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C19.	Use of empirical/semi-empirical methods in computational design 

W.H. Mason, June 2017 
These comments are based on my own experience, although mostly vicariously through students. 

First, I’m a fan of empirical and semi-empirical methods. They definitely have a place in design. 
That said, these comments address the use of empirical methods in computational design, and 
especially when doing numerical optimization and MDO. 
Numerical optimization, and gradient based methods in particular, has some characteristics that 
cause a surprising amount of trouble when coupled with empirical methods. 

1. Gradient based methods are very sensitive to the accuracy of the gradients wrt design 
variables. Even somewhat high level models can produce “wiggles” that drive the 
optimization crazy. An example would be shocks that jump between grid lines during 
design. Response surface models are required to solve the problem of artificial noise. 

2.  Numerical optimization will find any weakness in your model and exploit it. An example 
would be vacuum Cp in small disturbance theories (they can go past vacuum Cp unless 
special limits are included). Rafi Haftka has used optimization methods in a scheme 
dubbed antioptimization specifically to locate weaknesses in models. 

3. Many of the advanced concepts of interest these days are significantly out of any 
experience-based data used to develop the models. That’s where the idea of physics-
based models comes from. 

4. A side note: Classic optimization texts/classes can be misleading. It’s great to understand 
the various optimization methods, but for a user it’s amazingly tricky to formulate the 
problem, and especially getting the constraints formed so that the optimizer doesn’t 
“fight” them. Our students could attest to the fact that it’s harder than it appears. 

Back around 1990 we were trying to do “variable-complexity” MDO, where we combined 
approximate and more accurate models in our optimization. Today this is called variable fidelity. 
Our initial efforts didn’t work as well as we’d expected. We eventually found out how to do this, 
and this experience ended up giving me respect for statistics I hadn’t had before. 
I will illustrate with examples from aerodynamics and some weights experience. 

Aerodynamics 
Low speed lift models for HSCT Design 

 In doing MDO for the HSCT we needed a model to use to limit the angle of attack to avoid tail 
scrape at landing. We were using fairly high-fidelity aero at supersonic speeds (eventually Euler 
and parabolized NS), but wanted a “simple” model for the landing constraint. Figure 1 shows 
what happened. We tried three different algebraic models, but a single example makes the point. 
This figure is from Matt Hutchison’s PhD thesis, but we also put the examples in AIAA Paper 
92-4695. This is what semi-empirical models may produce in numerical optimization design. 
Wow! 
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Figure 1. The HSCT planform using a simple lift model for the landing tailscrape constraint. 

(Hutchison’s PhD Thesis and AIAA Paper 92-4695) 
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Just to close the story, Figure 2 shows what Matt ended up with. We worked on this problem for 
about ten years, and many, many more students added higher fidelity analysis, advanced 
optimization schemes and a bunch of realistic constraints. It was an interesting problem, and we 
had a great collaborative team. We learned a lot about the problems of trying to use empirical 
models for various parts of the problem. 

 
Figure 2. Hutchison’s eventual HSCT final configuration planform 

(Hutchison’s PhD Thesis and AIAA Paper 92-4695). 
Wave drag 

This example shows results from the famous Harris wave drag program for an HSCT candidate 
wing. In this study we held everything constant except the wingspan. Normally an engineer 
would run a couple of cases, say semi-span values of 5, 7.5 and 10, and then use his ship’s curve 
to fair the results. It looks pretty smooth. In this case I think we (actually Tony Giunta) ran 300 
different values of semispan.  Figure 3 shows the results plotted at a typical engineering scale. It 
generally looks OK, but not as smooth as you might expect. Figure 4 shows the results plotted at 
optimization scale. Now, you can see the small effects of discrete model numerics on the results. 
We were using the Harris at its maximum number of “cuts”. Remember that this is what the 
optimizer would see and if we were using finite differences to find the wave drag gradient wrt to 
semispan we would get wildly different gradients and the optimizer would have big problems. 
The solution here was to fit a smooth curve through the results. I have that figure somewhere, but 
this is enough to make the point. We used second order polynomials, but a wide variety of other 
schemes have been used.  



	 4	

 
Figure 3. Wave drag results plotted on an engineering scale. 

 

 
Figure 4. Wave drag results plotted on the optimizer scale. 
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Weights 
Wing Weights 

There are lots of approximate wing weight equations. For analysis they might all be useful. 
However, when the optimizer takes over the differences are magnified. Jarek Sobieski wanted us 
to put together an MDO code using approximate models and his global sensitivity analysis 
method. This became Brett Malone’s MS Thesis (1991). We picked a C-17-like mission and 
Brett built the code. After it worked we could play with it to study lots of different effects. The 
example shown in Figure 4 from VPI-Aero-184, 1991, illustrates what happened when we used 
different wing weight equations.  
 Figure 5 shows the different TOGWs, Aspect Ratios, Wing Areas and Cruise Altitudes resulting 
from the use of wing weight equations from Raymer, Nicolai and McCullers (FLOPS). Note that 
the results are presented for a range of cruise Mach numbers. We were primarily interested in a 
cruise Mach number of 0.78. We found Mach sweeps to be extremely useful both for insight and 
see any hiccups in the optimization. We can see a few places where the results aren’t smooth. 
Not included here, we also looked at wing sweep, t/c, taper ratio and span in a second page of the 
figure in the report.  

Looking at the results in this figure we see how different wing weight model affect the 
optimization results. At low speed it’s clear that two of the models bump up against the 
constraint of AR = 25 that we imposed. The TOGW result is plotted on a somewhat expanded 
scale, nevertheless, each model produces a different TOGW at M = 0.8. Curiously, each model 
predicts the minimum weight at about M = 0.61. For that case the wing for each model is found 
to be unswept. 
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Figure	5.	Design	results	using	different	wing	weight	equations,	VPI-Aero-184,	1991	and	
AIAA	Paper	91-3187.	

For the HSCT work we ended up using a full-blown finite element code to get the wing weight 
(Gary Vanderplaats structural optimization code Genesis). For the strut-braced wing work we 
had a student develop a first principles beam model with a strut (Amir Naghshineh-Pour’s MS 
Thesis, 1998). Initially for the strut model we focused on bending material weight, but over the 
years we added a lot of other constraints. One was inner wing buckling because the strut “pulls” 
on the wing under load.  

Landing Gear Weight 

This might be my favorite because of a comic development after we’d been working on this for a 
while. Paul Gelhausen was paying us to do landing gear for early design, 
http://www.dept.aoe.vt.edu/%7Emason/Mason_f/M96SC.html, see also AIAA Paper 1996-4038. 

One part of the work had to do with the landing gear weight. We evaluated various landing gear 
weight formulas in the literature. Figure 6 is from the final briefing at NASA Ames in July of 
1996. The question: what is the landing gear weight as a fraction of the TOGW? In particular, we 
were interested in the forthcoming new large aircraft. Toward the end of the job as we were 
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putting the work together, Av Wk quoted the weight of a new plane from Airbus. That’s the bold 
vertical line at a little less than a million pounds. The ACSYNT estimate and the Torenbeek 
estimate predicted the same value for the landing gear weight, but the trends with weight for the 
two models were exactly opposite! I about fell off my chair. Who would have thought? This is a 
great example of the problem of using empirical models outside of the data set used to construct 
them. 

	

Figure 6. A chart from the final briefing at NASA Ames, July 1996. 

In	summary:		

•	You	have	to	be	very	sure	that	the	approximate	model	is	working	well	in	the	design	
domain.	Empirical	models	have	trouble	for	novel	concepts.	

•	Often	you	need	to	resort	to	a	first	principles	physics-based	model	when	you	are	outside	of	
the	data	base	of	available	designs.	

•	Mainly,	optimization	will	focus	your	thinking.	

	


