

A Lecture m *Aerodynamic Testing*

W.H. Mason March 18, 2003

What the Heck is Testing All About?

- We need many, many checks before we have a good, safe design (*that makes money*)
- Progressively
 - Computational simulations
 - Wind tunnel testing for aerodynamics
 - Subscaleflight tests
 - Full scale flight testing
- Note: Lots of other tests:
 - Systems
 - Structures
 - Flying qualities: The Iron Bird

So Will the Computer Eliminate the WT?

E.N. Tinoco, (Boeing) "The Impact of CFD in Aircraft Design," Canadian Aeronautics and Space Journal, Sept., 1998, pp. 132-144

Comptational Simulations and WT Testing are Complimentary

- Both have strengths and weaknesses
- Solving a real problem requires both

Key Idea of a WT Test

Simulate the full scale design at reduced scale, low cost, and controlled conditions

Key Concept:

• Model is fixed, air moves

Same as?

• Air fixed, airplane moves

Similarity

- Reynolds Number (Re)
 - To simulate the viscous effects correctly, match the Reynolds Number
 - But you most likely can 't match the Reynolds number,
 we'll show you why and what aeros do about the problem
- Mach Number (M)
 - You are not going to get accurate aero data for supersonic flight with a subsonic test!
 - To match model to full scale compressibility effects, test at the same Mach number, sub-scale and full scale

Example of the Re Issue

"The Need for developing a High Reynolds Number Transonic WT" Astronautics and Aeronautics, April 1971, pp. 65-70

slide 7

Matching the Reynold's Number?

$$Re = \frac{\rho VL}{\mu}$$

 ρ : density, V: velocity, L: length, μ viscosity,

m:model

$$\frac{Re_{fs}}{Re_m} = \left(\frac{\rho_{fs}}{\rho_m}\right) \left(\frac{V_{fs}}{V_m}\right) \left(\frac{L_{fs}}{L_m}\right) \frac{1}{\left(\frac{\mu_{fs}}{\mu_m}\right)}$$
fs: full scale

"The Large Second Generation of Cryogenic Tunnels" Astronautics and Aeronautics, Octoberl 1971, pp. 38-51

What's the Problem?

- Suppose we have a 20th scale model: $L_m/L_{fr} = 0.05$
 - Can we make $V_m = 20V_{fs}$? Mach number would be different
 - Can we change ρ ? μ ?
- Ways to help Reynolds number match:
 - Cold Wind Tunnels
 - » Also keeps dynamic pressure "reasonable "
 - » Also reduces power requirements
 - Big Wind Tunnels
 - Games with the boundary layer

» Force transition from laminar to turbulent flow: "trips"

Trying to match flight Re using cryogenic nitrogen: The NTF at NASA Langley, Hampton, VA

Performance:

$$M = 0.2 \text{ to } 1.20$$

$$P_{T} = 1 \text{ to } 9 \text{ an}$$

$$T_{T} = 77^{\circ} \text{ to } 350^{\circ} \text{ Kelvin}$$

Big Models: Full Scale WT at NASA Ames

40x80 Foot Test Section

80x120 Foot Test Section

Aviation Week & Space Technology , Dec. 7, 1987

Wind Tunnel Testing is Expensive

Preparation and planning are required to get into any tunnel:

- Make pre-test estimates
- Prepare a pre-test report including a Run Schedule

Key Items

- Safety, accidents can happen
- Pretest Planning the key to success
- Model Design
- The Run schedule
- Typical Tests:
 - force and moment
 - both performance, stability, and control
 - pressure distributions
 - flow diagnostics
 - on and off surface flow visualization

Test Hours, F-16 WT Test

Research Fighter Configuration (RFC) Visualization with a Tuft Grid

Small Model in Grumman Tunnel

Another Way To Do Flow Diagnostics

Kurt Chankaya, Grumman (now Lockheed)

Typical way to put tufts on the wing

From Pope and Harper's text, taken in the Wichita State tunnel

Oil Flows for Surface Visualization 1

Oil Flows for Surface Visualization 2

Ocean Engineering

SC3 Wing, M = 1.62, $\alpha = 12$ ° (TE flow separation) slide (2)

Laser Light Sheet example

Light Sheet from an argon laser, the flow is seeded with an standard smoke generator.

Northrop IR & D example of vortex flow over a delta wing configuration.

Exhibited at the 36th Paris air show.

Aviation Week & Space Technology, July 29, 1985

slide 2

Model Fabrication:

- Accuracy important!
 - drag, under all conditions
 - low speed near max lift
 - transonic cruise condition

WT model with high LE accuracy Req'ts.

Supercritical Conical Camber (SC3) Wing, developed using CFD. The leading edge contour accuracy is critical.

Note the arc of the wing along the trailing edge, a sort of "gull shape"

Fab agrees with designed contour!

Other Key WT Simulation Issues

- Wall interference
- Support interference
- Flow angularity, nonuniformity
- Adjustment from model scale to full scale

Tunnel/Mounting Interference

Sue Grafton with RFC at NASA Langley

RFC in the 30x60 at Langley: static tests

slide &

Free Flight Setup: A complicated activity

RFC Model in Free Flight at Langley

slide (B)

The Virginia Tech Stability Tunnel

- A high quality flowfield
 - uniform mean flow
 - low turbulence level
 - low flow angularity
- came from NASA in 1958
- 6'x6' test section, 24 ' long
- 600 hp motor/14' fan
- 275 fps max speed

Virginia Tech Stability Tunnel Layout

Flight Test

Subscale demonstration of an oblique wing airplane

Flight Test

• The X-45A from last November

Find X-29 videos clips here:

http://www.dfrc.nasa.gv/gallery/Movie/X-45A/index.html

Flight Test at VT: March 14, 2003

Full scale flight test the X-29

Find X-29 videos clips here:

http://www. dfrc.nasa. gv /gallery/Movie/X-29/index.html

Flight Test Leading to the F-35!

So to Conclude

- Aerodynamic Testing is a major activity in Aerospace Engineering
- Tends to be interesting, assessing the latest products
- Types of work
 - Test Engineer (Flight or WT)
 - Instrumentation Engineer
 - WT Model Designer
 - Data Reductions/Analysis

