
5.   Drag: 

An Introduction

5.1 The Importance of Drag

The subject of drag didn’t arise in our use of panel methods to examine the inviscid flowfield

around airfoils in the last chapter: the theoretical drag was always zero! Before proceeding fur-

ther in any study of computational aerodynamics the issue of drag must be addressed. There are

many sources of drag. In three-dimensional flow, and in two dimensions when compressibility

becomes important, drag occurs even when the flow is assumed inviscid. Before discussing the

aerodynamics of lifting systems, the fundamental aspects of aerodynamic drag will be examined.

Drag is at the heart of aerodynamic design. The subject is fascinatingly complex. All aerody-

namicists secretly hope for negative drag. The subject is tricky and continues to be controversial.

It’s also terribly important. Even seemingly minor changes in drag can be critical. On the Con-

corde, a one count drag increase (∆CD = .0001) requires two passengers, out of the 90 ∼ 100 pas-

senger capacity, be taken off the North Atlantic run.1 In design studies a drag decrease is equated

to the decrease in aircraft weight required to carry a specified payload the required distance. One

advanced fighter study2 found the drag sensitivity in supersonic cruise was 90 lb/ct and 48 lb/ct

for subsonic/transonic cruise. At the transonic maneuver design point the sensitivity was 16 lb/ct

(drag is very high here). In comparison, the growth factor was 4.1 lb of takeoff gross weight for
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every 1 lb of fixed weight added. For one executive business jet the range sensitivity is 17

miles/drag count. Advanced supersonic transports now being studied have range sensitivities of

about 100 miles/drag count. When new aircraft are sold, the sales contract stipulates numerous

performance guarantees. One of the most important is range. The aircraft company guarantees a

specified range before the aircraft is built and tested. The penalty for failure to meet the range

guarantee is severe. Conservative drag projections aren’t allowed—the competition is so intense

that in the design stage the aerodynamicist will be pressured to make optimistic estimates. In one

briefing in the early ’80s, an aerodynamicist for a major airframer said that his company was

willing to invest $750,000 for each count of drag reduction. Under these conditions the impor-

tance of designing for low drag, and the ability to estimate drag, can hardly be overstated.

The economic viability and future survival of an aircraft manufacturer depends on minimiz-

ing aerodynamic drag (together with the other design key technologies of structures, propulsion,

and control) while maintaining good handling qualities to ensure flight safety and ride comfort.

New designs that employ advanced computational aerodynamics methods are needed to achieve

vehicles with less drag than current aircraft. The most recent generation of designs (Boeing 767,

777, Airbus A340, etc.) already take advantage of computational aerodynamics, advanced exper-

imental methods, and years of experience. Future advances in aerodynamic performance present

tough challenges requiring both innovative concepts and the very best methodology possible. 

Initial drag estimates can dictate the selection of a specific configuration concept in compari-

son with other concepts early in the design phase. The drag projections have a huge effect on the

projected configuration size and cost, and thus on the decision to proceed with the design.

There are two other key considerations in discussing drag. First, drag cannot yet be predicted

accurately with high confidence levels3 (especially for unusual configuration concepts) without

extensive testing, and secondly, no one is exactly sure what the ultimate possible drag level real-

ly is that can be achieved for a practical configuration. To this extent, aerodynamic designers are

the dreamers of the engineering profession.

Because of its importance, AGARD has held numerous conferences devoted to drag and its

reduction. In addition to the study of computational capability cited above, AGARD publications

include CP-124,4 CP-264,5 R-7236 and R-7867. These reports provide a wealth of information.

An AIAA Progress Series book has also been devoted primarily to drag.8 Chapters discuss

the history of drag prediction, typical methods currently used to predict drag, and the intricacies

of drag prediction for complete configurations. The most complete compilation of drag informa-

tion available is due to Hoerner.9 In this chapter we introduce the key concepts required to use

computational aerodynamics to evaluate drag. Additional discussion is included in the chapters

on viscous effects, transonic, and supersonic aerodynamics.
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5.2 Some Different Ways to View Drag - Nomenclature and Concepts

In discussing drag, the numerous viewpoints that people use to think about drag can create

confusion. Here we illustrate the problem by defining drag from several viewpoints. This pro-

vides an opportunity to discuss various basic drag concepts.

1. Simple Integration: Consider the distribution of forces over the surface. This includes a

pressure force and a shear stress force due to the presence of viscosity. This approach is known

as a nearfield drag calculation. An accurate integration will result in an accurate estimate of the

drag. However, two problems exist:

i) This integration requires extreme precision (remember that program PANEL did
not predict exactly zero drag).

ii) The results are difficult to interpret for aerodynamic analysis. Exactly where is the
drag coming from? Why does it exist, and how do you reduce it?

Thus in most cases a simple integration over the surface is not satisfactory for use in aerody-

namic design. Codes have only recently begun to be fairly reliable for nearfield drag estimation,

and then only for certain specific types of problems. The best success has been achieved for air-

foils, and even there the situation still isn’t perfect (see Chapters 10 and 11).

2. Fluid Mechanics: This viewpoint emphasizes the drag resulting from various fluid me-

chanics phenomena. This approach is important in conceiving a means to reduce drag. It also

provides a means of computing drag contributions in a systematic manner. Thinking in terms of

components from different physical effects, a typical drag breakdown would be:

• friction drag
• form drag
• induced drag
• wave drag.

Each of these terms will be defined below. Figure 5-1 illustrates possible ways to find the total

drag. It is based on a figure in Torenbeek’s book.10 He also has a good discussion of drag and its

estimation. Clearly, the subject can be confusing.

3. Aerodynamics: This approach combines the fluid mechanics viewpoint with more practical

considerations. From the aerodynamic design aspect it proves useful to think in terms of contri-

butions from a variety of aircraft features. This includes effects due to the requirement to trim the

aircraft, and interactions between the aerodynamics of the vehicle and both propulsion induced

flow effects and structural deformation effects. Within this context, several other considerations

are identified. The basic contributions from each component must be included. This leads to a

drag analysis based on typical configuration features, as shown below:
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• individual component contributions to drag
• base drag
• inlet drag with spillage
• boattail drag
• camber drag
• trim drag
• thrust-drag bookkeeping
• aeroelastic effects on drag

Fig. 5-1. Drag breakdown possibilities (internal flow neglected).

4. Performance: To calculate the performance of an airplane it is natural to define drag as the

sum of the drag at zero lift and the drag due to lift. This is the approach that leads to the typical

drag polar equation:

. (5-1)

Here each term is a function of Mach number, Reynolds number (in practice this is given to the

performance group in terms of Mach number and altitude), and the particular geometric configu-
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ration (flap deflection, wing sweep, etc.). The drag is not precisely a quadratic function of the

lift, and the value of the Oswald efficiency factor, E, in Eq.(5-1) is defined as a function of the

lift coefficient and Mach number: E = E(CL,M). The drag also depends on the throttle setting, but

that effect is usually included in the thrust table, as discussed below. There is another drag polar

approximation that is seen often. This approximation is more commonly used by aerodynamic

designers trying to understand wing performance. It is used to take into account the effect of

wing camber and twist, which causes the drag polar to be displaced “upward”, becoming asym-

metrical about the CL = 0 axis . It is given as:

(5-2)

In taking into account the effect of camber and twist on shifting the polar, the  term repre-

sents a penalty associated with using twist and camber to achieve good performance at the design

lift coefficient. This equation is for a fixed geometry. Figure 5-2 shows how this looks (  is

exaggerated for emphasis). The value of K defines the shape of the polar. CD0 represents the

minimum drag of the configuration without camber and twist. The values of  and  are

functions of the design lift coefficient. Sometimes novice aerodynamicists fail to include 

properly and obtain incorrect values of E when evaluating published drag polars. This type of

polar shape will be discussed in more detail later in this chapter. Advanced design concepts such

as the X-29 minimize this penalty by defining a device schedule to maximize performance across

a broad range of lift coefficients.

Figure 5-2. Drag polar
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As mentioned above, basic drag nomenclature is frequently more confused than it needs to be,

and sometimes the nomenclature gets in the way of technical discussions. The chart in Fig. 5-3

provides a basic classification of drag for overview purposes. The aerodynamic configuration-

specific approach to drag is not covered in fluid mechanics oriented aerodynamics texts, but is

described in aircraft design books. Two other good references are the recent books by Whitford11

and Huenecke.12 An approach to the evaluation of drag performance, including the efficiency

achieved on actual aircraft, was presented by Haines.13

We need to define several of these concepts in more detail. The most important overview of

aerodynamic drag for design has been given by Küchemann,14 and should be studied for a com-

plete understanding of drag concepts.

A fluid mechanics refinement: transonic wave drag.

The broadbrush picture of drag presented in Fig. 5.3 suggests that wave drag appears sudden-

ly at supersonic speeds. A more refined examination shows that wave drag arises at subsonic

speeds when the flow accelerates locally to supersonic speeds, and then returns to subsonic speed

through a shock wave. This leads to the presence of wave drag at subsonic (actually, by defini-

tion, transonic) freestream speeds. This initial drag increase, known as drag rise, is followed by a

rapid increase in drag, and is an important consideration in the design of wings and airfoils. The

Mach number at which the rapid drag increase occurs is known as the drag divergence Mach

number, MDD. The increase in drag occurs directly because of the wave drag associated with the

presence of shock waves. However, the drag also increases because the boundary layer thickness

increases due to the sudden pressure rise on the surface due to the shock wave, which leads to in-

creased profile drag. Lynch15 has estimated that at drag divergence the additional transonic drag

is approximately evenly divided between the explicit shock drag and the shock induced addition-

al profile drag. Several definitions of the drag rise Mach number are commonly used. The specif-

ic definition is usually not important because at drag divergence the drag rises very rapidly and

the definitions all result in similar values of MDD.

One standard definition of MDD is the Mach number where

. (5-3)

Another definition of drag rise is the Mach number at which

 from the subsonic value. (5-4)
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Figure 5-3. A Broadbrush categorization of drag.

Commercial transports fly at or close to MDD, and the drag divergence Mach number is a key

part of the performance guarantee. Figure 5.4 (data from Shevell16) illustrates this refinement to
Fig. 5-3, together with the definitions associated with the drag rise. The figure also illustrates a

common characteristic, “drag creep,” which occurs with many transonic designs.

An aerodynamics/flight mechanics refinement: trim drag.

A drag not directly related directly to pure fluid mechanics arises from the need to trim the ve-

hicle (Cm = 0 about the center of gravity) for steady flight. This requirement can lead to control

surface deflections that increase (or decrease) the drag. It can be especially important for super-
sonic aircraft because of the shift in the aerodynamic center location with Mach number. Other

cases with significant trim drag may include configurations with variable wing sweep and the
use of airfoils with large values of the zero lift pitching moment about their aerodynamic center.

Trim drag details are presented in Section 5.10. 
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Figure 5.4 Details of wave drag increases at transonic speeds.

A practical aspect of aero-propulsion integration: thrust-drag bookkeeping

To determine aircraft performance, the key value is actually not drag, but the balance between

thrust and drag. The drag of the airframe is affected by the operation of the propulsion system,

and care must be taken to understand and define these interactions. The amount of air used by the

engine defines the size of the streamtube entering the inlet. If all the air in front of the inlet does

not enter the inlet, a spillage drag will result. Similarly, the boattail drag over the external por-

tion of the nozzle will depend on the nozzle setting in the case of engines with afterburners, and

the pressure of the nozzle flow. The definition of a system to properly account for aero-propul-

sion interactions on the specification of thrust minus drag values is known as thrust-drag book-

keeping. Since thrust is usually provided by the propulsion group, and drag is provided by the

aerodynamics group, significant errors in the estimation of aircraft performance have occurred

when the necessary coordination and adjustments were not made. The details of this procedure

are described in the article by Rooney.17

Generally, the aerodynamics group provides the performance group with a reference drag

polar, and all thrust dependent corrections to the drag polar are accounted for by making adjust-

ments to the thrust values. This is done because it is natural to establish a performance calcula-

tion procedure using this approach. The precise details are not important as long as everyone in-

volved in the performance prediction agrees to a specific approach. Usually this requires a spe-

cific document defining thrust-drag bookkeeping for each aircraft project.
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Aerodynamic-structural interaction: aeroelastic effects on drag

This issue is not strictly a drag consideration, but can make a contribution to the drag if it is

not addressed. Aircraft structures deform due to air loads. If the design is centered around a sin-

gle design point, the aerodynamic shape at the design point can be defined, and the structural an-

alysts will adjust for structural deformation, specifying a “jig shape” that will produce the de-

sired aerodynamic shape at the design point. This is harder to do if there are multiple design

points. Deformation of wind tunnel models should also be considered when estimating drag. 

5.3 Farfield Drag Analysis

We can estimate the drag on a body most accurately when our predictions methods are not

exact by considering the overall momentum balance on a control volume surface well away from

the body—a farfield calculation. This is much less sensitive to the detailed calculations of sur-

face pressure and integration of the pressures over the surface to obtain the drag.

The farfield analysis makes use of the momentum theorem. References containing good deri-

vations are by Ashley and Landahl,18 sections 1.6, 6.6, 7.3 and 9.2, and Heaslet and Lomax,19

pages 221-229.

For a surface S, which encloses the volume containing an aerodynamic body, the force can be

determined by balancing the momentum across S:

(5-5)

where q is the disturbance velocity vector,

. (5-6)

Define a control volume for use in Eq.(5-5) as shown in Fig. 5-5.

Consider flows far enough away from the body such that linearized flow relations are valid;

and use the small disturbance relations:

(5-7)

and

. (5-8)
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Figure 5-5. Control volume for farfield drag evaluation.

Now, consider the drag component of Eq. (5-5), making use of Eq. (5-7) and Eq. (5-8):

  
(5-9)

and vr is the radial component,  vr
2= v2 + w2, where r2 = x2 + y2.

Considering the control volume shown in Fig. 5-5, place I and II far upstream and down-

stream and make r large. Then, the integral over I is zero as . The integral over II as

, corresponds to the so-called Trefftz Plane. The integral over III  is the wave drag inte-

gral, which is zero for subsonic flow, and when any embedded shock waves do not reach III.

Consider the integral over III

This is the farfield wave drag integral. This integral corresponds to the last term on the right

hand side of Eq. (5-9), and can be written as:

.

(5-10)

If . Thus, when the flow is subsonic there is no wave drag, as

we already know. However, if the flow is supersonic, and shock waves are generated, the inte-
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gral is not zero. This integral can be calculated for any numerical solution. In this analysis we as-

sume that the flow is governed by the Prandtl-Glauert equation: 

,
(5-11)

which implies small disturbance flow. This is valid if the vehicle is highly streamlined, as any

supersonic vehicle must be. However, since far from the disturbance this equation will model

flows from any vehicle, this is not a significant restriction.

To obtain an expression for φ that can be used to calculate the farfield integral, assume that

the body can be represented by a distribution of sources on the x-axis (the aircraft looks very

“slender” from far away). To illustrate the analysis, assume that the body is axisymmetric. Recall

that there are different forms for the subsonic and supersonic source:

 

. (5-12)

This means that the integral will have a contribution along the Mach wave independent of

how far away the outer control volume is taken. Figure 5-6 illustrates this effect. The resulting

force is exactly what is expected—the shock wave contribution to drag: the wave drag.

Figure 5-6. Behavior of disturbances along Mach lines in the farfield.
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The farfield behavior of the source singularity given in Eq.(5-12) can be used to obtain an ex-

pression for the farfield integral in terms of geometric properties of the aircraft. A complete anal-

ysis is given in Ashley and Landahl,18 and Liepman and Roshko.20 The key connection is the as-

sumption relating the supersonic source strength and aircraft geometry. The approximate bound-

ary conditions on the surface equate the change of cross-sectional area to the supersonic source

strength: σ (x) = S'(x). One required assumption is that the cross-sectional area distribution, S(x),

satisfies S'(0) = S'(l) = 0.  After some algebra the desired relation is obtained:

. (5-13)

This is the wave drag integral. The standard method for evaluation of this integral is available

in a program known as the “Harris Wave Drag” program.21 That program determines the cross-

sectional area distribution of the aircraft and then evaluates the integral numerically. Note that as

given above, the Mach number doesn’t appear explicitly. A refined analysis18 for bodies that

aren’t extremely slender extends this approach by taking slices, or Mach cuts, of the area through

the body at the Mach angle. This is how the Mach number dependence enters the analysis. Final-

ly, for non-axisymmetric bodies the area associated with the Mach cuts changes for each angle

around the circumferential integral for the cylindrical integration over Region III in Fig. 5-5.

Thus the area distribution must be computed for each angle. The total wave drag is then found

from

. (5-14)

Examples of the results obtained using this computational method are given in Section 5.7, a dis-

cussion of the area rule.

Consider the integral over II

This is the first integral in Eq. (5-9), the induced drag integral:

(5-15)

Note that many supersonic aerodynamicists call this the vortex drag, Dv, since it is associated

with the trailing vortex system. However, it is in fact the induced drag. The term vortex drag is
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confusing in view of the current use of the term “vortex” to denote effects associated with other

vortex flow effects (described in Chapter 6). Far downstream, u → 0, and we are left with the v

and w components of velocity induced by the trailing vortex system. The trailing vortex sheet

can be thought of as legs of a horseshoe vortex. Thus the integral becomes:

(5-16)

which relates the drag to the kinetic energy of the trailing vortex system.

Now, the flow is governed downstream by the Prandtl-Glauert equation (even if the flow at

the vehicle has large disturbances, the perturbations decay downstream):

(5-11)

and as x → ∞, u = 0, and ux = φxx = 0. As a result, the governing equation for the disturbance ve-

locities is Laplace’s Equation for the crossflow velocity:

. (5-17)

An interesting result arises here. The induced drag is explicitly independent of Mach number

effects. The analysis is valid for subsonic, transonic and supersonic flows. The Mach number

only enters the problem in an indirect manner through the boundary conditions, as we will see.

We now use Green’s Theorem, as discussed previously, to convert the area integral, Eq. (5-

16), to a contour integral. Applying the theorem to the drag integral we obtain:

. (5-18)

This is a general relation which converts the integral over the entire cross plane into an inte-

gral over the contour. It applies to multiple lifting surfaces. To illustrate the application of the in-

tegral to the determination of the induced drag, we consider the special case of a planar lifting

surface. Here the contour integral is taken over the surface shown in Fig. 5-7, where the trace of

the trailing vortices shed from the wing are contained in the slit from -b/2 to b/2.
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Figure 5-7. Contour integral path for induced drag analysis in the Trefftz plane.

In this Trefftz plane, the integral vanishes around the outside contour as  and the inte-

grals along AB and CD cancel. Thus, the only contribution comes from the slit containing the

trace of vorticity shed from the wing. The value of φ is equal and opposite above and below the

vortex sheet, and on the sheet , the downwash velocity.

Thus the integral for a single flat lifting surface can be rewritten as:

(5-19)

and w  is the velocity induced by the trailing vortex system. The jump in the potential on the slit

at infinity can be related to the jump in potential at the trailing edge. To see this, first consider

the jump in the potential at the trailing edge. Recall that the circulation is given by the contour

integral:

. (5-20)

For an airfoil we illustrate the concept by considering a small disturbance based argument.

However, the results hold regardless of the small disturbance based illustration. Consider the air-

foil given in Fig. 5-8.
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Figure 5-8. Integration path around an airfoil.

The dominant velocity is in the x-direction, , and the integral, Eq. (5-20), around the

airfoil can be seen to be essentially:

. (5-21)

 The value of the potential jump at infinity can be found by realizing that the circulation is creat-

ed by the wing, and any increase in the contour of integration will produce the same result.

Therefore, 

(5-22)

Next, the induced velocity is found from the distribution of vorticity in the trailing vortex

sheet. Considering the slit to be a sheet of vorticity, we can find the velocity induced by a distri-

bution of vorticity from the following integral, which is a specialized case of the relation given in

Chap.4, Eq.(4-42):

.
(5-23)

To complete the derivation we have to connect the distribution of vorticity in the trailing vor-

tex sheet to the circulation on the wing. To do this consider the sketch of the circulation distribu-

tion given in Fig. 5-9.
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Figure 5-9. Relation between circulation change on the wing and vorticity in the wake.

As the circulation on the wing, Γ, changes across the span, circulation is conserved by

shedding an amount equal to the local change into the wake. Thus the trailing vorticity strength

is related to the change in circulation on the wing by

  . (5-24)

Substituting this into Eq. (5-23), we obtain:

.
(5-25)

Substituting Eq. (5-22) and (5-25) into Eq.(5-19) and integrating by parts using the condi-

tions that Γ(-b/2) = Γ(b/2) = 0 (which simply states that the load distribution drops to zero at the

tip), we get:

. (5-26)

Note that this is the same form as the wave drag integral, where the area distribution is the

key contributor to the wave drag, but here the spanload distribution is responsible for the induced

drag. Because of the double integral we can get the total drag, but we have lost the ability to get

detailed distributions of the induced drag on the body (or in the case of wave drag, its distribu-

tion on the surface). This is the price we pay to use the farfield analysis. 

Finally, this result shows that the induced drag is a function of the Γ distribution (spanload)

alone. Mach number effects enter only in so far as they affect the circulation distribution on the

wing. 
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5.4  Induced Drag

Although the inviscid flow over a two-dimensional airfoil produces no drag, as we’ve just

seen in Chapter 4, this is not true in three dimensions. The three-dimensional flowfield over a

lifting surface (for which a horseshoe vortex system is a very good conceptual model) does result

in a drag force, even if the flow is inviscid. This is due to the effective change in the angle of at-

tack along the wing induced by the trailing vortex system. This induced change of angle results

in a local inclination of the force vector relative to the freestream, and produces an induced drag.

It is one part of the total drag due to lift, and is typically written as:

. (5-27)

The small “e” in this equation is known as the span e. As we will show below, the induced

drag is only a function of the spanload. Additional losses due to the fuselage and viscous effects

are included when a capital E, known as Oswald’s E, is used in this expression. Note that al-

though this notation is the most prevalent in use in the US aircraft industry, other notations are

frequently employed, and care must be taken when reading the literature to make sure that you

understand the notation used.

When designing and evaluating wings, the question becomes: what is “e”, and how large can

we make it? The “conventional wisdom” is that for a planar surface, emax = 1, and for a non-pla-

nar surface or a combination of lifting surfaces,  emax > 1, where the aspect ratio, AR, is based

on the projected span of the wing with the largest span.* However, studies searching for higher

e’s abound. The quest of the aerodynamicist is to find a fundamental way to increase aerodynam-

ic efficiency. In the ’70s, increased aerodynamic efficiency, e, was sought by exploiting non-pla-

nar surface concepts such as winglets and canard configurations. Indeed, these concepts are now

commonly employed on new configurations. In the’80s, a great deal of attention was devoted to

the use of advanced wing tip shapes on nominally planar configurations. It is not clear however

that the advanced wingtips result in theoretical e’s above unity. However, in practice these im-

proved tip shapes help clean up the flowfield at the wing tip, reducing viscous effects and result-

ing in a reduction in drag.

To establish a technical basis for understanding the drag due to lift of wings, singly and in

combination, three concepts must be discussed: farfield drag (the Trefftz plane), Munk’s Stagger

Theorem for design of multiple lifting surfaces, and, to understand additional drag above the in-

duced drag due to “e,” it is appropriate in introduce the concept of leading edge suction. Here we

will discuss the induced drag. Subsequent sections address Munk’s Stagger Theorem (Section

5.6) and leading edge suction (Section 5.9)

* However, e is not too much bigger than unity for practical configurations. 
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In the last section we derived the expression for the drag due to the trailing vortex system.

The far downstream location of this face of the control volume is known as the Trefftz plane.

Here we explain the physical basis of the idea of the Trefftz plane following Ashley and Lan-

dahl18 almost verbatim. An alternate and valuable procedure has been described by Sears.22

The Trefftz Plane

The idea:

1. Far downstream the motion produced by the trailing vortices becomes 2D in the
y-z plane (no induced velocity in the x-direction).

2. For a wing moving at a speed U∞ through the fluid at rest, the amount of mechan-
ical work DiU∞ is done on the fluid per unit time. Since the fluid is nondissipa-
tive (potential flow), it can store energy in kinetic form only. Therefore, the work
DiU∞ must show up as the value of kinetic energy contained in a length U∞ of
the distant wake.

and:

3. The vortices in the trailing vortex system far downstream can be used to find the
induced drag.

The Trefftz Plane is a y-z plane far downstream, so that all motion is in the crossflow plane (y-

z), and no velocity is induced in the x-direction, u = U∞. For a single planar lifting surface, the
expression for drag was found to be:

 .       

(5-26)

The usual means of evaluating the induced drag integral is to represent Γ as a Fourier Series,

. (5-28)

The unknown values of the An’s are found from a Fourier series analysis, where Γ(y) is known

from an analysis of the configuration. Panel or vortex lattice methods can be used to find Γ(y).

Vortex lattice methods are described next in Chapter 6. Integration of the drag integral with this

form of Γ results in:

 (5-29)

and

, (5-30)
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which are the classical results frequently derived using lifting line theory. Note that the lift

depends on the first term of the series, whereas all of the components contribute to the drag. Put-

ting the expressions for lift and drag into coefficient form, and then replacing the A1 term in the

drag integral by its definition in terms of the lift coefficient leads to the classical result:

(5-31)

where:

.

(5-32)

These expressions show that emax = 1 for a planar lifting surface. However, if the slit repre-

senting the trailing vortex system is not a simple flat surface, and CDi
 is based on the projected

span, a nonplanar or multiple lifting surface system can result in values of e > 1.  In particular,

biplane theory addresses the multiple lifting surface case, see Thwaites23 for a detailed discus-

sion. If the wing is twisted, and the shape of the spanload changes as the lift changes, then e is

not a constant, independent of the lift coefficient.

It is important to understand that the induced drag contribution to the drag due to lift assumes

that the airfoil sections in the wing are operating perfectly, as if in a two-dimensional potential

flow that has been reoriented relative to the freestream velocity at the angle associated with the

effects of the trailing vortex system. Wings can be designed to operate very close to these condi-

tions.

We conclude from this discussion:

1. Regardless of the wing planform(s), induced drag is a function of circulation distribu-
tion alone,  independent of Mach number except in the manner which Mach number
influences the circulation distribution (a minor effect in subsonic/transonic flow).

2. Given Γ, “e” can be determined by finding the An’s of the Fourier series for the simple
planar wing case.  Other methods are required for nonplanar systems.

3. Extra drag due to the airfoil’s inability to create lift ideally must be added over and
above the induced drag (our analysis here assumes that the airfoils operate perfectly in
a two-dimensional sense; there is no drag due to lift in two-dimensional flow).
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5.5 Program LIDRAG

For single planar surfaces, a simple Fourier analysis of the spanload to determine the “e”

using a Fast Fourier Transform is available from the code LIDRAG. The user’s manual is given

in Appendix D.3. Numerous other methods could be used. For reference, note that the “e” for an

elliptic spanload is 1.0, and the “e” for a triangular spanload is 0.728. LIDRAG was written by

Dave Ives, and is employed in numerous aerodynamics codes.24

5.6 Multiple Lifting Surfaces and Munk's Stagger Theorem

An important result in the consideration of multiple lifting surfaces is Munk’s Stagger Theo-

rem.25 It states that the total induced drag of a multi-surface system does not change when the el-

ements of the system are translated parallel to the direction of the flow, as illustrated in the

sketch shown in Fig. 5-10, provided that the circulation distributions on the elements are left un-

changed. This theorem is proven in the text by Milne-Thompson.25 Thus the drag depends only

on the projection of the system in the cross-plane. This means that given the circulation distribu-

tions, the Trefftz plane analysis can be used to find the induced drag. This is consistent with the

analysis given for the Trefftz plane above, and reinforces the concept of using the farfield analy-

sis to determine the induced drag. Naturally, to maintain the circulation distribution of the ele-

ments when they are repositioned their geometric incidence and twist have to be changed.

Fig. 5-10. Example of Munk’s Stagger Theorem, where the fore and aft positions of multiple 
lifting surfaces do not affect drag as long as the circulation distribution remains fixed.
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When the lifting system is not limited to a single lifting component, LIDRAG cannot be used

to find the span e. However, two limiting cases can be considered. If the lifting elements are in

the same plane, then the sum of the spanloads should be elliptic for minimum drag. It the ele-

ments are vertically separated by a large distance, then each component individually should have

an elliptic spanload to obtain minimum induced drag.

When the system is composed of two lifting surfaces, or a lifting surface with dihedral breaks,

including winglets, then a code by John Lamar26 is available to analyze the induced drag. As

originally developed, this code finds the minimum induced drag and the required spanloads for a

prescribed lift and pitching moment constraint. It is known as LAMDES, and the user’s manual

is given in Appendix D.4. This program is much more elaborate than LIDRAG. For subsonic

flow the program will also estimate the camber and twist of the lifting surfaces required to

achieve the minimum drag spanload. I extended this code to incorporate, approximately, the ef-

fects of viscosity and find the system e for a user supplied spanload distribution.27

 

5.7  Zero Lift Drag Friction and Form Drag Estimation 

Although not formally part of computational aerodynamics, estimates of skin friction based on

classical flat plate skin friction formulas can be used to provide initial estimates of the friction

and form drag portion of the zero lift drag. These are required for aerodynamic design studies

using the rest of the methods described here. These simple formulas are used in conceptual de-

sign in place of detailed boundary layer calculations, and provide good initial estimates until

more detailed calculations using the boundary layer methods described in Chapter 10 are made.

They are included here because they appear to have been omitted from current basic aerodynam-

ics text books.* An excellent examination of the methods and accuracy of the approach described

here was given by Paterson, MacWilkinson and Blackerby of Lockheed.28

For a highly streamlined, aerodynamically clean shape the zero lift drag (friction and form

drag at subsonic speeds where there are no shock waves) should be mostly due to these contribu-

tions, and can be estimated using skin friction formulas. However, Table 5-1, for a typical mili-

tary attack airplane, shows that on this airplane only about two-thirds of the zero lift drag is asso-

ciated with skin friction and form drag. This illustrates the serious performance penalties associ-

ated with seemingly small details. R.T. Jones29 has presented a striking figure, included here as

Fig. 5-11, comparing the drag on a modern airfoil to that of a single wire. It’s hard to believe,

and demonstrates the importance of streamlining. An accurate drag estimate requires that these

details be included in the estimates.

* Expanded details including compressibility effects and mixed laminar-turbulent skin friction estimates are given
in App. D.5, FRICTION.
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Fig. 5-11. A wire and airfoil with the same drag!29

Until recently, aerodynamicists assumed the flow was completely turbulent. However, as a re-

sult of work at NASA over the last decade and a half, some configurations can now take advan-

tage of at least some laminar flow, with its significant reduction in friction drag. Advanced air-

foils can have as much as 30 to 40% laminar flow.

As an example of this approach, consider a typical turbulent flow skin friction formula (for

one side of a “flat plate” surface only):

(5-33)

where “log” means log to the base 10.  Note also that the capital CF denotes an integrated value.

Formulas for the local skin friction coefficient customarily use a small f subscript.

Numerous form factors are available to help account for effects due to thickness and addition-

al trailing edge pressure drag. Hoerner9 and Covert8 provide summaries. For planar surfaces, one

form factor is,

(5-34)

where t/c is the maximum thickness to chord ratio. For bodies, the form factor would be:

(5-35)
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where d/l is the diameter to length ratio. The skin friction coefficient estimate is then converted

to aircraft coefficient form through:

.
(5-36)

Here Swet is the total area scrubbed by the flow, and Sref is the reference area used in the defini-

tion of the force coefficients. For a thin wing the reference area is usually the planform area and

the wetted area is approximately twice the planform area (including the upper and lower surface

of the wing).  

Program FRICTION automates this procedure using slightly improved formulas for the skin

friction that include compressibility effects. The program computes the skin friction and form

drag over each component, including laminar and turbulent flow. The user can input either the

Mach and Reynolds numbers or the Mach number and altitude. The use of this program is de-

scribed in Appendix D.5. This analysis assumes that the aircraft is highly streamlined. For many

aircraft this is not the case. As discussed above, Table 5-1 provides an example of the signifi-

cantly increased drag that results when developing an aircraft for operational use.

Comment: On a tour of the final assembly lines of the Boeing 747 and 777 on
February 29, 1996, I observed that the 777 was much, much smoother aerody-
namically than the 747. Clearly, a lot of the advanced performance of the 777
is due to old-fashioned attention to detail. The aerodynamicists have apparently
finally convinced the manufacturing engineers of the importance of aerody-
namic cleanliness. Think about this the next time you compare a Cessna 182 to
the modern homebuilts, as exemplified by the Lancairs and Glassairs.

More details are presented in Chapter 10, Viscous Flows in Aerodynamics. Viscous effects due

to lift and shock-wave boundary layer interaction are also discussed in Chapter 11, Transonic

Aerodynamics.
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Table 5-1

Example of zero lift drag buildup on a “dirty” military airplane.

Low Speed Minimum Parasite Drag Breakdown
 M < .65,   CL = 0.0

Component Swet Sπ CDf
CDπ ∆CD % Total

1 Wing 22.1%
a) not affected by slats 262. .00308 .00308
b) not affected by slats 150. .00280 .00162

2. Horizontal Tail 84.4 .0033 .00108 5.1%
3. Vertical Tail 117. .00385 .00173 8.1%
4. Fuselage (including inlets) 434. .00306 .00512 24.0%
5. Enclosure 2.3 .122 .00108 5.1%

6. Appendages 33.1%

a) Upper avionics bay .00069
b) Drag-chute fairing .00012
c) Landing gear fairings .00042
d) Aero 7A Rack-Pylon @ CL .00058
e) Arresting hook .00058
f) Inflight-Fueling Probe .00092
g) Wing-Vortex Generators .00115
h) Boundary Layer Diverter .00042
i) Boundary-Layer Splitter Plate .00004
j)  Inlet Vortex Fences .00023
k) Landing Spoilers .00012
l) ECM Antenna and Chaff Dispensers .00038
m) Pitot tube .00004
n) Angle-of-Attack Indicator .00004
o) Rudder Damper .00023
p) Aileron Damper .00023
q) Barrier Detents .00008
r) Anti-Collision Lights .00008
s) Radar altimeter .00015
t) Fuel Dump and Vent .00023
u) Airblast Rain Removal .00008
v) Catapult Holdback .00027

7. Inlets and Exits
a) Powerplant (vents, etc.) .00027 1.6%
b) Air Conditioning .00008

8. Miscellaneous .00020 .9%

Total Zero lift drag coefficient (based on Sref = 260 ft2) .0213 100.%

Note: based on a total wetted area of 1119 ft2, CD = .00495
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5.8 Supersonic Wave Drag: The Farfield Wave Drag Integral and the Area Rule

The farfield analysis also showed us that for supersonic flight there is a wave drag. Not sur-

prisingly, the supersonic wave drag has played a key role in the aerodynamic design of superson-

ic aircraft. The equations are repeated here as:

(5-12)

and

(5-13)

where the S(x) values represent the area from an oblique (Mach angle) cut to find the cross sec-

tion area of the aircraft at a specific theta.

The importance of the distribution of the cross-sectional area is clear in the integral. To mini-

mize the integral the area change should be very smooth. Thus, the shaping of the design geome-

try plays a major role in the value of the integral. In any case, low drag is achieved by minimiz-

ing the maximum cross-sectional area of the design. The key parameter is the fineness ratio,

which is the length divided by the maximum diameter. Increasing the fineness ratio decreases the

wave drag. A number of minimum drag bodies of revolution have been derived using Eq. (5-12).

The geometric details of these shapes are given in Appendix A.

The principle that aerodynamicists use to achieve low values of wave drag is known as the

area rule. Proposed by Richard Whitcomb* at the NACA’s Langley Field, the area rule states

that the air displaced by the body should develop in a smooth fashion as it moves around and

along the body, with no sudden discontinuities. Thus the total aircraft area distribution should

form a smooth progression. In particular, when the wing becomes part of the cross-sectional

area, the adjacent fuselage area should be reduced to make the total area distribution smooth.

This results in the distinctive area ruled, or “coke bottle,” fuselage shape.

Whitcomb’s evidence for the validity of this rule was obtained experimentally (the computer

had not yet become practical design tool). Figure 5-12 shows the key result obtained by Whit-

comb.30 The increase in drag with increasing transonic Mach number is almost identical for a

wing-body combination and a body of revolution with the same cross sectional area distribution.

The wing-body combination has significantly higher subsonic drag because of the increased sur-

face area compared to the body alone case. All the cases Whitcomb presented weren’t as dramat-

ic, but similar trends were found for a number of shapes. Whitcomb’s original idea addressed

*  He won the Collier trophy for this work.
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transonic speeds, and the normal area distribution (the area in the plane perpendicular to the

flow) was made smooth to obtain low drag. At supersonic speeds the problem is more complicat-

ed. Instead of using the normal area distribution, the supersonic area rule requires that the area on

the so-called Mach cuts that correspond to the area distribution along the Mach angle for each

theta angle (Eq. 5-13) be smooth.

Figure 5-12. Whitcomb’s proof of the area rule.30

The most famous application of the area rule occurred on the F-102 aircraft program.* This

airplane was supposed to be supersonic in level flight. When it first flew, the prototype YF-102

was unable to break the sound barrier and fly supersonically. The nose was lengthened approxi-

mately five feet and area was added (with the plane already completed it was impossible to re-

move area) to the fuselage via faired bulges—or “bustles”—at the wing trailing edge-fuselage in-

tersection. The bulges were faired beyond the engine exhaust nozzle to improve the fineness

ratio and area distribution. After these modifications, the prototype YF-102 was capable of pene-

trating deeper into the transonic region. However, it was still not capable of exceeding Mach 1.0

in level flight. A complete redesign was necessary. It had to be done to continue the contract.

* Portions of this section were contributed by Nathan Kirscbaum.
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One hundred and seventeen working days later(!), a new, completely redesigned F-102 was

ready to fly. The fuselage fineness ratio and area distribution had been increased and refined.

The fuselage mid-section cross-sectional area had been reduced (cinched-up, wasp waisted, or

coke-bottled) as much as structure and component integration would permit. It was lengthened

11 feet 3 inches, with most of the increased length added ahead of the wing. The cockpit canopy

was reduced in cross-section with a near triangular cross-section and headed by a flat plate, high-

ly swept “V” windshield. The cockpit and the side-mounted engine inlets were moved forward to

reduce their sudden area build-up, or impact on the fuselage area. The aft fuselage bustles were

retained to avoid the rapid collapse of the cross-sectional area at the delta wing trailing edge. So

reconfigured, the airplane was able to fly at low supersonic speeds (M = 1.2). Figure 5-13 shows

the original prototype and the reconfigured F-102A as produced for service use.31 The resulting

change in drag from the YF-102 to the F-102A was about twenty-five counts, and is shown in

Fig. 5-14 (from the original Convair plot). Although the change might not appear dramatic, the

reduction in wave drag was sufficient to allow the plane to fly faster then the speed of sound.

Notice also that the use of conical camber (discussed later), introduced to improve the lift and

drag due to lift characteristics of the delta wing, added a significant penalty (camber drag) to the

minimum drag.

Subsequently, the configuration was completely redesigned incorporating a more refined, in-

tegrated area rule. Further slimmed down by a reduced weapon bay capacity and shortened and

repositioned engine air intake ducts, and powered by a fifty percent more powerful engine, it was

capable of routine Mach 2+ speeds. The designation was then changed to F-106A. This design is

also shown in Fig. 5-13. The volume of the increased area of the vertical tail on the F-106A, re-

quired to counteract the loss of tail surface effectiveness at the increased operational Mach num-

ber, replaced the aft side “bustles” on the F-102.

As an historical note, the Grumman F-11F (F-11) was the first aircraft designed “from

scratch” using the area rule. The result is clearly evident as shown in Fig. 5-15a.32 Another de-

sign employing the area rule in an effective manner was the Northrop F-5A/B (and the T-38 de-

rivative), as shown in Fig. 5-15b.32 This design had essentially unswept wings. Even the wing tip

fuel tanks were area ruled, although the inboard localized area reduction could be arguably as-

signed to Küchemann interface contour theorems.14

When considering the area rule, remember that this is only one part of successful airplane de-

sign.33 Moreover, extreme area ruling for a specific Mach number may significantly degrade the

performance of the design at other Mach numbers.

report typos and errors to W.H. Mason Drag: An Introduction  5 - 27

Thursday, January 23, 1997



Figure 5-13 Convair YF-102, F-102A, F-106A configuration evolution.31
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Figure 5-14. Zero lift drag for the YF-102 and F-102A airplanes. 

To estimate the wave drag, a theoretical analysis of the integral is available.* Note that the in-

tegrand is proportional to the second derivative of the area distribution, so that even without an

analysis it is clear that the lowest drag occurs when the distribution is made as smooth as possi-

ble. Eminton34 devised the standard method for the numerical evaluation of the integral in Eqn.

5-12. The difficulty in evaluating the integral is that the result depends on the second derivative

of the area distribution. This distribution is made up of contributions from numerous compo-

nents, and it is not known with great precision. Polynomials or other interpolation schemes used

to perform the quadrature may amplify any imprecision in the data, and produce unreasonably

high drag predictions. Ms. Eminton used a Fourier series for the distribution of the gradient of

the area. The coefficients are then found by solving an optimization problem that determines the

coefficients that will produce the curve passing through the known values of the area having the

least drag. In this sense the method is also a design method. By specifying a small number of

control stations (say, from a designer’s configuration layout) with a specified area distribution,

the method will provide the complete distribution of area required for minimum drag and satisfy-

ing the imposed control station constraints.

* Note: advanced CFD calculation methods don’t require the aerodynamicist to look at the problem using the area
rule diagram. Those approaches don’t provide the insight for design available through the area rule diagram.
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a) Grumman F-11F

b) Northrop F-5A/B

Figure 15. Other aircraft designs with evident area ruling.
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The practical implementation of this scheme is available in the so-called Harris wave drag

program.21 Figure 5-16 illustrates the procedure. At each “roll angle” θ a number of x-cuts are

made to use in evaluating the integral. Typically, 50 to 100 x-cuts are made for each of from 24

to 36 θ  values. Note that in making these calculations the inlet capture area is removed from the

area distribution.

As discussed above, area ruling plays an important role in supersonic cruise vehicle design.

Figure 5-17 presents the results of an analysis of a current high speed civil transport (HSCT)

concept.35 Figure 5-17a shows the highly blended configuration. Figure 5-17b shows the

variation in drag as the integral is computed for various “theta cuts.” This curve also contains the

results of a combined structural-aerodynamic study to improve this design using systematic ad-

vanced design methodology.36 Note that the drag is presented in terms of D/q. This is a tradition-

al approach, and eliminates any false impressions produced when configurations with differing

reference areas are compared. Figure 5-17c shows the normal area distribution. Here the nacelles

are seen to make a large impact on the area distribution.However, the area distribution of interest

is for M = 3.0. Figures 5-17d and e present the area distributions for the theta 0° and 90° cases.

Here the area distribution is seen to be much smoother. This is especially true for the theta 0°

case. The theta 90° case still shows the problem of integrating the propulsion system into the

configuration to obtain a smooth area distribution. Comparing the area distributions presented in

Figures 5-17d and 17e with the change in drag at these two different roll angles provides some

insight into the importance of shaping to produce a smooth area distribution.

Figure 5-16 Evaluation of the wave drag integral.21
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a) basic concept three view

b) distribution of the drag for each circumferential cut.

Figure 5-17 The AST3I,35 an advanced concept for a Mach 3 High Speed Civil Transport.
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c) normal area distribution (capture area removed)

d) Mach 3 area distribution, θ = 0°

Figure 5-17 The AST3I,35  an advanced Mach 3 High Speed Civil Transport (cont’d).
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e) Mach 3 area distribution, θ = 90°

Figure 5-17 The AST3I,35  an advanced Mach 3 High Speed Civil Transport (concluded).

Area diagrams for typical current fighters are not nearly so streamlined. Figure 5-18 shows

the area distribution for the F-16.37 The original area distribution is seen in Fig. 5-18a, and the re-

sult of refinements in Fig 5-18b. The F-16 was not designed primarily for supersonic flight, and

it has a low fineness ratio and consequently a relatively high wave drag. Small aircraft are much

more difficult to lay out to ensure a smooth distribution of area. Note in Fig. 5-18 that the canopy

is placed to help “fill in” the area diagram. Figure 5-18b shows the revisions made to improve

the contour forward and aft of the maximum cross-sectional area to fill in the shape and also add

fuel volume. Note that this curve has no scale. Manufacturers are sensitive about this informa-

tion.

There is also a wave drag due to lift (see Ashley and Landahl18). However,  almost all area

ruling at supersonic speeds primarily emphasizes the volumetric wave drag.
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a) Original cross-sectional area

b) Refined area distribution

Figure 5-18 The YF-16 area rule diagram.37
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5.9  The Leading Edge Suction Concept

Aerodynamicists often evaluate the performance of configurations in term of so-called lead-

ing edge suction. The concept can be explained by considering the inviscid flow over the prover-

bial zero thickness flat plate at angle of attack in an incompressible inviscid flow, as shown in

Fig. 5-19.

                              

Figure 5-19 Basic relations between forces for an infinitely thin plate.

What is the drag? According to theory, it must be zero. In the sketch we see that the force

acts in a direction perpendicular to the plate, and this clearly leads to a force component in the

drag direction. What’s the explanation of the paradox? Consider the following sketch of the front

portion of an airfoil section in Fig. 5-20.

Figure 5-20. Details of the flow near the leading edge of a thin plate.

There is a low pressure over the front edge face due to the expansion of the flow around the

leading edge. The expansion becomes stronger as the thickness decreases, so that the force on the

front face of the plate due to the product of the pressure and plate thickness is:

(5-37)
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and the value of the limit is just such that the drag is zero. Thus the correct model of the flow

over the flat plate is actually modified from the sketch given above to include an edge force, as

shown in Fig. 5-21.

Figure 5-21. Corrected flow model to satisfy inviscid flow theory.

Of course, a very thin flat plate will realize almost none of the suction force, and hence will

have a drag component. However, an airfoil section (even a fairly thin one) with a smooth round

nose may in fact achieve nearly all of the suction force, at least at small angles of attack. If the

airfoil section in the wing does not achieve the full suction performance, the resulting drag must

be added to the induced drag. 

The drag due to lift is thus broken up into induced drag and additional profile drag. As de-

scribed previously, the induced drag is a function of the wing spanload only, and is independent

of the details of the particular airfoil used in the wing. The additional profile drag is associated

with the airfoil used in the wing. At low lift coefficients this drag should be small, only

becoming important as flow separation starts to develop on the airfoil section. The additional

profile drag becomes large as wing stall is approached.

Wing performance is evaluated based on the ability to obtain a high value of the lift to drag

ratio, (L/D), relative to the maximum possible for that planform, and the ability to achieve a high

maximum lift coefficient. Essentially, the wing is designed to allow the airfoil to achieve its full

performance. Recalling that a two-dimensional airfoil under the assumption of inviscid subsonic

flow has no drag due to lift, the maximum performance should occur by adding the induced drag,

assuming an elliptic spanload, to the zero lift drag. This is known as the 100% suction polar,

since the airfoil section has no additional profile drag due to lift, and is thus achieving 100% of

the leading edge suction required to eliminate the drag force in a two-dimensional flow. This lift

is

CDL100%
 = CL

2/πAR . (5-38)
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At the other extreme, the worst case occurs when the airfoil fails to produce any efficient lift,

such that the only force is normal to the surface and there is no edge or suction* force (0% lead-

ing edge suction). In this case the entire lifting force on the wing is the normal force, and the

polar can be determined by resolving that force into lift and drag components. The equation for

the 0% suction drag can be expressed in a variety of forms, starting with

CDL0%
= CL tan(α−α0)} (5-39)

where α0 is the zero lift angle of attack.  We also use the linear aerodynamic relation:

(5-40)

which can be solved for the angle of attack:

.
(5-41)

Finally, substitute Eqn. (5-41) into Eqn. (5-39) for the angle of attack as follows:

or

.
(5-42)

This equation for the 0% suction polar shows why this polar is often referred to as the

“1/CLα” polar by aerodynamicists. Using this approach, effective wing performance is quoted in

terms of the fraction of suction achieved, based on the difference between the actual drag and the

100% and 0% suction values as shown in Figure 5-22. This figure illustrates how wings typically

perform. The wing will approach the 100% level at low lift coefficients, and then as flow separa-

tion starts to develop, the performance deteriorates. Eventually, the wing may have a drag sub-

stantially higher than the 0% suction value that was said above to be the worst case.

* On a swept wing the suction force is normal to the leading edge. The component of the leading edge suction
force in the streamwise direction is called the leading edge thrust.
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Figure 5-22 Definition of percent leading edge suction performance.

The value of E for this level of performance can be found by equating Eq.(5-42) to the stan-

dard form:

(5-43)

which leads to:

.
(5-44)

Typically, the value of E varies with the lift coefficient. By plotting experimental data, typical

variations can be obtained for various classes of wings. Figure 5-23 shows the typical variation.

This relation was shown in general by McKinney and Dollyhigh.38

Alternately, in supersonic flow, the drag due to lift relation is frequently written as

(5-45)

for uncambered airfoils. For cambered and twisted wings the polar is shifted, and the minimum

drag occurs at a CL other than zero, as shown previously in Fig. 5-2, and described by Eq. (5-2).

In practice we expect the wing to achieve a performance level between the K100% and K0%  lim-

its. This approach is described in detail by Raymer.39
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Figure 5-23. Typical variation of E with lift coefficient. 

In considering the shift of the polar, a few comments are required. First, the wing performance

cannot excede the optimum value, which for subsonic flow over a single planar lifting surface is

E = 1. Especially for wings in supersonic flow it is hard to get 100% of the leading edge suction.

In that case the approach is to camber the wing to make the drag performance of a wing with less

than 100% suction attain the 100% suction level at a specified value of lift, CLD. Using the polar

definition 

(5-46)

where the value of K corresponds to the performance of the wing in terms of leading edge suc-

tion (LES), we find the values of  and  in terms of the design lift, . To do this

equate the polar to the 100% suction value at the design lift. This polar must also be tangent to

the 100% polar at this point so that the polar will not predict better performance than the optimi-

mum at other values of the lift. Using as an example a 0% leading edge suction wing:

(5-47)

(5-48)

and the unknown values of  and are:

(5-49)
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and

. (5-50)

In any experimental evaluation of wing performance both the 100% and 0% polars should be

constructed, and used to establish bounds on the experimental polar. Thus a typical drag polar

would include the 100% and 0% suction polars as well as the predicted or measured performance

to establish a basis for evaluating a wing’s efficiency. Figure 5-24 presents the actual perfor-

mance of an unswept rectangular wing at subsonic speed. Here the performance is very close to

the lower drag limit until the wing stalls.

Figure 5-24 Drag performance of simple unswept wing with a Clark-Y airfoil.

It is difficult to identify the initial flow breakdown using the drag polar. Often you can identi-

fy flow breakdown more clearly by plotting the axial force as a function of normal force. In this

plot the axial force should initially decrease, as described above. When the airfoil section starts
to loose leading edge suction the data displays a sharp “break.” Figure 5-25 illustrates this ap-

proach to the examination of wing efficiency. 

For configurations with very poor aerodynamic efficiency, the 0% suction force provides a
good estimate of the vehicle drag. However, 0% suction levels are so inefficient that for most de-

signs this level of performance would be unacceptable and not competitive. 
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To make estimates of the performance of real configurations, which operate between the two

limits, Harry Carlson40,41 at NASA Langley established the notion of “attainable” leading edge

suction. Based on an extensive analysis of 2D airfoil data, Carlson established an empirical cor-

relation which is used to estimate the fraction of the full suction that should be attained for the

specified airfoil, planform and flight condition. Carlson’s concepts are based on linear theory.

Nonlinear effects can be important, and can be exploited. Although the linear theory based

concepts described here provide a valuable way of looking at wing designs, nonlinear effects can

provide a means of improving performance. Considering nonlinear effects, interactions between

thickness and lifting effects can be exploited.42 

Figure 5-25. Axial force analysis of wing performance.

5.10 Trim Drag

For equilibrium flight the airplane must be trimmed. The forces must be such that the mo-

ments about the center of gravity in all axes are zero. To achieve this condition the controls are

usually deflected to generate the required trimming moments. Figure 5-26 shows a schematic of

the requirement. Two typical situations are shown in Fig. 5-26a. In one case the center of gravity

is ahead of the wing center of pressure, the aircraft is stable, and a download on the tail is re-

quired to balance the lift of the wing. In the other case the center of gravity is behind the wing

center of pressure, the airplane is unstable, and an upload on the tail is required to balance the lift

of the wing. Other situations are possible, but these two illustrate the key idea.
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Figure 5-26. Examination of the configuration setup required for trim.

Part b of Fig. 5-26 illustrates the difference between stable and unstable configurations. For a

stable airplane the basic Cm0 is typically positive, while for an unstable aircraft the basic Cm0 is

negative. In each case, a control has to be deflected over a range of settings to maintain trim over

a range of lift coeficients (unless the configuration is neutrally stable). On modern aircraft the

control could be the deflection of the thrust by thrust vectoring.

Control surface deflections change the drag from the reference undeflected value. This differ-

ence in drag could be termed a “trim drag.” There are many definitions of trim drag. Definitions

differ because it is difficult to be precise in defining trim drag. Some definitions contain only the
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drag due to the lift of the trimming surface. Some analyses allow for a negative trim drag. How-

ever, for a given flight condition the total lift must be fixed, and any change in lift on the trim-

ming surface requires a change in lift, and hence drag, on the primary surface. On a well de-

signed aircraft the trim drag should be small. Canard concepts are often considered advantageous

because both the canard and wing supply positive lift to trim, whereas for traditional aft-tail con-

figurations the tail load is negative and the wing must operate at a higher lift to compensate.

However, for modern aft-tail designs the tail load is near zero, resulting in little trim drag.

Trim drag has always been an important consideration in airplane design. However, trim drag

became especially important with the development of stability and control augmentation systems

that allowed the designer much greater freedom in the choice of a center of gravity location. Na-

tural static stability was no longer required. The static stability condition had frequently made it

difficult to obtain minimum trim drag. This meant that trim drag could become a key criteria for

the placement of the center of gravity in a configuration (this is part of the motivation for so-

called control configured vehicle, CCV, concepts).

Trim drag is especially important for several specific classes of aircraft. Supersonic aircraft

demand special consideration because of the aerodynamic center shift from subsonic to super-

sonic flight. To control trim drag as well as stability, fuel is transferred fore and aft between sub-

sonic and supersonic flight to achieve proper balance on supersonic cruise aircraft. Variable

sweep wing aircraft also have aerodynamic center locations that vary with wing sweep, potential-

ly leading to high values of trim drag. Finally, maneuvering aircraft can suffer high trim drag at

high lift coefficients, severely limiting sustained turn performance. This was especially true of

the first generation of supersonic capable fighters. Examples of the contribution of trim drag to

the total drag are shown in Figure 5-27, taken from Nicolai.43

A more useful approach to the trim drag analysis is to consider the value of “trimmed drag”.

In this approach it is difficult to define a specific trim drag value. The best way to assess the trim

penalty is to define the difference between the minimum drag attainable for the system and the

minimum trimmed drag for a specified center of gravity position. This provides the designer with

a measure of the drag penalty being paid for a particular center of gravity location. This approach

also demonstrates directly the connection between static margin and minimum trimmed drag.

Different configuration concepts lead to different values of static margin to obtain minimum

trimmed lift. In general, for aft swept wings aft tail configurations, the minimum trimmed drag

occurs at a slightly unstable center of  gravity (5-10%?), canard  configurations  have  minimum

trim drag at slightly more unstable conditions (15%?), and forward swept wing canard configura-

tions must be even more unstable to achieve minimum trimmed drag (the X-29 is about 30-35%

unstable). Many studies of these fundamental properties of various configuration concepts have

been made. See the study by Landfield and Rajkovic44 and the references contained therein for

more information.  
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a) C-141 at M = 0.75 b) F-111A

Figure 5-27. Contributions to drag for two configurations.43

Several key papers examining trim drag from a nearfield point of view have been written.

They are by McKinney and Dollyhigh,38 Lutze,45 and Sachs.46 In the nearfield, extreme care

must be taken to include the downwash incidences and induced angles of attack correctly. Alter-

nately, an analysis can be made in the Trefftz plane. Lamar26 developed a code for finding the

minimum trimmed induced drag for two surfaces, and this was extended to include (approxi-

mately) the effects of profile drag by Mason.27 Note that a farfield analysis which combines the

minimization of induced drag and wave drag due to lift has been presented by Tulinius and Mar-

gason.47 A more general approach to treat multiple surfaces was given by Kuhlman.48 More re-

cently, three surface configuration have been introduced, and the three surface minimum trim

drag problem has been solved by Goodrich, Sliwa, and Lallman49 using a nearfield approach.

An example of the possible dramatic effects of cg location on trimmed drag is presented in

Figure 5-28.27 All the results contained in the figure are for the minimum trimmed drag at differ-

ent values of a specified cg location. These results were obtained during early forward-swept

wing configuration studies, and illustrate why an aft cg position and resulting highly unstable

configuration are required to obtain the full benefits of a forward swept wing configuration simi-
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lar to the X-29.* The very high drag values reflect a transonic maneuver condition. Trim drag

should be much smaller for the cruise condition (certainly less than 2-4%). As shown here, mod-

ern technology should allow the aircraft to fly with no trim drag. The difference between the

minimum trimmed drag at ∆xcg = -40 and any other cg could be considered the trim drag. The

figure contains both induced and profile drag contributions to the total trimmed drag. As the cg

moves forward  (x positive in this nomenclature, x = 0 corresponds to neutral stability), the addi-

tional load on the canard leads to a rapidly increasing value of the minimum trimmed drag. Be-

cause of the increasing load on the canard, the canard airfoil section becomes important. Near the

cg for minimum drag the canard airfoil is not important because the canard is lightly loaded. This

figure shows why canard configurations are most efficient when used with unstable configura-

tion concepts. Stable canard configurations are not necessarily the most efficient aerodynamical-

ly. Because of the high loads on a stable canard configuration, the canard airfoil section is very

carefully selected. Specifically, it is usually highly cambered to achieve the high lift coefficients,

and has a small leading edge radius so that the it will stall before the main wing. 

Figure 5-28 Minimum trimmed drag throughout a range of balance locations,
including the effect of canard airfoil section.27

* Note that the hydraulic power used to activate the canard to achieve apparent stability is obtained from the en-
gine, reducinges thrust and resulting in increased fuel flow. Thus, in essence, some trim drag benefits are gained
at the expense of increased fuel usage to control the unstable vehicle.
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5.11 Current Issues for Drag Calculation Using Computational Aerodynamics

Because of the quest for reduced drag, and the difficulty in computing and measuring small

changes in drag, numerous disputes have arisen in aerodynamics. Confusion introduced by non-

standard drag nomenclature also contributes to these spirited debates. One recent issue was the

so-called sheared wing-tip drag reduction controversy. Here it was speculated that wing tip shap-

ing could lead to span e’s greater than one for planar planforms.50 This conclusion arose based

on both computations and wind tunnel tests. Refined computational investigations,51 illustrating

the need to study computational solution convergence carefully as shown elsewhere in this text,

resulted in the conclusion that e’s greater than one were not actually computed. However, it is

clear that wing tip planform shaping can lead to improved aerodynamic efficiency.

Another area currently attracting attention is the search for more fundamental understanding

of drag. These theories differ significantly from the accepted approach to drag. One key example

is due to Yates.52

 In addition to the efforts to reduce drag due to lift by tip shaping, use of winglets, tip sails,

and canard configurations among others, significant efforts are being made to reduce skin fric-

tion drag. They include efforts to obtain laminar flow through passive means (NLF), suction, or a

combination known as hybrid natural laminar flow control. Turbulent friction reduction tech-

niques are also being developed. Riblets are perhaps the most well known means. A recent

AIAA book reviews this area.53 

5.12 Exercises

1. Derive equations 5-7 and 5-8.

2. Derive equations 5-31 and 5-32.

3. Get a copy of LIDRAG and check it against the the known values of the span e for an elliptic
and a triangular load distribution. How do your results compare?

4. Use experimental results and show quantitatively that Fig. 5-11 is correct.

5. Get a copy of FRICTION. Repeat the check case in the user’s manual. Then examine the skin
friction values in Table 5-1. Are they reasonable?

6. Find the shape of the Karman ogive, the body with minimum wave drag for a given length
and base area.
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