [1950] presented an alternative method to previous methods of 

approximating low-frequency stability derivatives (White and Klampe [1945] and Jones and 

Cohen [1941]), where past methods had made the mistake of setting G=0 when making the low 

frequency approximation.  This resulted in the absence of the logarithmic term, and as a result 

certain stability derivates did not have the correct sign, as identified by Miles.                    

 

2.7  The Equivalence of Τ1,s and T0,d   

A useful relationship between T1,s (the apparent mass term due to the time-rate-of-change of γ0,s) 

and T0,d (the damping basic load distribution) can be shown to exist.  This relationship states that, 

surprisingly, the two terms are exactly equal if ws and wd can be represented by Eqs. (2.56) and 

(2.57).  There are two significant consequences of this relationship.  The first is that the integral 

in Eq. (2.67b) can be avoided for Τ1,s.  This integration is difficult because it requires the 

integration of T0,s, which can be quite a complicated function.  Furthermore, if there is no 

camberline acceleration, thenΤ1,d does not have to be determined and therefore only the Fourier 

coefficient A3,s must be calculated beyond what is required for the quasi-steady terms.  The 
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second important consequence of this relationship is that it proves that the pitching moment terms 

J0,d and J1,s are equal.  This is true because T0,d is responsible for the entire J0,d term.   

 

The proof of this relationship begins by recognizing the following identity 
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From Eqs. (2.62b) and (2.67b), T1,s can be written as 

( )
∫ ∫ −

∂
∂

+−=
θ π

θθθ
θθ

θθψ

π
θθ

0
0

0 0

0

,1,0,1 sin
coscos

sin,2sin2 dd
t

xAAT sss                (2.93) 

The integral in this equation may be evaluated by reversing the order of integration, which leads 

to the following  
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      (2.94) 

The first and last terms in brackets in Eq. (2.94) can be shown to cancel the first two terms in 

brackets in Eq. (2.93).  Thus, T1,s can be written as 
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Applying Eq. (2.92), Eq. (2.95) can be written as 
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Integrating by parts, the following expression is obtained 
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For all ψ functions of interest, the first term in this equation vanishes.  Also, Allen [1943] points 

outs the following trigonometric identity 
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so that Eq. (2.97) can be written as 
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which is exactly equal to T0,d from Eq. (2.62b), so that the relationship is proved.  One may 

wonder if there is a simpler way to show this equivalence.  Other than the fact that Τ1,s and T0,d 

both depend on β’, there does not seem to be any obvious connection between the two terms.  

Also, it is likely that past researchers have not observed this relationship because it requires both 

the Fourier series representation of γ0 and the separation of steady and damping terms to be 

recognized.  This relationship can be shown to imply the following 
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which will be used in Chapter 3. 
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Chapter 3 

 

Application of the Theory to a General 

Deforming Camberline 
 

3.1 Introduction 
The majority of past research on the theoretical unsteady aerodynamics of deforming airfoils in 

incompressible flow has been concerned with harmonically oscillating trailing edge flaps.  

Theodorsen’s [1935] result, which is summarized in Bisplinghoff et al. [1955], is the most widely 

recognized result for lift and pitching moment characteristics.  Although Theodosen presented 

results for the flap hinge moments, no results were given for the load distribution.  Postel and 

Leppert [1948], along with a number of German researchers (Dietze, [1939, 1941, and 1951], 

Jaekel [1939], Schwarz [1940 and 1951], and Sohngen [1940 and 1951]), determined the load 

distribution on a harmonically oscillating airfoil.  Recently, Mateescu and Abdo [2003] obtained 

both the unsteady forces and the load distribution using the method of velocity singularities.  

Narkiewicz et al. [1995] solved a similar problem which allowed for arbitrary flap and airfoil 

oscillations.  Lieshman [1994] and Hariharan and Lieshman [1996] considered arbitrary flap 

deflections using indicial concepts, although both focused mainly on the compressible flow case.   

 

Although there has been considerable research on the theoretical unsteady aerodynamics of a 

trailing edge flap, there has been little research concerning other deforming camberline shapes.  

Schwarz [1940 and 1951] studied an oscillating parabolic control surface.  This shape was meant 

to account for the viscous effects of a conventional flap by smoothing out the hinge line.  Recent 

interest in morphing aircraft has created interest in this parabolic, or conformal flap, for use as a 

hingless control surface (Sanders et al. [2003], Forster et al. [2003], Johnston [2003]).  
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Unfortunately, the previous work of Schwarz has gone unnoticed in the English-speaking 

literature except for the brief mention by Garrick [1957] and the discussion in the translated 

article by Schwarz [1951].  Spielburg [1953] studied the unsteady aerodynamics of an airfoil with 

an oscillating parabolic camberline.  This study was restricted to a circular arc parabolic 

camberline, which was meant to represent chordwise aeroelastic deformations.  Mesaric and 

Kosel [2004] determined the lift and pitching moment for cubic polynomial camberlines.  No 

mention was made of the load distribution.  Singh [1996] and Maclean [1994] presented a 

numerical model for the unsteady aerodynamics of deforming airfoils, although they did not 

discuss the agreement of their methods with theory.  Another application of modeling deforming 

camberlines is for the study of sails and membrane airfoils.  Llewelyn [1964] and Boyd [1963a, 

1963b, and 1964] discuss the application of steady thin airfoil theory to various single-segment 

polynomial camberlines.  The unsteady case was not discussed.    

 

This chapter applies the unsteady thin airfoil theory method developed in Chapter 2 to a general 

deforming camberline.  The camberline will be defined by two quadratic curves with arbitrary 

coefficients (a1, b1, ... ,c2).  Changing these coefficients allows for a wide range of time-varying 

camberlines to be modeled.  This is especially advantageous because configurations with known 

solutions, such as a trailing edge flap, may be modeled with the correct choice of the coefficients 

and therefore the general solution may be validated.  The unsteady lift, pitching moment, and 

pressure distribution will be derived for the general camberline and the equations presented.  It is 

felt that the results of this derivation are easier to understand graphically, and therefore many 

plots will be presented and discussed.  The resulting lift and pitching moment characteristics will 

be presented in terms of the K and J values defined in Section 2.5.   

 

3.2 Camberline Representation 
Consider a general camberline consisting of two quadratic segments, which can be written as 
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( ) cxxcxbxaz

xxcxbxaz
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≤≤++=
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22
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22,

11
2

11,

τβ

τβ
                                      (3.1) 

where xB is location at which the two segments connect and β is the control parameter that is a 

function of the nondimensional time (τ) defined in Eq. (2.52).  Table 3.1 shows the five basic 

camberline shapes represented by Eq. (3.1) and their corresponding coefficients.  Through linear 

superposition of these basic shapes, the majority of practical camberlines may be modeled.      
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Table 3.1: Geometric Coefficients for Specific Camberlines Represented by Eq. (3.1) 

 a1 b1 c1 a2 b2 c2 
(a) Trailing-Edge (TE) Flap 0 0 0 0 -1 xB 
(b) Leading-Edge (LE) Flap 0 1 -xB 0 0 0 
(c) Conformal TE Flap 0 0 0 
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Table 3.2: Camberlines Represented by Eq. (3.1) and Table 3.1 
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Eq. (3.1) has the form of Eq. (2.55); therefore the boundary condition may be separated into 

steady and damping components by Eqs. (2.56) and (2.57).  This leads to the following equations 

for ws and wd 

( )nnns bxaw += 2)(, τβ                                                  (3.2) 

)()( 2
'

, nnnnd cxbxa
c

w ++=
τβ                                           (3.3) 

where n = 1,2 corresponding to zc,1 and zc,2 in Eq. (3.1).  Applying the transformation of Eq. (2.1) 

to Eqs. (3.2) and (3.3) results in the following  
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Eqs. (3.4 – 3.7) provide a compact method of representing the camberlines of Table 3.1 in terms 

of the polar coordinates of Eq. (2.1).  The next section will apply these equations to the unsteady 

thin airfoil method developed in Chapter 2. 

 

3.3 The Quasi-Steady Load Distribution and Force 

Coefficients 
Having defined the steady and damping components of w in Eqs. (3.4) and (3.5), the quasi-steady 

load distribution and force coefficients may be calculated using the method presented in Chapter 

2.  The main challenge in obtaining the load distribution is evaluating the integral for the basic 

load distribution (Eq. (2.62b)).  The details of these integrations can be found in Appendix A.  

Substituting Eqs. (3.4) and (3.5) into Eq. (2.62b) results in the following two equations for the 

steady and damping components of the nondimensional basic load distribution    

 35



[ ] ( )
( )

[ ] 















−++









−+
+−

−+−
=

θθπθ
θθθ
θθθθ

π
θ

sin)(2
1cos2/tansin
1cos2/tansinlncos)(2)(22)(

21

2121
,0

HH

HHII
T

BB

B

B

s            (3.8) 

 

[ ] ( )
( )

[ ] 















−++−+++









−+
+−

+−+−+−
=

θθθθπθθ
θθθ
θθθθθ

π
θ

sinsin)()cos)(()cos(2
1cos2/tansin
1cos2/tansinln)2cos1)((cos)(2)(22)(

212211

212121
,0

BBB

B

B

d

EEEFEF

EEFFGG
T

(3.9) 

Eq. (3.8) was validated for a conventional TE flap by comparing with Spence’s [1958] result and 

for a conformal TE flap by comparing with Johnston’s [2003] result.  For the NACA case, Eq. 

(3.8) can be shown to compare well with Pinkerton’s [1936] approximate result.  Figures 3.1 – 

3.4 illustrate Eqs. (3.8) and (3.9) for the various camberlines shown in Table 3.1.  Figures 3.1 and 

3.2 show the difference between the LE and TE configurations as well as the difference between 

the conventional and conformal flaps.  Because ws is not discontinuous at xB for the conformal 

case, unlike the conventional case there is no singularity in T0,s at xB.  For the T0,d terms in Figure 

3.2, wd is continuous for both the conventional and conformal cases (see Figure 2.3 and 2.4) so 

that there are no singularities in T0,d.  One may notice the similarity between T0,s for the conformal 

flap in Figure 3.1 and T0,d for the conventional flap in Figure 3.2.  In fact, these two terms are 

exactly the same shape, although of different magnitudes. The magnitudes of these two 

components are equivalent through the relationship 

    T
alconventiondBconformals Tcx ,0,0 )/1( −=                                      (3.10) 

This equivalence is apparent by considering the fact that the x-derivative of the quadratic 

conformal camberline is linear in x (so ws is linear) and that the time-derivative of the 

conventional flap is also linear in x (so wd is linear). 

 

An interesting feature of Figure 3.1 is the similarity between the LE and TE flaps of T0,s.  In other 

words, the LE flap creates a T0,s that has the same shape and magnitude but is reversed from that 

of the TE flap.  This indicates that in steady theory, the difference in the load distribution between 

“mirror image” camberlines (for example, the difference between a LE and TE flap or between an 

NACA camberline with xB = 0.3 and 0.7) is captured entirely by the A0,s Fourier coefficient (see 

Eq. (2.62)).  This conclusion could have also been reached by considering the simple analysis 

presented by Abzug [1955], which showed that a LE edge flap is just a TE flap on an airfoil at 

negative angle of attack.  In contrast to T0,s, Figures 3.2 and 3.4 show that the T0,d  produced by 

LE and TE flaps are equal in magnitude but opposite in sign.     
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Figures 3.1 and 3.2 show that a conformal flap is less effective than a conventional flap.  This is a 

result of the definition of β in Table 3.2.  The angle β is defined as the angle at the trialing edge 

(or leading edge) of the conformal flap, which means that the rest of the control surface is at a 

smaller angle.         
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Figure 3.1: Steady component of the basic load distribution for various flap configurations 
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Figure 3.2: Damping component of the basic load distribution for various flap configurations 
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Figure 3.3: Steady component of the basic load distribution for various NACA camberlines 
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Figure 3.4: Damping component of the basic load distribution for various NACA camberlines 

 

As shown in Eq. (2.62), the component of the quasi-steady load distribution not dependent on T0,s 

or T0,d  is only dependent only on sA ,0  and dA ,0 .  This component of the load distribution, called 

the additional load distribution, has the shape of an angle of attack produced load distribution 

(represented by ψ).  Equations (2.59) and (2.61) show that the quasi-steady lift and moment 
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coefficients depend on the first three Fourier coefficients (the fourth coefficient sA ,3 , is calculated 

as well to determine dA ,2  from Eq. (2.100)).  From Eqs. (3.4) and (2.59), the steady coefficients 

evaluate to the following      
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             (3.11) 

For a TE flap, these coefficients can be shown to agree with Glauert’s [1947] or Allen’s [1938] 

result.  For the damping quasi-steady terms, only dA ,0  must be determined because of the 

relationships for dA ,1  and dA ,2  given in Eq. (2.70).  In the next section, dA ,3 will be required for 

the apparent mass pitching moment coefficient, so it calculated here as well.  From Eqs. (3.6) and 

(2.59), dA ,0  and dA ,3  evaluate to the following  
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Figures 3.5 and 3.6 show sA ,0  and dA ,0  from Eqs. (3.11) and (3.12) plotted as a function of xB.  

Note that xB is defined in Table 3.2 so that for the LE flap configurations, xB is equal to the flap-

to-chord ratio (cf/c), but for TE configurations, xB = 1 – cf/c.  Figure 3.5 shows that sA ,0  is of 

opposite sign for LE and TE cases of the same cf/c.  The negative value of sA ,0  for leading edge 

configurations indicates the well-known superior control effectiveness of TE configurations in 

steady airfoil theory.  Similarly, Figure 3.5 shows that it is more effective to place the location of 

maximum camber on an NACA camberline aft of x = 0.5.  Figure 3.6 shows that, in contrast to 

T0,d, dA ,0  has the same sign for LE and TE configurations of identical cf/c. Because for the LE 

configuration, T0,s and sA ,0  as well as T0,d and dA ,0  have opposite signs (but the same magnitude 

as for the TE case), the quasi-steady lift effectiveness is always less for a LE flap configuration 

(relative to a TE configuration with the same cf/c). 
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Figures 3.5 and 3.6 present values for the NACA camberline for values of xB ranging from 0.1 to 

0.9.  Unlike the LE and TE configurations, the values of sA ,0  and dA ,0  for the NACA case do not 

asymptote to finite values at xB equal to zero or one.  This is because, as defined in Table 3.2, β 

represents the magnitude of maximum camber; which is a distance instead of an angle.  Thin 

airfoil theory assumes small angles, which is violated as xB approaches zero or one with a fixed 

and finite β.   
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Figure 3.5: Steady component of A0 for various flap configurations 
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Figure 3.6: Damping component of A0 for various flap configurations 
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Figures 3.7 through 3.9 confirm the previous discussion on the lift effectiveness of the various 

configurations.  Recall the definitions of the K-values given in Eq. (2.59).  The K0,s values in 

Figures 3.7 and 3.8 show that, as mentioned previously, the TE configurations produce 

significantly more lift per-unit β than the LE configurations.  Similarly, the K0,d values indicate 

that the TE configurations produce significantly more lift per-unit dβ/dτ than the LE 

configurations.  Figure 3.9 shows that although the steady lift effectiveness increases for an 

NACA camberline as xB is shifted aft, the damping lift becomes more negative.       
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Figure 3.7: Effect of the trailing edge flap size on the steady flap effectiveness for lift 
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Figure 3.8: Effect of the leading edge flap size on the steady flap effectiveness for lift 
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Figure 3.9: Effect of the maximum camber location on the steady camber effectiveness for lift 

 

Figures 3.10 – 3.12 show the influence of xB on the quarter-chord pitching moment parameters 

defined in Eq. (2.61).  An important concept to keep in mind when examining the effect of the 

camberline on the quarter-chord pitching moment is that the additional load distribution, which is 
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proportional to sA ,0  and dA ,0 , has no influence.  Thus, only the effect of the camberline on the 

basic load distribution (T0,s and T0,d) needs to be considered.  Figures 3.10 and 3.11 show that J0,s 

is negative for both the LE and TE configurations.  Figure 3.12 shows that the same is true for the 

NACA case.  Unlike J0,s, the value of J0,d is negative for the TE case and positive for the LE case.  

This difference in sign is due to the difference in sign between the LE and TE flap T0,s and T0,d 

distributions as shown in Figures 3.1 and 3.2.  Figure 3.12 shows that the J0,d approaches zero for 

the NACA case as xB approaches one.  This figure also shows, as for the TE cases, J0,s,and J0,d 

have the same sign for any xB.            
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Figure 3.10: Effect of the trailing edge flap size on the steady flap effectiveness of the quarter 

chord pitching moment 
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Figure 3.11: Effect of the leading edge flap size on the steady flap effectiveness of the quarter 

chord pitching moment 
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Figure 3.12: Effect of the maximum camber location on the steady camber effectiveness for the 

quarter chord pitching moment 
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3.4 The Apparent Mass Load Distribution and Force 

Coefficients 

Examining Eq. (2.67) for the apparent mass load distribution (∆Cp,1) it is clear that the only 

component not yet known is the integral term (the Fourier coefficients were required for the 

quasi-steady terms).  Furthermore, T1,s does not need to be determined because it was shown in 

Section 2.7 that this is equal to T0,d.  Thus, the only required integration is the following  
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where the terms E, F, and G represent E1-E2, F1-F2, and G1-G2, respectively  Applying Eqs. 

(3.11), (3.12) and (3.13) to Eq. (2.67) allows T1,d to be determined.  Note that this term is 

proportional to the acceleration of the camberline deformation (β’’).  The apparent mass load 

distribution for the conventional TE flap case can be shown to agree with the result obtained by 

Postel and Leppert [1948].  Figure 3.13 shows T1,d for the LE and TE configurations shown in 

Table 3.2.  This figure shows that LE and TE flaps with the same cf/c have equivalent load 

distributions.  Figure 3.14 shows that T1,d is also equivalent for the NACA camberline with the 

maximum camber located at equal distances from the airfoil center.  In contrast, from Figures 3.2 

and 3.4 it is seen that T0,d (=T1,s) changes sign for equivalent configurations. 
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Figure 3.13: Damping apparent mass load distribution for various flap configurations 
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Figure 3.14: Damping apparent mass load distribution for various NACA camberlines 

 

The Fourier coefficients required by Eqs. (2.64) and (2.66) for the apparent mass lift and pitching 

moment coefficients were presented in Eqs. (3.11) and (3.12).  Figures 3.15 through 3.17 present 

the K1,s and K1,d values defined in Eq. (2.64).  These results agree with Theodorsen’s [1935] result 

for a conventional TE flap.   

 46



Figures 3.18 through 3.20 present the value J1,d defined in Eq. (2.66) for the various camberline 

configurations.  These figures show the expected variation with xB.  
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Figure 3.15: Effect of the trailing edge flap size on the steady apparent mass lift 
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Figure 3.16: Effect of the leading edge flap size on the steady apparent mass lift 
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Figure 3.17: Effect of the maximum camber location on the steady apparent mass lift 
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Figure 3.18: Effect of the trailing edge flap size on the damping apparent mass quarter-chord 

pitching moment 
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Figure 3.19: Effect of the leading edge flap size on the damping apparent mass quarter-chord 

pitching moment 
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Figure 3.20: Effect of the maximum camber location on the damping apparent mass quarter-chord 

pitching moment 
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3.5 A Variable-Camber Problem 
 

Consider the two variable-camber configuration shown in Figure 3.31.  Configuration A is exactly 

the NACA camberline presented in Tables 3.1 and 3.2.  Configuration B is a combination of the 

conformal LE and TE flaps presented in Tables 3.1 and 3.2 and has the same ws as configuration 

A.  The only difference between these two configurations is wd.  In fact, wd for configuration B is 

a combination of the wd for configuration A along with a heaving motion.  How do the unsteady 

characteristics differ for these cases?  

xB

xB

A.

B.

 
Figure 3.21: Two different variable-camber configurations of the same camberline 

 

This problem is greatly simplified by using the relationship between T1,s and T0,d presented in 

Section 2.7.  Before this done though, it must be recognized that because ws is identical between 

the two cases, then T0,s and T1,s are identical.  It then follows from Section 2.6 that T0,d is also the 

same.  So, in the absence of camberline acceleration (meaning that T1,d is not considered), the 

only difference between the two configurations is the magnitude of the damping additional load 

distribution (more specifically the difference is in dA ,0 ).  This implies that the quarter chord 

pitching moment is the same for both cases. 

 

As mentioned previously, configuration B can be modeled from the LE and TE conformal flaps 

shown in Table 3.1.  For these cases, β represents the angle of either the leading or trailing edge.  

To compare with configuration A, in which case β represents the camber at xB, the following 

relationships may be applied 
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where βA is the maximum camber of configuration A and βLE and βTE are the equivalent leading 

and trailing deflections for configuration B.  With Eq. (3.14), the results of Section 3.3 may be 

used to compare dA ,0  between the two configurations.  Figure 3.32 presents this comparison and 

shows that the sign of dA ,0 is different between the two configurations.   
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Figure 3.22: The difference between configuration A and B if there are no acceleration terms 

 

To put the difference in dA ,0  shown in Figure 3.32 in perspective, Figure 3.33 compares the lift 

due to dβ/dτ (which from Eq. (2.68) is K0,d+K1,s).  The sign difference between the two cases is 

significant because it implies that for a positive change in lift (meaning a positive dβ/dτ), the 

dβ/dτ terms produce positive lift for configuration B and negative lift for configuration A.  

Although this component of lift acts only during the motion of the camberline, it could have a 

significant effect on the maneuverability of the vehicle.  Determining which configuration is 

favorable would require that the maneuver and vehicle be specified.         
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Figure 3.23: The difference in the lift due to dβ/dt between configuration A and B  

 

3.6 The Load Distribution and Force Coefficients for a 

Sinusoidal β 

Combining the lift, pitching moment, and pressure distribution parameters determined in Sections 

3.3 and 3.4 for a general camberline with the equations derived in Section 2.6 for a sinusoidal β, 

the influence of k  on the lift, pitching moment, and pressure distribution of various camberline 

configurations may be determined.   

      

It is convenient to present the lift and pitching moment in terms of a magnitude and phase angle.    

From Eqs. (2.81) and (2.82), this is written as follows for the lift coefficient 

( ) ( )LLL kCkC φτβτ += cos,                                           (3.15) 

where 









−=

+=

−

1

21

2
2

2
1

tan
Z
Z

ZZC

L

L

φ
                                                   (3.16) 

The terms Z1 and Z2 were defined in Eq. (2.82) as follows 
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( ) [ ]
( ) [ FkKGKkKkZ

GkKFKkKkZ
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]                                     (3.17) 

The pitching moment is represented analogously in terms of MC and φM, where Y1 and Y2 are 

substituted for the Z1 and Z2 in Eqs. (3.16) and (3.17).  The terms Y1 and Y2 were defined in Eq. 

(2.85) as  

( ) ( )
( ) ( )kJJkY

JkJkY

sd
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,1,02

,0
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,11

+−=

−−=
                                                (3.18) 

 The load distribution will be presented in terms of Π1 and Π2 defined as follows in Eq. (2.89) 
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        (3.19) 

where 

( ) ( ) ( ) ( )τβθΠτβθΠθτ∆ kkkkkC p sin,cos,),,( 21 +=                     (3.20) 

The components Π1 and Π2 are the same as the real and negative imaginary components that are 

sometimes presented in the literature (this is also true for the Z and Y terms).  The unsteady load 

distribution is sometimes presented in terms of a magnitude and phase angle, which are functions 

of x.  This representation is used mostly for studying the unsteady Kutta condition (Satyanarayana 

and Davis [1978], and Ardonceau [1989]). 

 

a) TE Configurations 

Figures 3.24 through 3.29 present the results for the conventional and conformal TE flaps.  The 

lift coefficient magnitude divided by the quasi-steady lift coefficient (K0,s) is presented in Figure 

3.24 for both the conventional and conformal cases with different flap sizes.  Note that K0,s is 

different for each case, as shown in Figure 3.7, but is used here to normalize each case to the 

same oscillation in the steady-state CL.  Figure 3.25 presents the phase angle for the lift for each 

case.  Figures 3.24 and 3.24 indicate that for a given oscillation of the steady-state lift coefficient, 

the larger flap sizes have a larger CL magnitude and phase angle.  This is due mainly to the larger 

value of K0,d, which is shown in Figure 3.7.  For the same reason, the conventional flap has a 

larger CL magnitude than the conformal flap.   

 

Figures 3.26 and 3.27 present the magnitude and phase angle for the quarter-chord pitching 

moment (CM).  The CM magnitude is normalized by the absolute value of the quasi-steady 
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pitching moment coefficient (J0,s) presented in Figure 3.10.  Note that, as shown in Eq. (3.18), CM 

is independent of the Theodorsen function, which explains the simpler dependence shown of MC  

on k .  Like for CL, the larger flap sizes have a larger CM magnitude due to the larger values of J0,d 

and J1,d shown in Figures 3.10 and 3.18.  The phase angle is 180 degrees out-of-phase for k  

equal to zero because J0,s is negative.                         

 

Figures 3.28 and 3.29 show the in-phase (real) and out-of-phase (negative imaginary) components 

of the load distribution for the conventional and conformal TE flap configurations of various flap 

sizes.  These distributions are shown for a k  equal to 2 and each case is normalized by K0,s.  The 

conventional flap cases can be shown to agree with the equations developed by Postel and 

Leppert [1948].  For a k  equal to 0.48 or 0.68, the present method does not completely agree 

with the results presented by Mateescu and Abdo [2003] for the conformal flap.  Their values are 

larger near the middle of the airfoil.  The reason for this is not clear.           

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

k
_

C
L / 

|K
0,

s|
__

xB / c = 0.5 - solid line   
xB / c = 0.8 - dashed line  
xB / c = 0.9 - dotted line  

   Conventional TE - thick lines
Conformal TE - thin lines  

 
Figure 3.24: The lift coefficient amplitude for TE configurations 
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Figure 3.25: The lift coefficient phase angle for TE configurations 
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Figure 3.26: The quarter-chord pitching moment amplitude for TE configurations 
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Figure 3.27: The quarter-chord pitching moment phase angle for TE configurations 
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Figure 3.28: The in-phase component of the load distribution for TE configurations 
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Figure 3.29: The out-of-phase component of the load distribution for TE configurations 

 

b) LE Configurations 

Figures 3.30 through 3.35 present the results of Eq. (3.15-3.20) for the conventional and 

conformal LE flaps.  Figure 3.30 shows that the smaller flap sizes have a larger normalized lift 

magnitude, which is opposite of the TE case.  The various cases appear to be similar in Figure 

3.30 compared to the TE cases in Figure 3.28.  Notice that at k  equal to 4, the lift magnitudes are 

approximately 3.75 times the quasi-steady value, which are significantly different than the values 

for the TE cases.  Figure 3.31 shows that φL is 180 degrees out-of-phase with the flap deflection at 

k  equal to zero and increases with increasing k .  The trends shown Figures 3.32 and 3.33 for the 

pitching moment amplitude and phase angle are similar to those shown for the TE configurations.  

Figures 3.34 and 3.35 show the in-phase and out-of-phase components of the load distribution for 

a k  of 2.  The large gradient near the leading edge of the in-phase components shown in Figure 

3.34 indicate that the thin airfoil theory prediction is not likely to be accurate.  This large gradient 

is present for small flap sizes because of the combination of T0,s and χ in Eq. (3.19).  Past 

theoretical or experimental studies on oscillating leading edge flaps could not be found by the 

author.   
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Figure 3.30: The lift coefficient amplitude for LE configurations 
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Figure 3.31: The lift coefficient phase angle for LE configurations 
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Figure 3.32: The quarter-chord pitching moment amplitude for LE configurations 
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Figure 3.33: The quarter-chord pitching moment phase angle for LE configurations 
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Figure 3.34: The in-phase component of the load distribution for LE configurations 
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Figure 3.35: The out-of-phase component of the load distribution for LE configurations 

 

b) NACA Configurations 

Figures 3.36 through 3.41 present the results of Eq. (3.15-3.20) for the NACA configurations 

discussed in Section 3.5.  These results have never been presented in the literature. The 

comparison between configurations A and B is interesting because both configurations (with the 
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same xB) have the same K0,s and J0,s value.  As mentioned previously, configuration B can be 

obtained by superimposing a heaving motion onto configuration A.  The effect of maximum 

camber location (xB) is seen to have a similar effect for both cases.  Figures 3.36 and 3.38 show 

that both the magnitude of lift and pitching moment are significantly larger for configuration A. 

Figures 3.37 and 3.39 show that both phase angles vary more for configuration B.  In particular, 

Figure 3.37 shows that the phase angle for lift becomes large and positive for configuration B 

while it remains negative for configuration A.  The load distributions for both configurations are 

shown in Figures 3.40 and 3.41 for a k  of 2.  Figure 3.40 shows that the in-phase components are 

similar in shape for the two configurations.  On the other hand, the out-of-phase components, 

shown in Figure 3.41, are very dissimilar in shape.  A significant difference is the leading edge 

singularity, which is of opposite sign for the two configurations.  It is interesting to note that the 

out-of-phase load distribution for configuration B is equal to zero at three locations along the 

chord.                
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Figure 3.36: The lift coefficient amplitude for NACA configurations 
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Figure 3.37: The lift coefficient phase angle for NACA configurations 
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Figure 3.38: The quarter-chord pitching moment amplitude for NACA configurations 
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Figure 3.39: The quarter-chord pitching moment phase angle for NACA configurations 
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Figure 3.40: The in-phase component of the load distribution for NACA configurations 
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Figure 3.41: The out-of-phase component of the load distribution for NACA configurations 
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Chapter 4 

 

Drag in Unsteady Thin Airfoil Theory 
 

4.1 Introduction 
This chapter presents a method of calculating the drag on an unsteady thin airfoil.  In particular, 

the calculation of the drag on airfoils with deforming camberlines will be discussed.  A clear 

presentation of the transient drag calculation on deforming airfoils seems to be absent from the 

literature.  Although the transient drag for an oscillating flat plate and an airfoil with a trailing 

edge flap have been studied, the focus has been on rotorcraft (Lieshman [1991, 2000] and Li, et 

al. [1990, 1991]), bird flight (Garrick [1936]), and fish propulsion (Wu [1961, 1971]) 

applications.  Past discussions on transient drag (von Karman and Burgers [1935], Garrick 

[1957], Leishman [1988, 2000], and Weihs and Katz [1986]) are not directly applicable to general 

deforming camberline shapes.  A discussion of the lack of drag in steady flow will be presented in 

the first section of this chapter in hopes of clarifying some of the subtleties which may confuse 

the unsteady drag calculation.  The drag equation for unsteady flow will be derived and applied to 

various airfoil configurations.  In addition, it will be shown that the transient drag on a suddenly 

accelerated thin airfoil with a given steady state lift is independent of the camberline shape and 

angle of attack.  The drag for an oscillating camberline will be derived and the asymptotic limits 

for large and small reduced frequencies will be examined.        

 

4.2 The Lack of Drag in Steady Thin Airfoil Theory 
It is well known that in 2D steady, unbounded, incompressible airfoil theory there is no drag 

component acting on the airfoil.  This fact is proved easily by considering an energy balance for 

the system.  With no wake trailing from a steadily moving airfoil, there is no place for the energy 
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created from the combination of drag and free-stream velocity to go.  Hence, the presence of drag 

is impossible.  Of course in reality, because of the vorticity created in the boundary layer, there is 

a wake shed from a steadily moving airfoil. Thus, the presence of drag on a steadily moving 

airfoil in a real fluid is justified.   

 

The aerodynamic forces acting on a flat plate in steady flow are shown in Figure 4.1.  The 

leading-edge thrust coefficient (Ca) is a result of the leading-edge singularity in the pressure 

distribution.  It is defined as [Garrick 1957] 

{ }xxCC pxa )(lim
8

2

0
∆=

→

π                                                        (4.1) 

From Eq. (2.5) (note ∆Cp = 2γ), the ∆Cp for a flat plate at angle of attack can be written as  

( )
θ

θαθ
sin

cos14 +
=∆ pC                                                        (4.2) 

Substituting Eqs. (4.2) into (4.1) and taking the limit as θ goes to zero results in the following  
22πα=aC                                                               (4.3) 

It is well known from steady thin airfoil theory that the normal force coefficient (Cn) may be 

written as 

πα2=≅ ln CC                                                          (4.4) 

Taking the forces acting in the direction opposite of the free-stream velocity in Figure 4.1, the 

drag force can be written as 

αα cossin and CCC −=                                                  (4.5) 

Substituting Eqs. (4.3) and (4.4) into Eq. (4.5) and assuming small angles results in the following 

( )
0

)1)(2()(2 2

=
−= πααπαdC                                                  (4.6) 

which is the expected (and required) result. 
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α
Uinfx

z

 
Figure 4.1: The aerodynamic forces acting on a flat plate in steady flow 
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What if we add a trailing-edge flap of length a to the airfoil in Figure 1?  Now the camberline is 

not a straight line, so Cn is inclined to the free-stream by α and the camberline slope.  Therefore, 

Eq. (4.5) cannot be directly applied.  Instead, a more general expression for Cd is used, which can 

be written as 

       a

c

pd Cdxx
dx
dzxCC −



−= ∫

0

)()(∆                                        (4.7) 

where the free-stream velocity is defined to lie along the x-axis as shown in Figure 4.1 and 4.2.  

Therefore, the drag is parallel to the x-axis and the lift is perpendicular.  In Chapter 3, the 

function z(x) was defined for a general airfoil camberline with zero angle of attack.  For a flapped 

airfoil, the ∆Cp distribution is obtained from Eqs. (3.8), (3.11), and Table 3.1, which results in 
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where β is the flap deflection angle and θB is the location of the hinge line.  Eq. (4.8) contains an 

angle of attack term which is not present in the equations developed in Chapter 3.   Note that the 

2nd term in Eq. (4.8) does not contain a leading edge singularity.  Using Eq. (4.8), the integral in 

Eq. (4.7) may be evaluated and shown to cancel Ca, which results in zero drag as it should.  It is 

helpful to see how the integral in Eq. (4.7) cancels Ca.  Consider first the flapped airfoil at zero 

degrees angle of attack.  The integral in Eq. (4.7) reduces to the following   
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which represents the normal force on the flap in the direction parallel to the free-stream.  

According to Eq. (4.7), this force should be balanced by the leading edge suction, which from Eq. 

(4.1) is found to equal 
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πβ BB
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Eqs. (4.9) and (4.10) show that the two forces do cancel each other.  Note that the direction of the 

leading edge suction for cambered airfoils is not important (the only significant component will 

be drag).  This is because any lift component from the leading edge suction is third order in the 

camberline slope, which is beyond the order of accuracy of thin airfoil theory.        
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We have shown examples of the absence of drag for a flat plate at angle of attack and a flapped 

airfoil at zero degrees angle of attack.  What about a combination of flap deflection and angle of 

attack?  The drag is not linear and is therefore not simply the addition of the two separate cases.  

There is coupling between the two cases, meaning the pressure distribution due to the flap 

deflection acts on the flat plate at angle of attack and the pressure distribution due to angle of 

attack acts on the flap.  This coupling is obvious if the pressure distribution due to both the flap 

deflection and angle of attack (Eq. 4.8) is substituted into Eq. (4.7).  The streamwise force caused 

by the flapped airfoil pressure distribution acting on the flat plate at angle of attack is     
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The streamwise force caused by the flat-plate-at-angle-of-attack pressure distribution acting on 

the flapped airfoil is     
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Adding Eqs. (4.11) and (4.12) results in the streamwise force that must be balanced by the 

leading edge suction in order for the drag to be zero. From Eqs. (4.7) and (4.1) the leading edge 

suction can be written as  
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The first two terms in Eq. (4.13) cancel the angle of attack only (Eq. 4.9) and flap only (Eq. 4.4) 

terms shown in the previous two examples.  The last term in Eq. (4.13) is the coupled term that 

must cancel the sum of Eqs. (4.11) and (4.12), which it does.  
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Figure 4.2: Airfoil with a flap showing the load distribution 
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4.3 The Presence of Drag in Unsteady Thin Airfoil Theory 
This section will develop an expression for the inviscid drag on a deforming thin airfoil.  This 

derivation is general to both an airfoil with a deforming camberline and/or an airfoil undergoing 

pitch/plunge motions.  Chapter 3 derived the equations for the lift, pitching moment, and pressure 

distribution caused by the unsteady motion of the general camberline defined in Tables 3.1 and 

3.2.  The effect of pitch and plunge motions was not discussed because the results are well known 

and may simply be added to the deforming camberline results.  Unlike the lift, pitching moment, 

and pressure distribution, which are linear with respect to the airfoil geometry and motion, the 

unsteady drag is quadratic.  Therefore, the influence of general time-varying pitch and plunge 

motions cannot simply be added to the drag expression for the deforming camberline.  But, pitch 

and plunge motions can be added to the deforming camberline results if the time variation of the 

pitch and plunge motion is the same as the time variation of the camberline deformation.  This 

allows the general motion of the airfoil and camberline to remain a function of one time-varying 

parameter (β) and therefore Eq. (2.48) still applies.   This approach requires that the appropriate 

terms be added to the coefficients in Table 3.1 to account for the pitch and plunge motions.  From 

Eq. (2.70), the unsteady load distribution can be written as 
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where the αun component represents ∆Cp,2  and is defined as 
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An important property of the T terms in Eq. (4.14) is that they do not contain leading edge 

singularities; hence they do not contribute to the leading edge thrust (Leishman [2000]).  From 

Eqs. (4.1) and (4.14), the leading edge thrust can be written as   
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Substituting Eqs. (4.14) and (4.16) into (4.1) results in the following equation for the unsteady 

drag 
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Eq. (4.17) may be simplified by recalling the cancellation of drag that occurs in steady airfoil 

theory.  In terms of the present notation, the cancellation of the steady drag can be written as 
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Substituting Eq. (4.18) into Eq. (4.17) results in the following 
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This equation can be further simplified by recognizing the following relationships  
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which reduces Eq. (4.19) to the following  
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Eq. (4.22) is relatively complicated and deserves some explanation.  First of all, this drag is not 

totally “induced” drag.  The induced drag components are the components depending on αun, 

meaning the downwash from the wake is responsible for the drag (as in classical incompressible 

3-D wing theory).  In addition to the induced drag, there is apparent mass and aerodynamic 

damping drag.  The apparent mass drag is a result of the apparent mass force contributing to the 

normal force but not contributing to the leading edge thrust.  The damping drag is a result of the 

aerodynamic damping forces being caused by a fictitious camberline, meaning you could draw a 

camberline in Figure 2.3 that resulted in the same steady boundary condition.  But for an actual 

camberline, the normal force would be inclined from the camberline slope (as in Figure 4.2).  As 

shown in the previous section, there is a balance between the camberline slope, leading edge 

thrust, and load distribution so that the drag is always zero in steady theory.  The fact that the 

damping load distribution is not caused by an actual camberline slope, but instead by camberline 

motion (as shown in Figure 2.4), disrupts the balance between the camberline slope, leading edge 

thrust, and load distribution and drag (or thrust) therefore results.  
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4.4 The Drag for a Suddenly Accelerated Flat Plate 
The simplest example of unsteady drag is the drag acting on a suddenly accelerated flat plate.  

Because the acceleration is sudden, the apparent mass acts only at t = 0 and the damping terms 

are zero; hence the drag for the motion after t = 0 is all induced drag.  For this case, the drag 

expression in Eq. (4.22) reduces to the following  
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where the Dirac delta function on the last term represents the infinite apparent mass term acting at 

t = 0.  This equation was presented by Lomax [1960], although he used a different approach to 

obtain it.  The theoretical result obtained Chuen and Huang [1982] agrees with Eq. (4.23), except 

they do not include the infinite term at t = 0.  Equation (4.23) shows that it does not matter 

whether we are dealing with a suddenly accelerated flat plate or suddenly accelerated cambered 

airfoil, as long the steady lift (K0,sβ) is the same.  Stated another way, this says that the chordwise 

load distribution does not affect the induced drag as long as the total integrated force is the same.  

This is not an obvious point and has apparently not been recognized in past literature.  It is 

interesting to note that Munk’s stagger theorem (Munk [1923]) states an analogous result for the 

induced drag of steady three dimensional wings.  Figure 4.3 shows a comparison of Eq. (4.23) 

and the numerical computation of Katz and Plotkin [2001] (the infinite value at t = 0 is not 

shown).  The present method may be considered exact under the linearized assumptions of thin 

airfoil theory.  Katz and Plotkin obtain their results through a discrete “time-stepping” method.  

Because there are time-derivative terms in the unsteady force calculation, discrete time steps 

introduce noticeable error in regions of rapid change.  This explains the difference between the 

two methods shown in Figure 4.3 and emphasizes the benefit of the present analytic 

representation of the unsteady aerodynamic forces.  It should be mentioned that the result shown 

in Figure 4.3 for t = 0 does not agree with the result of Weihs and Katz [1986], who propose a 

value of Cd at t = 0 that is twice as large as that shown (ignoring the infinite term).  Their 

approach is unconventional and only deals with the value of Cd at t = 0.  The discrepancy between 

their method and the method presented here seems to be the enforcement of the Kutta condition.  

Weihs and Katz model the airfoil at the very beginning of motion with a vortex of equal strength 

but opposite direction at the leading and trailing edge.  Because a vortex is placed at the trailing 

edge, the Kutta condition is not satisfied.  Therefore the forces on the airfoil will be different than 

those predicted by the present method, which requires that the vorticity is zero at the trailing 

edge.     
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Figure 4.3: Transient induced drag for a suddenly accelerated flat plate 

 

For airfoils with finite accelerations, the statement that the induced drag does not depend on 

chordwise load distribution remains true. But, in these cases the induced drag component is not 

the only component of inviscid drag.  The finite acceleration causes the apparent mass to be 

finite, which as seen in Eq. (4.22), contributes to the drag through T1,s (there are still no damping 

terms for these cases).  For these cases, Eq. (4.22) reduces to the following          
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If it was desired to calculate the camberline shape and angle of attack for minimum drag for a 

given final value of lift, then only the last two terms in Eq. (4.24) need to be considered.  Thus, 

our “stagger theorem” simplifies the problem considerably.  It should be mentioned that for an 

accelerated airfoil, αun may be calculated using the Duhamel integral as discussed in Section 2.4.  

This fact which was proved by Ashley et al. [1952].  Note that for this case Eq. (2.49) and (2.50) 

are written as 

βψτ
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0=dw                                                           (4.26) 

where Uref  is the reference velocity used to nondimensionalize the force coefficients.                                                       
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4.5 A Comparison Drag for a ∆Cl 
This section will compare the drag on an airfoil as the lift is changing in unaccelerated motion.  

Three different lift changing devices, a pitching flat plate, flapped airfoil, and parabolic camber 

airfoil will be compared with each being subject to a ramp input.  If it was desired to compare the 

drag for a sudden change in lift, the results of a sudden acceleration from the previous section 

would apply.  Note that the drag goes as 1/τ as τ approaches infinity.  This will be of great 

significance in Chapter 5.  

 

Figure 4.4 shows the time-history of the drag coefficient for the three configurations mentioned 

above.  Each configuration is subject to a ramp (linear) input of β so that when τ = 1 the control 

input corresponds to a steady state Cl of 0.1.  For the control input stage (τ  < 1), apparent mass, 

damping, and wake-effect forces are all acting on the airfoil and contribute to the drag as shown 

in Eq. (4.22).  When the control input stage is complete (τ > 1), the damping and apparent mass 

forces immediately terminate.  In this stage only the wake effect term contributes to the drag.   

 

The pitching flat plate case (xa is the location of the axis of rotation) is seen in Figure 4.4 to have 

the greatest drag during the control input stage.  This is because of the large damping force 

created by the pitching plate.  At the very beginning of motion, the pitching flat plate actually 

produces thrust instead of drag, although only for a very short period of time. The variable 

camber case (xB indicates the location of maximum camber) produces a larger amount of thrust 

than the pitching plate case.  The xB = 0.5 case is seen to have the largest drag in the stage after 

the motion while the xB = 0.3 case has the smallest drag.  This shows the importance of the 

location of maximum camber on the unsteady aerodynamic characteristics of a variable camber 

airfoil.   
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Figure 4.4: Drag for various configurations subject to a ramp input of control command 

 

4.6 The Drag on an Airfoil with a Sinusoidal β 

In Section 2.6, the lift, pitching moment, and load distribution of an airfoil with an oscillating β 

were determined.  Chapter 3 determined the aerodynamic characteristics for a general two-

segment camberline where β could represent a variety of camberline shapes.  This section will 

apply the general camberline solution of Chapter 3 and the equations presented in Section 2.6 to 

determine the drag acting on an airfoil with an oscillating β.  Some interesting discussions on 

determining the drag on an oscillating airfoil through a wake analysis are given by Weihs [1972] 

and Michelson [1963].     

 

Applying the results of Section 3.6, the drag can be written from Eq. (4.22) as follows 
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where αun is the wake effect term, which is written as 

( ) ( )τβατβατα kk BAun sincos)( +=                                    (4.28) 
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For most practical purposes we are interested in the average value of drag over one cycle, which 

will be defined as 
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From (4.27) and (4.29), the average drag evaluates to  
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which from Eq. (4.28) can be written as  
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After some cancellations, the final equation for average drag is written as 
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Applying the asymptotic form of the Theodorsen function for small values of k  given in Eq. 

(2.45), Eq. (4.32) reduces to the following 
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which shows that the average drag tends to zero like k  as 0→k .  It is interesting to note that, as 

determined by Wu [1961], the instantaneous drag (Cd) tends to zero like kk log  as 0→k .  But, 

the kk log  term does not contribute to the average drag.  To determine the behavior of the 

average drag for large values of k , Eq. (2.46) is substituted into Eq. (4.32) and terms of O(1) 

retained.  After some algebra, the following equation is obtained   
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This equation shows that the average drag behaves like 2k as ∞→k .  This agrees with Wu’s 

result for Cd for large values of k . 
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Chapter 5 

 

Aerodynamic Work and Actuator 

Energy Concepts 
 

5.1 Introduction 
 

Recent interest in morphing aircraft (Stanewsky [2000 and 2001]) has initiated research 

concerning the characteristics of unconventional aerodynamic control devices. These 

unconventional, or morphing, devices are meant to provide an alternative to conventional hinged-

flap configurations. For the design of a morphing device, it is desired to determine the change in 

wing shape that most efficiently produces the necessary change in the aerodynamic forces. Thus, 

understanding the process of producing a change in wing shape is of fundamental importance for 

morphing aircraft. One of the main design issues related to understanding this process is avoiding 

the weight penalty for unnecessary actuator capability. For a requested change in wing shape, the 

actuators on the wing must provide the work required to deform the wing while being acted on by 

the aerodynamic forces. Determining the change in wing shape that requires the minimum 

actuator work allows the morphing device to operate efficiently and with minimum actuator 

weight (Forester et al. [2003a and 2003b], Gern et al. [2002], Pettit et al. [2001], Prock et al. 

[2002], Sanders et al. [2003]). 

 

This chapter presents a theoretical study of the relationship between the change in camberline 

shape of a two-dimensional thin airfoil and the resistance of the aerodynamic forces to this 

change. This resistance will be represented by the work required from the actuators on the airfoil 

to overcome the aerodynamic forces while producing a change in camberline shape. The 

relationship between the output work produced by the actuators and the required input energy will 
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be discussed and shown to affect the optimal changes in wing shape. A general actuator model 

will be presented and used throughout the analysis. The method of unsteady thin airfoil theory 

presented in the previous chapters will be used to determine the aerodynamic forces. This method 

allows the aerodynamic load distribution to be represented analytically, which provides insight 

into the work calculation. The energy required to produce a change in lift for a pitching flat plate 

will be thoroughly analyzed. The minimum energy pitching axes will be determined for various 

cases. The analysis of the pitching flat plate is applicable to variable twist morphing concepts. A 

comparison and analysis of the actuator energy cost for a conventional flap, conformal morphing 

flap, and two variable camber configurations will be presented. The analytic nature of this study 

clarifies the fundamental issues involved with the process of producing a change in airfoil shape. 
 

5.2 The Aerodynamic Energy Balance and Actuator Energy 
Cost 

 
For a wing moving in an inviscid potential flow, energy transfer between the wing and the fluid is 

achieved through the mechanical work required to produce wing motion or deformation while 

overcoming the fluid forces.  This energy balance is stated mathematically through the following 

equation for conservation of energy (Karman and Burgers [1935]), 

 EDUP =+                                                              (5.1) 

where P is the rate of work done by the wing against the fluid forces in a direction normal to the 

oncoming flow, D is the drag force, U is the free-stream velocity of the oncoming flow, and E is 

the kinetic energy dissipated to the flow per unit time.  For a thin airfoil in incompressible 

potential flow, the first two of these components are defined as follows (Garrick [1936]) 
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where ∆p is the pressure loading on the airfoil, zc defines the camberline shape, and S is the 

leading-edge suction force.  Viscous effects may be included in the energy balance (Eq. 5.1) by 

including the skin friction component of drag in D and viscous dissipation in E (Wu [1971]).  

 

For the oscillatory motion of a thin airfoil, Wu [1961] shows that the average value of E over a 

period of oscillation is always positive.  Wu [1972] later explains that this point is readily 
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apparent because in the frame of reference fixed to the undisturbed fluid, the kinetic energy of the 

basic flow is zero.  Therefore, any unsteady motion of a body must increase the energy of the 

surrounding flow.  It follows from Eq. (5.1) that for thrust to be generated from oscillatory airfoil 

motion, P  must be positive.  The case of P <0 has a meaningful interpretation from two different 

points of view.  The first point of view is that for an airfoil being propelled through a fluid.  

Although some energy is being taken from the flow (by definition of P <0), more energy is being 

supplied to propel the airfoil (because E <0, if P <0, then from Eq. (5.1) D >- P >0).  This case 

may be interpreted as flutter because the flow is supplying energy to the structure (Send [1992]).  

Patil [2003] points out that flutter analyses assume a constant flight speed, which is not practical 

because it implies that the aircraft propulsion system automatically accounts for the increase in 

drag caused by the unsteady wing motion.  The second point of view is that of a fixed airfoil 

oscillating in an oncoming flow, which may be interpreted as the power extraction mode (Jones 

and Platzer [1997] and McKinney and Delaurier [1981]).  The difference between this case and 

the flutter case is that here there is no energy spent on propulsion because the oncoming flow, 

such as naturally occurring wind, provides the UD component of energy.  It should be mentioned 

that the flutter mode can also be interpreted as a power extraction mode if the structure is 

designed for the task.  The drawback is that the power spent on propulsion due to the oscillations 

will always be greater than the harvested power because E <0.     

 

For the transient motion or deformation of a thin airfoil, the consequences of the aerodynamic 

energy balance are significantly different from those of the oscillatory case discussed in the 

previous paragraph.  The oscillatory case consists of a continuous motion that allows for a mean 

value over a period of oscillation to be defined.  For the transient case, the unsteady motion ends 

at some prescribed time (t*) while the aerodynamic forces continue to change.   This means that P 

is zero after t*, but the unsteady drag continues to act on the airfoil and therefore energy continues 

to be transferred to the wake.  Notice that in the previous paragraph, no mention was made of the 

mean lift acting on the airfoil.  This is because a constant aerodynamic force does not affect the 

mean energy balance of an oscillating airfoil (Wu [1971b]).  For the transient case, though, a 

constant aerodynamic force component is significant.  This significance is understood by 

recognizing that the energy required to produce a steady lifting flow from an initially non-lifting 

flow is infinite (Jones [1990]).  The reason for this infinite energy is shown by Lomax [1960] to 

be a result of the 1/t dependence of the unsteady drag as t tends to infinity.  With an initial value 

of lift acting on an airfoil during a transient motion, the flow has the ability to transfer some of 

the infinite energy present initially in the flow to the airfoil.  If the initial lift on the airfoil is zero, 
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a result analogous to Wu’s result that E >0 may be stated as follows: if the fluid is undisturbed at 

t = 0, then  

0)(
0

>∫
t

dttE                                                          (5.4) 

For an airfoil with a finite value of lift at t = 0, this inequality does not necessarily hold.  Another 

consequence of the infinite energy required to produce a change in lift is that it makes any 

attempt to minimize the energy lost in the wake for a given change in lift invalid.  Recognizing 

that an infinite amount of time is required for the unsteady drag to transfer the infinite energy to 

the flow, it becomes clear that the addition of a steady component of drag (e.g. viscous or 3-D 

induced drag) will also require an infinite amount of energy to overcome.  Adding the practical 

consideration that these steady components of drag will overshadow the unsteady component of 

drag for most values of time, it becomes clear that the unsteady drag will be an insignificant 

component of the energy required by an aircraft propulsion system.  On the other hand, the power 

required to overcome the aerodynamic forces and produce camberline deformations (P), which is 

finite, is not affected by the addition of steady drag components. Therefore, the component P 

drives the design of the actuation systems on an aircraft that produce camberline deformations.  

The remainder of this paper will be concerned with the determination and minimization of the 

energy required to produce camberline deformations; with it being accepted from the practical 

standpoint mentioned above that the infinite energy required to overcome the unsteady 

component of drag is being ignored.   

 

Figure. 5.1 shows one way of allocating the total required actuator power (Pout) for a general 

airfoil control device.  The structural forces would be present on any morphing-type device that 

must deform an outer skin.  Frictional forces may also be grouped in the structural forces 

category, which would also apply to conventional hinged flaps.  The inertial forces are present for 

any device, but are negligible compared to the aerodynamic and structural forces.  As previously 

stated, the current study is concerned with the power required to overcome the aerodynamic 

forces (P), and therefore Pout is assumed to equal P in Figure. 5.1.  For a prescribed change in 

camberline shape along a defined path between t =0 and t =t*, the total energy required to 

overcome the aerodynamic forces is defined as 

∫=
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The power required by the actuator to produce P is defined as Pa in Figure. 5.1. The 

corresponding energy input to the actuators for a prescribed camberline deformation is defined as 

∫=
*

0

)(
t

aa dttPW                                                       (5.6) 

Note that Eq. (5.5) and (5.6) are defined separately for each control surface or actuator on the 

airfoil.  The value of P required for each control surface or actuator is distinguished by the dzc/dt 

term in Eq. (5.2).     

 
Figure 5.1:  The distribution of the provided actuator power for a general configuration 

 

To obtain the quantity Pa, knowledge of the actuator energetics and actuator placement is 

required.  For the current study, which is intended to investigate the fundamentals of the actuator 

energy required to overcome the aerodynamic forces, a general model of the actuator energetics is 

proposed.   The model is defined as follows 
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where η is a constant ranging from -1 to 1 depending on the actuator.  A separate efficiency could 

be defined for positive values of Pout (so that 100% actuator efficiency is not assumed), although 

this implies just multiplying Wa by a constant (since η will change accordingly).  This will not 

influence a comparison between different control surface configurations and is therefore not used 

for this analysis.  Figure. 5.2 illustrates Eq. (5.7) for three key values of η.  For η = 1, the actuator 

requires the same power input to produce negative values of Pout as it does to produce positive 

values.  Recall that positive Pout values indicate that the actuator motion is resisted by the external 

forces while negative values indicate that the external forces act in the direction of actuator 

motion.  For η = 0, the actuator requires no power input and allows no power to be extracted 

while producing negative values of Pout.  This case is the most consistent with feedback controlled 

pneumatic (Fleischer [1995]) and hydraulic (Green [1985]) actuators, which require only the 
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controlled release of pressurized fluid to produce negative power.  The neglecting of negative 

work values has also been considered for the energy-cost analysis of insect flight (Weis-Fogh 

[1973]) and human muscles (Abbot et al. [1952]).  The η = -1 case allows the actuator to store the 

incoming energy associated with negative values of Pout to be used later to produce positive Pout 

values with 100% conversion efficiency.  This value of η allows Wa to be negative and zero for 

certain cases.  Negative values of η are possible for piezo-electric actuators due to their electro-

magnetic coupling (Giurgiutiu et al. [1996]).                

Pa

 
Figure 5.2:  The relationship between Pout, the required rate of actuator work, and Pa, 

 

pplying the general actuator model of Eq. (5.7) to Eq. (5.6), the equation for the total required 

Pout1

η = 1

η = -1

η = 0

the rate of actuator energy, for the proposed general actuator model 

A

actuator energy input can be written as  

−+ += WWWa η                                                      (5.8) 

where W+ and W- are the absolute values of the positive an

 
Figure 5.3: Exam terms for a given transient motion 

 

d negative components of the integral 

in Eq. (5.6).  An example of these components is shown in Figure. 5.3, where in this case W+ is 

the integral of P from t = 0 to t0 and W- is the negative of the integral from t0 to t*.   

P 

ple of the separation of W into W+ and W- 

W+

-W-

t0 tt*
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5.3 The Aerodynamic Work for a Ramp Input of Control 

 

or a camberline defined by Eq. (2.55), the time-dependence of the camberline deformation is 

Deflection 

F

defined entirely by the function β.  This section will derive the aerodynamic work and power 

components discussed in Section 5.2 for the function β defined as a terminated ramp, which will 

be written as 
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where 0β  is the initial value of β, and β∆ is the change in β between τ = 0 and τ = τ*.  These 

terms are illustrated in Figure 5.4 along with the corresponding first and second derivatives of β.  

 
Figure 5.4: The specified time-history of the camberline deformation β and the corresponding 

 

he power required to overcome the aerodynamic forces was defined in Eq. (5.2).  It will be 

Notice that the second derivate is defined by two Dirac delta function impulses.     

time-derivatives 
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convenient to represent the power by the following nondimensional power coefficient (CP) 
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From Eq. (2.70), ∆Cp may be written in terms of β as follows 
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For the β defined in Eq. (5.9), the wake effect term, αun, evaluates to the following 
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Substituting ∆Cp from Eqs. (5.11 – 5.14) and zc from Eqs. (2.55 and 5.9) into Eq. (5.10) allows 

the power coefficient for a single control surface to be written as   
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where the Q terms are defined as 
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Note that the ½ in the Q5 equation is a result of the definition of dβ/dτ at τ = 0 and τ*, which from 

Figure 5.4 can be written as 
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For linear camberline shapes, ψ is linear, and each term in Eq. (5.15) may be interpreted as a 

component of the dynamic hinge-moment coefficient multiplied by the flap deflection rate 

(dβ/dτ).  The Q1 and Q2 terms are due to the wake effect forces, Q3 is due to the quasi-steady 

forces, and Q4 and Q5 are due to the apparent mass forces.  The Dirac delta functions in Eq. (5.15) 

are a result of the acceleration pulse of the camberline as shown in Figure 5.4.     

 

Having obtained an expression for the output power required by an actuator to overcome the 

aerodynamic forces during a ramp input of camberline deformation, the input energy required by 

the actuator (Wa) may be calculated using Eqs. (5.6 - 5.8).  The nondimensional input energy 

coefficient is defined as   
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where CPa is defined through the general actuator model defined in Eq. (5.7), which can be 

written in terms of CP as 
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From Eq. (5.23), the integration required by Eq. (5.22) for CWa can be separated into positive 

(CW+) and negative (CW-) components as follows  

−+ += WWWa CCC η                                                     (5.24) 

which is equivalent to Eq. (5.8) and is illustrated in Figure. 5.3.  Note that the two Dirac delta 

functions in Eq. (5.15) result in there always being both a component of CW+ and CW- present.  

Assuming Q5 is greater than zero, the impulses at τ = 0 and τ = τ* provide components of CW+ 

and CW-, respectively.  These components can both be written as  
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δ =                                                     (5.25) 

which represent the instantaneous transfer of energy from the airfoil to the surrounding fluid.  

Although this is an unrealistic concept, it is accepted because it simplifies the effect of camberline 

acceleration by concentrating it at the beginning and end of the unsteady motion.         

 

The difficulty in applying Eq. (5.24) is that the integrations required for CW+ and CW- can only be 

evaluated analytically for special cases.  The reason for this is that τ0 must be found and then used 
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as a limit of integration for the evaluation of CW+ and CW- (τ0 is equivalent to t0 in Figure. 5.3). 

The analytic evaluation of τ0 is made difficult by the exponentials present in Eqs. (5.13) and 

(5.14).  For Eq. (5.24) to be evaluated analytically, τ0 must be less than zero or greater than τ* so 

that CP remains either positive or negative throughout the deformation process.  Details of these 

considerations are explained most effectively through an example, which is the focus of the next 

section.   

 

5.4 Application to a Pitching Flat-Plate Airfoil 
 

The application of the actuator energy theory developed in the previous sections to a pitching flat-

plate identifies many of the interesting aspects of the theory.  Consider the flat plate shown in 

Figure 5.5.  The shape function of Eq. (2.55) is simply  

xxx a −=)(ψ                                                          (5.26) 

and the time dependent angle of attack, , is specified to be the ramp input defined in 

Eq. (5.9). 
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Figure 5.5: Definition of the geometry and actuator placement for a pitching flat plate 

 

The Q terms from Eqs. (5.16 – 5.20) evaluate to the following  
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Applying these functions to Eq. (5.15) for a value of xa/c = 0.5, the time-history of CP was 

determined for various values of τ* and is plotted in Figure 5.6.  The axes of Figure 5.6 are 
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normalized with τ* to allow the various cases to be shown on the same figure.  This figure shows 

that the required positive work (CW+) decreases as τ* increases, which is a result of reduced 

aerodynamic damping.  Because the initial angle of attack (α0) is zero for this case, Eq. (5.15) 

indicates that the value of τ at which CP is zero (τ0) is independent of τ* (this is not obvious in 

Figure 5.6 because of the scaling of the axes).   
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Figure 5.6: The time-history of the C  for a ramp input of α for various values of τ* P

 

It turns out that this initially nonlifting case allows for the approximate analytic evaluation of CW+ 

and CW-.  This is possible because τ0 may be determined analytically by making use of a few valid 

assumptions.  The solution process for τ0 is initiated by setting CP from Eq. (5.15) equal to zero,  

  0)()( 403022011 =+++ QQQQ ττφτφ                                        (5.31) 

where φ1 and φ2 are defined in Eqs. (5.38) and (5.39).  It is observed in Figure 5.6 that τ0 is less 

than one, which is true for values of xa/c > 0.45.  It is also observed from Eqs. (5.38) and (5.39) 

that the coefficients in the exponentials are less than one.  From these observations it is concluded 

that φ1 and φ2 may be accurately approximated as follows using the first two terms of a Taylor 

series 
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Substituting these expansions into Eq. (5.31), τ0 is found to equal  
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From Figure 5.6, the limits of integration for CW+ and CW- are identified, which allows the two 

terms to be written as 
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where 
ττττφτΦ 091.06.0
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Applying the approximations of Eqs. (5.7 – 5.9), the expression for CW+ from Eq. (5.35) 

simplifies to the following  
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where the Taylor Series approximations of Φ1(τ0) and Φ2(τ0) are used.  Similarly, the 

approximate equation for CW- is written as 
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where Eq. (5.37) and (5.38) are used for Φ1(τ*) and Φ2(τ*).  These equations are valid for values 

of xa/c > 0.45 and for τ* > 0.1.  For values of τ* < 0.1, τ0 is greater than τ* so that the limits of 

integration in Eqs. (5.35) and (5.36) are no longer valid.  The usefulness of these equations is that 

they accurately predict the value of xa for the minimum CWa for any value of η and for values of 

τ* > 0.1.  They also indicate that CW- has a more complex functional dependence on τ* than does 
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CW+.  Figure 5.7 presents the exact values of CW+ and CW-, which were obtained by computing τ0 

and specifying the limits of integration for each case.  The results of Eq. (5.39) for CW+ are shown 

as a dashed line for each case.  It is seen that the results of Eq. (5.39) are indistinguishable from 

the exact result for xa/c > 0.45 and become invalid as xa/c approaches 0.25.  The result of Eq. 

(5.40) is not shown in Figure 5.7, although it can be shown to be accurate for the same values of 

xa as Eq. (5.39).  This figure shows that CW+ and CW- converge to the limit of τ* = infinity, which 

represents the results of steady airfoil theory.  It also shows that, as expected from steady airfoil 

theory, CW+ is largest for xa/c < 0.25 and CW- is largest for xa/c > 0.25.  The pitching axis for 

minimum CW+ is found exactly from Eq. (5.39) to equal 0.572, which is independent of τ*.  

Figure 5.7 verifies that this minimum is located within the range of xa values where Eq. (5.39) is 

valid.  From the CW- plot in Figure 5.7 it is deduced that as η becomes nonzero and positive, the 

minimum CWa pitching axis shifts towards the leading edge.  Similarly, as η becomes negative, 

the optimal axis shifts to the trailing edge. 
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Figure 5.7: The variation of C  and C  with x  /c and τ*.  The thin dashed W+ W- a

 lines in the C  plot represent the result of Eq. (5.39) W+

 

The cases shown in Figure 5.6 and discussed previously specified that the initial α, and therefore 

the initial lift, was zero.  The effect of an initial lift will now be presented.  From Eq. (5.40) it is 

seen that an initial angle of attack (α ) only influences C  through the last term, which contains 

Q .  Dividing this equation by ∆α  allows C  to be written as follows     

P0

2
3 P

( )[ ] 3543221122 *
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*
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τ
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τα∆
+−−++++=          (5.41) 

where   
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α∆
α 0=k                                                             (5.42) 

The value k represents the initial lift divided by the change in steady state lift.  Recognizing the 

term k in Eq. (5.41) is useful because it indicates that the normalized power coefficient (C  / ∆α ) 

is dependent only on the ratio of α  and ∆α, and not each term independently.  The presence of k 

significantly complicates the problem of analytically determining C  and C , although the 

approximate method discussed previously can be applied to certain values of k.  The main effect 

of the initial lift is to vertically displace the C  curves, such as those shown in Figure 5.6.  This 

significantly changes τ  and therefore alters the allocation of C  into C  and C  terms.   

2
P

0

W+ W-

P

W W+ W-0

 

To gain some insight into the effect of k on C , the limiting cases of τ* approaching zero and 

infinity will be examined.  For τ* approaching zero, the region of integration for C  is 

, and the C  component comes completely from the Dirac delta function at τ*.  From 

Eq. (5.41), the integration for C , with τ* approaching zero, results in 
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which is independent of k.  For η > -1, the Q  term is dominant.  Thus, from Eq. (5.30) the 

pitching axis for minimum C  is at the half chord.  For η = -1, only the bracketed term remains 

in Eq. (5.43).  Substituting Eqs. (5.27) and (5.29) into (5.43) and setting the derivative with 

respect to x  equal to zero, the pitching axis for minimum C  is found to be located at x /c = 3/4.   

5

Wa

a Wa a

 

For τ* approaching infinity, the region of integration for C  and C  depends upon k and x .  

This is seen by writing Eq. (5.41) in terms of its lowest order components for large values of τ*.  

To determine the lowest order components, it is necessary to define τ as 

W+ W- a

                                                           (5.44) *τττ =

where 0< <1.  Substituting this into Eq. (5.41), the lowest order equation for C  is written as 

follows   

τ P
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

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2
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2 *
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* τ
ττ

τα∆
Ok

QCP                                           (5.45) 

Note that, as pointed out by Lomax [1960], the asymptotic limits of φ  and φ  obtained from Eqs. 

(5.38) and (5.39) are incorrect.  Therefore, the approximate Wagner function suggested by 

Garrick [1938] was used instead for obtaining Eq. (5.45).  As expected, Eq. (5.45) represents the 

steady thin airfoil theory result.  Equation (5.45) shows that, if k is less than -1 or greater than 

1 2
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zero, the lowest order component of C  is composed entirely of either C  or C .  For these 

values of k, C , is written from Eq. (5.45) and (5.28) as follows 
Wa W+ W-

Wa
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For values of k between -1 and zero, τ  is determined by setting Eq. (5.45) equal to zero.  This 

value of τ  is then used as a limit of integration for C , which from Eqs. (5.45) and (5.28) results 

in 
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        (5.47)                         

Table 5.1 presents the pitching axes for minimum C  obtained from Eqs. (5.46) and (5.47) with 

the constraint that the axes remain within the chord.  These results are intuitive from the 

elementary nature of a steady thin airfoil at an angle of attack. 

Wa

Table 5.1: The minimum C  pitching axes as τ* approaches infinity Wa

 k < -1 -1 < k < -1/2 -1/2 <k < 0 k > 0 
η = 1 xa/c = 1/4 xa/c = 1/4 xa/c = 1/4 xa/c = 1/4 
η = 0 0 < xa/c < 1/4 xa/c = 1/4 xa/c = 1/4 1/4 < xa/c < 1 
η = -1 xa/c = 0 xa/c = 0 xa/c = 1 xa/c = 1 

 

The limiting cases of τ* discussed above allowed C  to be obtained analytically, which allowed 

the optimal pitching axes to be determined analytically.  For the cases, the approximate 

approach presented in Eqs. (5.9 – 5.15), accounting for the k term in Eq. (5.41), is valid for a wide 

range of τ* values.  Where this approach is not valid, the integration for C  is performed 

numerically from Eqs. (5.47), (5.23), and (5.41).  Using a combination of analytic and numerical 

approaches, the minimum C  pitching axes were obtained for η = 0, 1, and -1.  Figure 5.9 shows 

the variation of the optimal pitching axis with τ* for the η = 0 case for various k values.  As 

determined previously, the axes are shown to approach x /c = 0.5 as τ* approaches zero. It is seen 

in this figure that as k becomes large and positive, the optimal axis is located at x /c = 0.5 for 

most τ* values.  This is a result of C  being composed of only the initial impulse, which is 

Wa

0≥k

Wa

Wa

a

a
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smallest for the mid-chord axis.  For negative k values, the optimal axis moves toward the leading 

edge as τ* increases.  Figure 5.9 shows the variation of the optimal pitching axis with τ* for the η 

= 1 case and various k values.  It is interesting to note that for this case, as was determined 

previously, the optimal axis at both τ* equal to zero and infinity is independent of k.  This 

explains the increased similarity between the optimal axes curves for various k values in Figure 

5.9 when compared to Figure 5.8.  For airfoils that must complete a cycle, meaning they produce 

a change in lift (positive k) and then later produce a negative change in lift to return to their initial 

state (negative k), the similarity in the optimal axes for negative and positive k values is 

advantageous.  This is because a smaller compromise must be made, assuming the pitching axis 

remains fixed, when choosing the optimal pitching axis for the complete motion.  For the 

majority of negative and positive combinations of k, the optimal axis for the combination is 

located between the two independent optimal points for a given τ*.  Thus, Figures 5.4 and 5.5 are 

very general and applicable to many practical cases.  Figure 5.10 presents the variation of the 

optimal pitching axis with τ* for the η = -1 case.  It is seen that the difference between positive 

and negative k values is very large compared to Figures 5.4 and 5.5.  The result of increasing k in 

Figure 5.10 is seen to be a decrease in the value of τ* at which the optimal axis is the same as 

those shown in Table 5.1 for the τ* equal to infinity case.  The same conclusion can be stated 

from Figures 5.5. A similar result was reported by Yates [1986] for the minimum energy pitching 

axes of an oscillating flat plate intended to produce thrust.   
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Figure 5.8: The η = 0 case for the variation of the minimum C  pitching axes  Wa

with τ* for various values of k 
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Figure 5.9: The η = 1 case for the variation of the minimum C  pitching axes  Wa

with τ* for various values of k 
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Figure 5.10: The η = -1 case for the variation of the minimum C  pitching axes  Wa

with τ* for various values of k 

 

5.5 Application to Various Control Surface Configurations 
 
This section describes the affect of various control surface shapes on the C  required for a given 

change in lift.  The first two cases to be considered are shown in Figures 6.1 and 6.2.  A 

conventional hinged flap is shown in Figure 5.11.  The conformal control surface, shown in 

Figure 5.12, is a quadratic segment defined to have zero slope at x .  The magnitude of the flap 

deflection (β) is defined in both cases as the angle at the trailing edge.  The ramp input of β, 

defined in Eq. (5.34), will be used for this analysis.  From the shape functions (ψ), which are 

shown for each case in Figures 6.1 and 6.2, the components of ∆C  in Eq. (5.36) may be 

determined analytically from the equations of Section III.  The resulting equations are relatively 

complex, and it is therefore convenient to perform the integrations required for the Q-terms 

defined in Eqs. (4.8 – 4.12) numerically.     
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Figure 5.11: The camberline geometry for a conventional flap 
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Figure 5.12: The camberline geometry for a conformal flap 

 

Note that in the previous case of the pitching flat plate, the ∆C  produced by a ∆α was 

independent of the pitching axis.  This meant that the C  required for a given lift could be 

represented by C  /∆α .  For comparing various control surface configurations, it is convenient 

to instead normalize C  and C  by the ∆C .   From Eq. (5.40), the normalized equation for C  

can then be written as 
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where   
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∆β∆

β ,0 ==                                                         (5.49) 

Recall that the quantity ∆C  refers to the change in steady state lift, which from Eq. (3.7) is 

written as  
L

β∆∆ sL KC ,0=                                                        (5.50) 

Considering the conventional and conformal flap configurations, if k is greater than zero, then C  

remains positive throughout the ramp input of β.  Therefore, C  is obtained by integrating Eq. 

(5.48) from τ = 0 to τ* and C  is obtained from Eq. (5.25).  For small negative values of k, C  

changes from positive to negative and therefore τ  must be determined.  For these cases, the 

process described with Eqs. (5.9 – 5.15) may be used.  For large negative k values, C  remains 

negative throughout the ramp input of β. Therefore, C  is obtained by integrating Eq. (5.48) from 

τ = 0 to τ* and C  is obtained from Eq. (5.25).        
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It is desired to compare the values of C  resulting from the conventional and conformal flap 

configurations defined in Figures 6.1 and 6.2.  The first case to be considered, shown in Figure 

5.13, compares the C  required for a given ∆C , x , and τ* while varying k.  It is seen that the 

Wa

Wa L b
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C  required by the conformal flap is less than that required by the conventional flap for any k 

when η = 0.  For the η = 1 case, there is a small range of k values where C  is slightly less for 

the conventional flap.  Overall though, the conformal flap requires less C  than the conventional 

flap.   
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Figure 5.13: A comparison of the C  required for a conformal or conventional flap Wa

 

The reason for the smaller C  for the conformal flap is that it requires less overall camberline 

deformation for a given change in lift than does the conventional flap.  Figure 5.14 illustrates this 

result along with the corresponding load distribution at τ = 1/2.  It is seen that the angle of 

deflection at the trailing edge of the conformal flap is larger than that for the conventional flap for 

a given change in lift, but the overall ∆z of the camberline is less for the conformal flap.  The load 

distribution for the conventional flap is centered more towards the hinge-line than for the 

conformal flap, which is favorable for the conventional flap.  Nevertheless, the larger ∆z 

overshadows the favorable load distribution for the conventional flap.  It should be mentioned 

that the shape of the load distributions shown in Figure 5.14 apply only at τ = 1/2.  As shown in 

Eq. (5.36), the load distribution does not simply scale linearly with the ramp input of β.  
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Figure 5.14: The load distribution over the flap and the corresponding  

shape of the flap deflections 

 

Figure 5.15 shows how C  varies with τ* and x  for the conformal and conventional flap.  It is 

seen that the conformal flap requires less C  for every case.  It is also apparent that the benefit of 

the conformal flap becomes larger as τ* decreases.  Hence, the conformal flap is ideal in 

situations where rapid changes in lift are required.  The values of C  in the limit as τ* goes to 

infinity are shown in Figure 5.15.  These values, which can be obtained from steady thin airfoil 

theory, show that C  is 18% less for the conformal flap in the steady limit.  The considerable 

difference between the steady and unsteady values in Figure 5.15 indicates the importance of 

including the unsteady aerodynamic terms in this analysis.  It should be mentioned that the values 

of C  for a given change in quarter chord pitching moment (C ), produce results similar to those 

in Figure 5.15.  In particular, the value of C /C  decreases continuously as x  varies from 

midchord to the trailing edge.  This is true even though the flap deflection required to produce a 

pitching moment has a minimum at x  /c = 0.75 for the conventional case. 
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The next cases to be considered are the variable camber configurations shown in Figures 6.6 and 

6.7, which are defined as NACA 4-digit camberlines with time-dependent magnitudes of 

maximum camber.  These cases were discussed in Section 3.5.  Configuration A, shown in Figure 

5.16, is defined so that the leading and trailing edges remain on the x-axis as the camber changes.  

Configuration B, shown in Figure 5.17, is defined so that the location of maximum camber (x ) 

remains on the x-axis as the camber changes.  Figure 3.1 shows that in steady thin airfoil theory, 

these two configurations produce the same aerodynamic forces.  But, the addition of the 

aerodynamic damping component, shown in Figure 3.2, makes the unsteady thin airfoil results 

different between the two cases.  In considering the actuator energy for each case, it is assumed 

that each configuration is actuated with a single actuator.  This implies that some type of linkage 

system is used to produce the desired camberline shape.  Also, as has been done throughout this 

paper, only the aerodynamic forces are considered for the actuator energy.   It is recognized that 

this is a big assumption for these variable camber configurations, but nonetheless, we feel that the 

present analysis provides significant insight into the actuation properties of a variable camber 

airfoil. 

b
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Figure 5.16: The camberline geometry for a variable camber airfoil with 

the leading and trailing edges fixed to the x-axis (Configuration A) 
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Figure 5.17: The camberline geometry for a variable camber airfoil 

 with x  fixed to the x-axis (Configuration B) b

 

The dependence of C  on k and x /c is shown in Figure 5.18 for both configurations and η = 0.  

It is seen that configuration B requires significant C  for positive k cases while configuration A 

requires very little for these cases. This result is explained by recognizing that the camberline 

motion for configuration B is downwards for a positive change in lift, which must therefore move 

against the upward acting lift forces.  On the other hand, the camberline motion for configuration 

A is upwards and is therefore not resisted by the aerodynamic forces. For negative k values, the 

situation reverses and this configuration requires significant C . Figure 5.18 shows that 

configuration B requires less C  for a given positive k than configuration A requires for a 

negative k of the same magnitude. This means that if the airfoil is intended to produce an equal 

number of positive changes in lift as negative changes in lift, then configuration B is favorable 

from an energy standpoint.  The second plot in Figure 5.18 shows that this conclusion is true for 

any location of maximum camber (x ).  It is also seen that as x  moves closer to the leading edge, 

configuration B becomes even more favorable.          
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The load distribution and corresponding camberline shape at τ = 1/2 are shown in Figure 5.19.  

This figure illustrates the point made previously that the camberline motion for configuration B is 

resisted by the aerodynamic forces for k greater than or equal to zero.  Note that the difference 

between the load distributions shown in this figure comes from the K0,d and dA ,0 terms in Eq. 

(5.36).  This figure makes clear the reasons why configuration B requires less CWa (when 

considering the entire range of k values) than configuration A.  The first reason is that 

configuration B simply requires less overall camberline deflection than configuration A.  The 

second reason is that for configuration A, the largest camberline deflections are towards the 

center of the camberline while for configuration B they are at the leading and trailing edges.  

Combining this fact with the shape of the load distribution makes clear the advantage of 

configuration B.     
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Chapter 6 

 

Flapping Wing Propulsion 
 

6.1 Introduction 
The discussion in the previous chapters on the aerodynamic characteristics of oscillating 

camberlines provides the foundation for studying flapping wing propulsion.  This section will 

develop a flapping wing analysis based on the unsteady thin airfoil theory method presented in 

this report.  Using the actuator model presented in Chapter 5, the influence of negative power on 

the efficiency of flapping wing propulsion will be discussed.  The influence of springs and elastic 

mechanism will be shown to be important in order to maintain high actuator efficiency.  The 

application of this method to a three-dimensional wing will be discussed. An example for two 

birds will be presented and shown to agree with previous studies.  Negative power is found to be 

present in these examples, which when considered in the efficiency, leads to a change in the 

optimal flight speed.  

 

6.2 The Energy Required for Flapping 

For an oscillating airfoil with a steady-state component, the parameter β from Eq. (2.55) can be 

written as 

( )τβββ kcos0 +=                                                       (6.1) 

where 0β  is the steady component and β is the amplitude of the oscillating component.  

Although 0β  does not affect the time-averaged values of CP and Cd, it does change their 

instantaneous values.  For Cd, we are not interested in the time-history, but for CP we are 
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interested to allow for the calculation of the actuator energy discussed in Chapter 5.  From Eqs. 

(5.10), (2.89), (2.55), and (6.1), CP is written as follows          
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where the Π1 and Π2 terms are rewritten from Eq. (2.89) and Π3 is defined here as simply the 

steady load distribution  
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It will be convenient to write Eq. (6.2) as follows 
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(6.5) 

Recall that, as illustrated in Figure 5.1, CP represents the power required to overcome only the 

aerodynamic forces.  The average value of CP over one cycle can be written as 

( )kCP 2

2

2
Φβ

=                                                        (6.6) 

Combining the average drag defined in Eq. (4.32) and the above equation for the average power, 

the aerodynamic efficiency is written as 

 
P

d
aero C

C
−=η                                                            (6.7) 

Note that this efficiency is only an aerodynamic efficiency; if it was total efficiency for the 

flapping mechanism, the denominator would be the average total actuator energy.  This will be 

defined later. 
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To determine the energy required by the flapping actuators, the structural and inertial power 

components shown in Figure 5.1 must also be known.  Although in Chapter 5 these components 

were neglected for fixed-wing control surface motions, for flapping wings, these components may 

be significant.  The power to overcome the inertial forces will be written as     

( ) ( )ττβτ kkkKC IinertiaP sincos)( 32
, =                                           (6.8) 

where KI is defined as 

 
2c

m
K a

I ρ
=                                                                (6.9) 

where ma is the mass per-unit-length of the airfoil in the spanwise direction.  The power required 

to overcome the structural forces will be simplified as the power required to overcome a spring 

connected to the flapping device.  There are two different arrangements possible for a single 

actuator and spring: parallel and series.  These are shown in Figure 6.1, where βactuator is the 

actuator output displacement and β is the prescribed camberline displacement.  For the parallel 

arrangement, βactuator and β are the same while for the series arrangement they are added together.  

Conversely, for the series arrangement, the force acting at βactuator and β is the same while for the 

parallel arrangement they are added together.   

β

βactuator βactuator

β

Parallel Series
 

Figure 6.1: Illustration of a spring and actuator in parallel and in series 

 

Brooks et al. [1985] used a series arrangement for a flapping pterosaur model and showed that 

this resulted in a large reduction in the required actuator current.  Bennett et al. [1985] studied the 

muscles in the tails of whales and found that the muscles were in series with elastic tissue.  They 

attempted to show that this configuration minimized the negative work required by the muscles, 

but found the opposite.  Blickhan and Cheng [1994] revisited this study and found that the elastic 

tissues did in fact reduce the amount of negative work required by the muscles.  They used an 

unsteady vortex lattice method to model the aerodynamics and showed that Bennett’s simplified 

quasi-steady aerodynamic model was insufficient.  Pennycuick [1976] studied the elastic 
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properties of feather shafts in birds and showed that they were capable of acting as an efficient 

spring.  It is not clear whether this would be a parallel or series arrangement because it depends 

on how the muscles are attached and what part of the wing is deforming.  Weis-Fogh [1960] 

studied the elastic properties of insect cuticles, which acted as springs in the hinges of insect 

wings.  Because the spring was at the hinge, it was a parallel configuration.  Weis-Fogh [1973] 

later concluded from an energy analysis, which considered only the positive work (η = 0), that 

these elastic mechanisms must be present for insect flight to be possible.  In another similar study, 

Weis-Fogh [1972] discussed the possible benefits of elastic elements in hummingbirds, but 

mentioned that he was unable to find any such system upon dissecting a hummingbird.  More 

importantly, he also mentioned that he was unaware of anybody describing an elastic system in 

any bird.  Of course, as was mentioned previously, Pennycuick later found a type of elastic 

mechanism, but it is not clear whether this mechanism is effective.                         

 

For the present analysis a parallel spring arrangement will be considered.  A similar discussion 

for the series arrangement is presented by Blickhan and Cheng [1994].  For a given reduced 

frequency, the parallel and series arrangements may be designed to give the same optimal 

performance.  The difference between the two comes in their off-design operation.  Generally, the 

series arrangement is significantly better in off-design conditions.  For the parallel arrangement, 

the required power can be written as       

( )[ ] ( )τββτβτ kkkKC sSspringP sincos)(, −−=                                 (6.10) 

where sβ  is the value of β at which the spring produces no force and KS is nondimensional spring 

stiffness per-unit length, which is defined as qGKS /= , where G is the dimensional spring 

stiffness per-unit length (N/m2) and q is the dynamic pressure. 

 

Combining Eqs. (6.4), (6.8), and (6.10), the total output power required by the actuator to 

maintain the prescribed flapping motion can be written as  
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                              (6.11) 

where 
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The average value of CP,out is equal to A/2, which is the same as PC  in Eq. (6.6), meaning the 

spring and inertia do not contribute.  The last line in Eq. (6.11) shows that CP,out will be positive 

for every value of τ if B and C are zero and Φ2 is positive.  The likelihood of Φ2 being positive 

will be discussed later, but let us assume that it is true for the current discussion.  If KS and sβ  are 

free design variables, then from Eq. (6.12) they can be chosen to make B and C equal to zero.  

This leads to the following    
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Because KS,opt is a nondimensional coefficient, it makes things more clear if Gopt is written 

instead, which results in 
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For a given design condition, which is defined by ω and U separately (i.e. not just k ), Gopt and 

optS ,β  may be chosen from Eqs. (6.13) and (6.14) therefore resulting in Eq. (6.11) reducing to the 

following for CP,out  

( )ττ kAAC outP 2cos
22

)(, −=                                                (6.15) 

Assuming Gopt and optS ,β  cannot be varied during flight, it is important to know what range of ω 

and U values that the spring system remains beneficial compared to having no spring.  A 

simplified case of practical significance considers the range of U values for a fixed ω and a Sβ  

that is always optimal, or 0β  and Sβ may be considered zero (meaning C is always zero).  From 

Eq. (6.12), if there is no spring the value of B in Eq. (6.11) is        
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+=

3

1
2

0 ),(
U

cKUB I
ωωΦβ                                        (6.16) 

At the design value of U (Udes), the design value of G is obtained from Eq. (6.14) and the 

corresponding B is equal to zero.  At an off-design value of U defined as 
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UUU desoff ∆+=                                                  (6.17) 

which corresponds to the following value of B 
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For the spring to be beneficial, the following equation must be true 

)()(0 UUBUUB desoffdes ∆∆ +>+                                   (6.19) 

which leads to the following equation 
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The lower limit indicates that ∆U may become as large (positive) as desired and the spring will 

remain beneficial.  The upper limit requires knowledge of Φ1, but once this is known Eq. (6.20) 

allows for the largest negative value of ∆U to be determined.  This will be discussed later.  

 

Returning to Eq. (6.11), the values of τ at which CPout is zero (τ0) must be known to determine the 

required actuator energy (CWa) as discussed in Chapter 5.  For our purposes, the first five roots of 

Eq. (6.11) are required, which are equal to the following  
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where in some cases τ0,2 may be larger thanτ0,3.  The inverse cosine term in these equations 

indicate that if 22 BAC +> , then τ0,2 and τ0,4 are imaginary and therefore only τ0,1, τ0,3, and τ0,5 

are physically realized.  Figure 6.2 shows an example of CP,out and the corresponding τ0 values.      
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Figure 6.2: Example of the variation of CP,out with τ and an illustration of the CW and τ0 terms 

 

Also shown in Figure 6.2 are the four distinct components of CW obtained by integrating CP,out 

over the appropriate regions of τ.  From Eq. (6.11), these components evaluate to the following       
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These equations must be changed accordingly if τ0,2 is larger than τ0,3.  To apply Eq. (5.24) for the 

input energy to the actuator (CWa), CW+ and CW- are defined from Figure 6.2 as 

( DWBWW

CWAWW

CCC
CCC

,,

,,

+−= )
+=

−

+
                                                    (6.23) 

which is true for most practical configurations.  Note the negative sign is present in the CW- 

equation because, as defined in Chapter 5, CW- is the absolute value of the negative work.  From 

Eq. (5.24), CWa is written as 

−+ += WWWa CCC η                                                        (6.24) 

which depends on the actuator parameter η.  Note that an actuator is not 100% efficient at 

producing positive work as indicated by Eq. (6.24).  Another efficiency to account for this could 
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be introduced and multiply the right-hand side of Eq. (6.24).  This is not done here because we 

are interested in observing the relative effect of the required negative work on the input energy to 

the actuator, which requires only the relative efficiency represented by η.   

 

From CWa in Eq. (6.24), the average value of CPa can be written as    

WaPa CkC
π2

=                                                          (6.25) 

Similarly to Eq. (6.7), the efficiency of the system is defined as 

Pa

d
act C

C
−=η                                                             (6.26) 

which is equal to ηaero when η = -1 or when CW- is zero.   

 

6.3 Flapping by Heave Motions 

The fundamental motion for flapping propulsion is the heave motion with ψ defined in Eq. (2.75) 

and β  representing the maximum value of zc/c.  To allow a steady-state lift to be present 

throughout the motion, a constant value of angle of attack is superimposed on the heave motion 

( 0β = α0), which defines Φ3. From Tables 2.1 and 2.2 and Eq. (6.5), the Φ terms are found to 

equal the following   
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From this equation and Eq. (6.6), the average power coefficient is simply 

FkCP
22πβ=                                                           (6.28) 

Also, from Eq. (4.32) the average drag coefficient is found to equal  

( )2222 GFkCd +−= βπ                                                  (6.29) 

which allows the aerodynamic efficiency in Eq. (6.7) to be written as  

F
GF

aero

22 +
−=η                                                        (6.30) 
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This equation was first presented in the English-speaking literature by Garrick [1936].  

Experimental validation of this theory has been provided by, for example, Anderson et al. [1998] 

and Delaurier and Harris [1982]. 

 

Results for the total efficiency (ηact) of a heaving airfoil with no spring or inertia forces are shown 

in Figures 6.3 and 6.4.  In Figure 6.3 the effect of negative work is seen to greatly reduce the 

efficiency for large values of reduced frequency.  Recall that the η = -1 case corresponds to ηaero, 

given by Eq. (6.30).  The cases shown in this figure have no constant lift component ( 0β =0).  

Figure 6.4 shows the effect of 0β  being nonzero, where in these cases 0β  represents a constant 

angle of attack (α0).  For small values of reduced frequency, the difference in the efficiency with 

η = 1 is seen to be large.  For large values of reduced frequency, the different values of α0 

converge to the zero lift case shown in Figure 6.3.           
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Figure 6.3: The efficiency of propulsion for a heaving airfoil (no inertia or spring components) 
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Figure 6.4: The efficiency (no inertia or spring components) for different α0 values 

 

The discussion of the range of U values for which a spring of fixed stiffness was beneficial ended 

at Eq. (6.20), which required Φ2 to be specified.  Substituting Φ2 in Eq. (6.25) into Eq. (6.20) 

results in the following   
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where F is a function of ω and U.  Because we already found that the spring remains beneficial as 

∆U becomes large, meaning k  becomes small, we are not concerned with the small k  case.  

Considering the large k  case, F may be approximated by Eq. (2.46), rewritten as follows in terms 

of k  
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Substituting this into Eq. (6.31) and considering the right inequality, the following equation is 

obtained after some algebra which may be solved for the lower (negative) limit of ∆U.   
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In summary, ∆U may be as large and positive as desired for the spring designed for Udes to be 

beneficial over the no spring case, but beyond the negative ∆U found from Eq. (6.33), the system 

requires more energy than if there was no spring.    
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6.4 Flapping Wing Performance Analysis 
This section will investigate the actuator input energy required by a full flapping wing vehicle 

using the theoretical developments of the previous sections.  There has been a significant amount 

of past research to determine the energy required for flapping flight (a review is presented by 

Shyy et al.), although nearly all of it has been concerned with determining the output energy 

required by actuators or muscles instead of the input energy required.  Because the role of 

negative work could be large, the required output energy required by actuators does not provide 

sufficient guidance towards an energy efficient flapping device.   

 

To apply the two-dimensional theory that has been used throughout this report to a three-

dimensional wing, some approximations suggested by DeLaurier [1993] are made.  But first, the 

wing geometry and motion must be defined.  Figure 6.5 shows the front view of a half-span, 

where the dark line is the wing surface and s is the wing half-span.  The amplitude of the total 

flapping motion is defined by σ  and the instantaneous flap angle measured from the y-axis is 

defined as      

( ) ( )τστσ kcos
2

=                                                   (6.34) 

We will treat the airfoil section at the span location s/2 as the representative section for the half 

span.  To applying the heaving airfoil equations to this section, the maximum arc-length 

measured from the y-axis is β, which is written as 

( ) ( )

c
s

k
c

s

4
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4

σβ

τστβ

=

=
                                                 (6.35) 

Figure 6.6 shows the side view of a half-span, which shows that the flapping axis is assumed to 

remain parallel to the free-stream velocity.  The steady-state lift is assumed to be produced by the 

angle of attack of the wings relative to the flapping axis.  The difference between the flapping 

axis being at an angle of attack and the wings relative to the flapping axis being at an angle of 

attack is not large if σ is less than 45 degrees.  The normal force coefficient of the entire wing 

can be written as    

( ) termsunsteadywCN +−= 02 θπ                                            (6.36) 

where the three-dimensional downwash correction used by DeLaurier is defined as 
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where AR is the wing aspect ratio.  To obtain the average lift coefficient for one cycle of 

oscillation, the following equation is used  
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which from Eq. (6.34) and (6.36) results in 
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212/2 0 σπθ                                               (6.39) 

where J0 is a zeroth order Bessel function of the first kind.  Note that the unsteady terms in Eq. 

(4.34) do not contribute to the average lift coefficient. 
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Figure 6.5: Front view of a half-span of the flapping wing 
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Figure 6.6: Side view of a half-span of the flapping wing 
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For steady level flight, the average lift must balance the weight of the aircraft, which is expressed 

in the following equation 

0=− mgCqS L                                                       (6.40) 

where S is the wing area, m is the aircraft mass, and g is gravity.  Also, for steady flight the thrust 

must equal the drag, which is expressed as      
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π

                                (6.41) 

where the first term is the induced drag, the second term is the profile drag, the third term is the 

parasite drag, and the fourth term is the unsteady component determined in Section 4.6 (which is 

actually the thrust).  The profile and parasite drag terms are discussed by Pennycuick [1968], 

Tucker [1973] and Rayner [1979a and 1979b] in the context of bird flight.  Although the present 

analysis is not specific to bird flight, the value for Cd,pro given by Rayner and the expression for 

Cd,par given by Tucker will be used: 
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where m is in kg and S is in m2.  For a given aircraft mass (m), wing area (S), half-span (s), and 

dynamic pressure (q), the thrust due to flapping (- dC ) must equal the combination of induced, 

parasite, and profile drag.  From Eq. (6.41), this results in the following required value of dC       
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From Eqs. (6.29 and 6.35) the average drag due to flapping produced by a givenσ and k  is 

written as 
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which must be negative to indicate thrust.  The components of the Theodorsen function, F and G, 

in Eq. (6.44) are incorrect for finite aspect ratio wings.  Jones [1940] presented aspect ratio 

corrections and DeLaurier [1993] presented a simplified form of Jones’s equations, which are 

written as follows 
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Equating Eq. (6.44) with Eq. (6.43) and assuming U and ω are given, the required flapping 

amplitude is found to equal  
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Substituting this into Eqs. (6.6) and (6.35), the average aerodynamic power for one cycle is 

written as  
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which, as mentioned while discussing Eq. (6.11), is the same as the average output power 

required by the actuators ( outPC , ).  Note that this equation is just the average required thrust 

divided by the aerodynamic efficiency: aeroreqdC η/,− .  Also, this equation is independent of the 

spanwise location of the chosen representative airfoil section.   

 

With σ  known from Eq. (6.47), the required angle of attack (θ) is determined be combining Eqs. 

(6.39) and (6.40), which results in 
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θ                                            (6.49) 

This is the last term required to calculate C  from Eqs. (6.11) and (6.12) for a given aircraft 

configuration (AR, S, s, m, m

outP,

a), flight speed (U), and flapping frequency (ω); where θβ =0  and 

β  is defined in Eq. (6.35).  From the procedure discussed with Eqs. (6.21-6.25), the average 

actuator input power ( PaC ) may be determined.  Note that PaC  is dependent upon θ, which 

represents the steady lift component, whereas outP,C   is not.  In the case of swimming flapping 

wing propulsion, the value for m in the above analysis is set to zero.  Also, the parasite and profile 

drag coefficients in Eq. (6.42) must be changed to account for the fluid being water instead of air. 
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The above procedure was applied to two flapping wing cases: a Pigeon and a Pied Flycatcher,  

which have been studied previously by Pennycuick [1968], Rayner [1979b], and Phlips et al. 

[1981].  Phlips et al. presents a comparison of the three studies.  These past studies only 

calculated the average aerodynamic power ( PC ), therefore ignoring the difference in the energy 

cost of positive and negative muscular work.  The present analysis will calculate the average 

input power ( PaC ) to the flapping actuators, or in this case the flapping muscles.  The relative 

energy cost of positive and negative work, represented by η in Eq. (5.7), is just as applicable to 

muscles as to actuators (Margaria [1976]).   From Weis-Fogh’s [1972] statement that there are no 

elastic mechanisms in the wing of a bird, no spring will be present in our analysis.  The inertia 

will also be ignored, which has been assumed negligible in past studies.  To be consistent with the 

comparison presented by Phlips et al., the results are presented in terms of the dimensional 

average power, which for the three-dimensional wing is defined as         

Paa CqUSP =                                                           (6.50) 

Figures 6.7 and 6.8 present the defining parameters for each bird as well as the power curves 

resulting from the present method.  Recall that for the η =-1 case, PPa C=

SK

C , which should 

therefore be in closest agreement with the curves presented by Phlips et al..  This is the case, and 

the present method with η = -1 predicts a minimum power of nearly equal magnitude at about the 

same flight speed as the past studies.  For the η equal to zero and one cases, the required power is 

noticeably increased at low flight speeds.  This means that there is a significant amount of 

negative power required during the flapping cycle.  An important consequence of this is seen to 

be the change in the minimum power flight speed, which is marked by an X in both figures.  For 

both birds, the minimum power flight speed increases as η increases.  The reason for the large 

amount of negative power at low flight speeds, which correspond to large values θ (=α0), is 

apparent from Figure 6.4.  If a spring was added to this system with a and Sβ  determined 

from Eq. (6.13), the η equal to zero and one curves would reduce to the η = -1 curve.  Thus, a 

significant reduction in the required power would be obtained.  Note that adding an inertia term to 

this case would increase the amount of negative power; meaning a spring would be even more 

beneficial.  The importance of springs in flapping wing flight does not seem to be emphasized 

enough in the literature.  The only mention of this significance in a non-Biological study seems to 

be that of Brooks et al. [1985].  They show experimentally a reduction in the required current for 

a flapping motor with a spring system.  They also mention that this is an issue that has not been 
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“adequately addressed” by past research and many past ornithopter designs operate inefficiently 

as a result.               
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Figure 6.7: Average actuator input power versus flight speed for a Pigeon  
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Figure 6.8: Average actuator input power versus flight speed for a Pied Flycatcher 

 

The curve labeled “100% flapping efficiency” in Figures 6.7 and 6.8 represents the required 

thrust from Eq. (6.43) multiplied by the velocity.  This is the power that would be required from 
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the engine of a fixed wing aircraft of the same size and mass.  Thus, there is an apparent penalty 

for flapping wing propulsion.  It could be argued that a fixed wing aircraft would require a larger 

mass to account for an engine, and therefore this penalty would not be present.  Woods et al. 

[2001] compared the power requirements of flapping wings, rotary wings, and fixed wings for 

micro air vehicles.  For a 50 g vehicle, flapping wings were shown to require less power in a 

range of flight velocities between 3 and 10 m/s.  Spedding and Lissaman [1998] also discussed 

the power requirements for small flapping or fixed wing vehicles.  They found that flapping and 

rotary wings have similar power requirements.       

 

6.5 Multi-Degree-of-Freedom Flapping  
This chapter has been limited so far to single-degree-of-freedom flapping propulsion using heave 

motions.  In general, flapping propulsion may use multiple-degrees-of-freedom, and it is not 

required that any of these degrees-of-freedom be heaving.  For example, Wu [1961] and Daniel 

[1987] studied the propulsion characteristics of progressive chordwise waves on a thin airfoil and 

Nakashima and Ono [1996 and 200] studied the propulsion of an airfoil modeled as a three-joint 

bending mechanism.  The most common mode of flapping wing propulsion, though, uses a 

combination of pitch and heave.  This has been studied extensively by, for example, Lighthill 

[1970], Wu, [1971], Jones et al. [2001], and Neef and Hummel [2001]. Lighthill and Wu both 

studied the problem using thin airfoil theory and determined the ratio of pitch and heave 

amplitudes and the phase angle that resulted in the maximum propulsive efficiency.  Jones et al. 

and Neef and Hummel studied the problem numerically and showed agreement with the thin 

airfoil theory results.  From Appendix B of this report, the thrust for a general multi-degree-of-

freedom system may be determined analytically.  The required power can be derived similarly to 

Section 6.2, although this is not presented.  To determine the actuator input energy, the actuator 

layout must be specified.  For example, are the degrees of freedom actuated independently with 

different actuators or are they linked?  We will assume that one actuator is used for the entire 

system.  The separation of CP,out into negative and positive work can be done similarly to Section 

6.2 although a numerical approach to determining the τ0 values simplifies the problem.  This 

section will show how negative work influences the optimal pitching axis determined by 

Lighthill.   

 

In his study of flapping, Lighthill defined a “feathering parameter” as   
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h
U
ω

αθ =                                                       (6.49) 

where α and h are the pitch and heave amplitudes, respectively. He also made the assumption that 

the pitch and heave motions were 90 degrees out-of-phase.  This allowed the pitching axis to be a 

free parameter. On the other hand, Wu fixed the pitching axis and allowed the phase angle to be 

the free parameter.  Lighthill also defined a thrust coefficient as follows 

a
T xh

cDC 22ω
−=                                                      (6.50) 

where xa is the pitching axis.  In Figure 4 of Lighthill [1970], the aerodynamic efficiency (ηaero) 

and CT are plotted as a function of reduced frequency.  The conclusion is made that for highest 

efficiency with large thrust, the pitching axis should be towards the trailing edge.  Figures 6.9 and 

6.10 present a similar analysis, except in this case, ηact is presented instead of ηaero.  The thick 

lines in Figure 6.9 represent the η =-1 case, which as mentioned before, means that ηaero = ηact .  

In other words, the thick lines reproduce Lighthill’s results.  Examining both figures for this case, 

it can be concluded that for high reduced frequency, the xa/c = 1.0 and θ = 0.8 case is the best for 

maintaining both high thrust and high efficiency (which is Lighthill’s conclusion).  The thin line 

present the η = 0 case, which means the influence of negative power is accounted for.  It turns 

out, that for the xa/c = 0.5 and θ = 0.6 case, the η = 0 and -1 lines lie on top of each other, 

meaning that there is a very small amount of negative power.  But more importantly, for large 

values of reduced frequency ηact is largest for this case.  In Figure 6.10 it is seen that this case 

also produces nearly the same amount of thrust as does the xa/c = 1.0 and θ = 0.8 case.  Also, the 

component of the thrust due to leading edge suction is smallest for the xa/c = 0.5 and θ = 0.6 case.  

This means that, as pointed out by Lighthill, the actual flow is less likely to have leading edge 

separation and thrust is less sensitive to viscous effects.  We can conclude from this discussion 

that the xa/c = 0.5 and θ = 0.6 case is more effecient than the xa/c = 1.0 and θ = 0.8 case suggested 

by Lighthill.  If there is an optimal elastic mechanism, though, as shown before the results for the 

η = -1 case are true, and therefore Lighthill’s result is applicable.  Note also that this analysis 

assumed there was a single actuator operating both the heaving and pitching motions.  If this was 

not assumed, the phase angle between the pitch and plunge would become a free parameter and 

could not be assumed to be 90 degrees.   
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Figure 6.9: The influence of negative work on Lighthill’s conclusion regarding the pitching axis 

and feathering parameter for highest efficiency 
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Figure 6.10: The influence thrust coefficient, as defined by Lighthill, for the cases  

shown in the previous figure 
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Appendix A 

 

Useful Integral Formulas for Determining the Unsteady Load 

Distribution 
 

The following integrals are used in determining the apparent mass pressure distribution for the 

general camberline: 
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Appendix B  

 

The Drag for a Three-Degree-of-Freedom Oscillating Airfoil 
 

Many practical oscillating airfoil applications deal with multi-degree-of-freedom airfoil motions, 

such as the combination of pitch and plunge oscillations.  For the lift, pitching moment, and load 

distribution, each degree of freedom is treated separately and then linearly combined.  As 

discussed in Chapter 4, the drag (and in Chapter 5, the work) is not linear with respect to the 

camberline deformation or airfoil motion.  Thus, to accommodate multi-degree-of-freedom 

situations, the drag must be derived specifically for the combination of various camberline 

deformations or airfoil motions.  This appendix will derive the drag for a three degree-of-freedom 

configuration, where each degree of freedom is defined by a magnitude and phase angle.  This 

derivation is similar to Garrick’s [1936] derivation for pitch, plunge, and flap motions, although 

the present case treats three general degrees-of-freedom.   

 

From Eq. (2.76), the nth degree-of-freedom of the airfoil motion will be defined as follows 
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which allows the corresponding camberline for each degree-of-freedom to be defined similarly to  

Eq. (2.55) as  

3,2,1),()(),( == nxxz nnn τβψτ                                            (B.2) 

To calculate the drag from Eq. (4.7), the load distribution and leading edge suction must be 

known.  From Eqs. (2.73) and (2.74), the load distribution for each n can be written as   

( ) ( )nnnnnnnp kkC φτβΠφτβΠ∆ +++= sincos ,2,1,                              (B.3) 

where the Π terms are defined in Eq. (2.89).  From Eq. (4.16), the leading edge suction is 

extended to the three degree-of-freedom oscillating case as follows   
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From Eqs. (4.15) and (2.72), αun,n is defined as  
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which will be written as 
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From Eq. (B.1) and (B.6), the terms within the summation in Eq. (B.4) will be written as 
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Substituting Eqs. (B.2), (B.3), and (B.8) into Eq. (4.7) allows the drag to be written as 
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The complexity of the drag for a multi degree-of-freedom system is apparent from Eq. (B.10).  It 

is common practice to define the average drag over one period of oscillation ( dC ) as 
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Substituting Eq. (B.10) into Eq. (B.11) and performing the integration over τ results in a very 

long expression, which is not presented here.  The integration over x in Eq. (B.10) is performed 

numerically to obtain dC .  The value of the formulation presented here lies in the fact that it 

applies to the general deforming camberline presented in Chapter 3.   
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