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14.  Using Computational Aerodynamics:
 Review and Reinforcement

It is a well-known phenomena that computer programs, left to themselves, will
cease to work. This is known as “Bit Rot”. Programs NOT left to themselves
also cease to work. This is known as “Enhancement”.

The FLOPS Motto, Arnie McCulllers, ViGYAN, Inc.

To complete the course, we present a quick review of some of the key aspects of

computational aerodynamics from the point of view of someone needing to apply these methods

in aerodynamics. We include:

• Code Development
• Code Validation
• Code Selection
• Problem Solving with Computational Aerodynamics

14.1 Code development:

Recall the procedure described in Chapter 3 to develop computational aerodynamics codes. This

is the list.  It is based on recommendations from Roache:1

• Start Simple
• Debug and test on a coarse mesh first (reduces cycle time)
• Print out “enough” information:

- some at each step
- lots sometimes
- print good diagnostic functionals

• Use graphics to look at the whole field
• Always check on the finest mesh possible before releasing code
• Test convergence to machine accuracy
• Try to check all option combinations in a production program
• Check convergence/stability over the widest possible range of parameters
• Test accuracy against:

- exact solutions
- approximate solutions
- experimental data

• Avoid unnecessary hardware dependence
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The final issue is the problem of meeting schedules for code development. If the reader has

done the exercises at the end of each chapter, than he or she knows that it always takes longer

than you expect to do computational work. It is important to plan for this. In particular, code

developers often quote the time it takes them to think of how to do something, not the time it

takes to actually implement and validate a piece of work. This is vitally important if you are

responsible for meeting the budget and schedule.

14.2 Code Validation Procedure:

Once the initial code development is finished, it must be validated. Although originally not

recognized as a key step in the computational aerodynamics process, it has begun to be realized

by managers that confidence (and credibility) must be established before results from codes can

be used to make engineering decisions involving financial and time schedule risks. In fact, an

entire AGARD meeting was devoted to the subject. Two reports have been issued as a result.2,3

Thus the situation has begun to follow the tradition of wind tunnel testing, where a significant

effort is made to validate the results. To develop a code to this level of maturity requires special

planning.  The procedures shown in Figure 14-1, first defined by Bobbitt,4 identify the steps

required.
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Figure 14-1. Required  code development/validation steps needed before real application
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In 1994  several AIAA meeting sessions were devoted to code validation, and in fact some

new definitions to define code status were proposed. The concept of a certified code was

introduced. This has been done in other software areas. The interest in doing this in CFD implies

that CFD is beginning to reach a stage of development where standards can be established to

define code accuracy. The basis for code certification was described in a key paper by Melnik, et

al5. Two other papers identified the problem and discussed approaches to validation.6,7  We can

expect this activity to increase as industry begins to rely more heavily on code results to make

decisions.

14.2.1 Issues for CFD codes and Experiment

After comparing experiment and computations, we must attempt to understand any poor

agreement found between computed and experimental results. This can be very difficult, and

requires considerable knowledge of both CFD and experimental aerodynamic methodology. A

list of items to consider in the explanation of disagreement between code and experiment was

also developed by Bobbitt. It included:4

Code:

• Are incremental effects better predicted than absolute values?
• Is the math model adequate?
• Can the solution technique be improved?
• Is there a higher order code available?
• Has the grid been refined sufficiently where large changes occur?

Experiment:

• Is the instrumentation adequate/accurate?
• Can another tunnel/model support be used?
• Is flow quality/uniformity or transition a factor?
• Has the wall-interference been evaluated?

14.2.2 Error sources in CFD codes and in Wind Tunnel Data

In trying always to determine if we have the right answer we need to make sure we can

understand what the possible sources of error are, and how to evaluate them.

Error sources in CFD codes:

• math model/equation set • solution algorithm
• artificial viscosity/dissipation • boundary conditions
• geometry representations • grid resolution
• solution not converged • turbulence model
• round off error/truncation error • Reynolds number
• bugs
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Error sources in wind tunnel data

• sting effects (model mounting) • wall effects
• Reynolds number • flow quality/noise
• transition • instrumentation
• geometry definition and accuracy • aeroelasticity
• flow uniformity • surface finish

14.3 Code Selection Considerations

Will you use a code to do engineering work and make judgments that affect your future? If

so, make sure you consider:

• capability
• problem setup time/grid generation
• turnaround time
• availability
• cost
• confidence

What is required to use a code?

• CFD code validation
- CFD validation experiments may be required

• Validated CFD Code
- CFD code “calibration”

There is one major problem. Algorithm developers produce codes faster than the validation

process takes. If you want to use the latest methods they will probably never be completely

validated, and in fact you may find bugs, and have to work with the source code to handle

exceptional cases. Nevertheless, any time that I’ve been involved with projects that tried to use

CFD codes without first examining the code accuracy in detail we regretted it before the project

was finished. The recent paper by Knill, et al8 demonstrates the effort required to develop

confidence in CFD code predictions. This is especially true when codes are used in optimization

projects, where thousands of code executions occur and the results of each execution are not

evaluated individually (until a problem occurs).

14.4 Problem solving using CA9

To solve a specific problem, the following steps must be followed:

• What do you want from the computation
- the decision here is the key: should you or shouldn’t you?

• Model the physics as a properly posed problem (BC’s)
• Select the appropriate code (previously validated)
• Define the geometry, the mesh and the input
• Check the input (visual displays are essential)
• Run the program
• Display and interpret the results!
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In addition, just like the code development time problem, it always takes longer to make the

analysis than anticipated. At the minimum, the procedures should be defined and a “dry run”

made using approximate information while waiting for final data. Inevitably, an unforeseen

problem will arise. As a final bit of worthwhile reading, look at the article by Dick Bradley,10

who has been both a code developer, user, and is now a manager. In this capacity he has

considerable perspective on the problems and possibilities of computational aerodynamics. He

provides an overview of CFD issues in an engineering environment that are not available from

CFD experts.

14.5 That’s It!

• You now have tools for aerodynamic design using computational methods

• Goals for the course:

- Knowledge
- Attitude (perspective)
- Skill

We’ve made an effort to achieve each of these goals. Good luck!
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