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Abstract

A method has been developed to generate and use
polynomial approximations to the range and cruise drag
components in a highly constrained, multidisciplinary
design optimization of a High Speed Civil Transport
configuration. The method improves optimization
performance by eliminating the numerical noise present
in the analyses through the use of response surface
methodology. In our implementation, we fit quadratic
polynomials within variable bounds to data gathered
from a series of numerical analyses of different aircraft
designs. Because the HSCT optimization process
contains noise and suffers from a nonconvex design
space even when noise is filtered out, multiple
optimization runs are performed from different starting
points with and without the response surface models in
order to evaluate their effectiveness. It is shown that
response surface methodology facilitates design space
exploration, allowing improvements in terms of both
convergence performance and computational effort
when multiple starting points are required.*åç

1. Introduction

Numerical noise is a critical issue in the field of
multidisciplinary design optimization (MDO).
Numerical noise occurs as a result of the incomplete
convergence of iterative processes, round-off errors,
and the discrete representation of continuous physical
objects [1, 2]. Such numerical noise is typically
manifested as a low amplitude, high frequency variation
in the results obtained from computer analyses as the
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design parameters vary. When gradient based numerical
optimization is attempted, this oscillatory behavior
creates numerous, artificial local optima and causes
slow convergence or even convergence failures [1, 3].

In the MDO of a high speed civil transport (HSCT),
numerical noise is present in the analyses of various
disciplines, with the majority of the noise originating
from aerodynamic computations. In our studies
numerical noise was most evident in the calculation of
drag coefficients which subsequently lead to noise in
the calculation of range.

Previous work using a variable complexity modeling
(VCM) approach [3, 4, 5, 6] encountered the noise
problem, and was unsuccessful in solving it. This
approach used computationally cheap low fidelity
models and computationally expensive high fidelity
models in a method that reduced the computational
effort to an acceptable level. The low fidelity models
were also much smoother. At each optimization cycle
the low fidelity predictions were corrected using a
scaling factor obtained from the expensive methods.
The VCM approach was successful in reducing CPU
time and jumping over some of the artificial local
minima due to noise, but occasionally failed because
erratic calculations of scaling factors at the peaks and
troughs of the noise lead to convergence problems.
VCM was also problematic in that the low fidelity
models are based on several geometric assumptions that
restrict the optimizer from venturing into otherwise
available regions of the design space.

A somewhat different approach to numerical noise is
Kelly’s implicit filtering [7], which has been very
successful for low dimensional problems here the noise
can be characterized with constant parameters. Its
application to MDO problems where the noise
characteristics vary across the constraints and across the
design space is not so clear, but its performance on low
dimensional HSCT MDO problems is comparable to
that of response surfaces [8].

More recent work to eliminate the noise employs
response surface methodologies (RSM). RSM [9, 10,
11] uses simple mathematical models, typically low-
order polynomials, to approximate the response and
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smooth out numerical noise present in the analyses.
Such RS models are created using a limited number of
analyses at a set of statistically selected points in the
design space. The time consumed by running these
initial analyses is considered an investment in the future
use of the RS models, with the understanding that the
optimization performance will be increased sufficiently
enough for the RS models to be beneficial if a certain
number of optimizations are executed.

HSCT optimizations have been conducted using
aerodynamic RS models for smaller regions of the
design space with success [12]. The purpose of this
work is to construct RS models that cover a larger
volume of the design space and evaluate the
effectiveness of these models as a design space
exploration tool by running optimizations from a wide
variety of starting points.

2. The HSCT Design Problem

The design problem considered is the optimization
of a HSCT configuration [13, 14] to minimize takeoff
gross weight (TOGW) for a range of 5500 nautical
miles and a cruise Mach number of 2.4, while carrying
251 passengers. The choice of gross weight as the
objective function directly incorporates both
aerodynamic and structural considerations, in that the
structural design directly affects aircraft empty weight
and drag, while aerodynamic performance dictates drag
and thus the required fuel weight.

To successfully perform aircraft configuration
optimization, it is very important to have a simple, but
meaningful, mathematical characterization of the
geometry of the aircraft. This paper uses a model that
defines the HSCT design problem using the twenty-
eight design variables listed in Table 1. Twenty-four of
the design variables describe the geometry of the
aircraft and can be divided into six categories: wing
planform, airfoil shape, tail areas, nacelle placement,
and fuselage shape. In addition to the geometric
parameters, four variables define the idealized cruise
mission: mission fuel, engine thrust, initial cruise
altitude, and constant climb rate used in the range
calculation.

Sixty-eight geometry, performance, and
aerodynamic constraints, listed in Table 2, are included
in the optimization. Aerodynamic and performance
constraints can only be assessed after a complete
analysis of the HSCT design; however, the geometric
constraints can be evaluated using algebraic relations
based on the 28 design variables. In the evaluation of
the range constraint is where the numerical noise from
the aerodynamic analyses is evident.

Table 1. HSCT configuration design variables.
D.V. Decription

1 wing root chord (ft)
2 LE break, x (ft)
3 LE break, y (ft)
4 TE break, x (ft)
5 LE wing tip, x (ft)
6 wing tip chord (ft)
7 wing semispan (ft)
8 location airfoil max. thickness
9 LE radius parameter

10 t/c at wing root
11 t/c at LE break,
12 t/c at wing tip
13 fuselage axial restraint #1 (ft)
14 fuselage radius at axial restraint #1 (ft)
15 fuselage axial restraint #2 (ft)
16 fuselage radius at axial restraint #2 (ft)
17 fuselage axial restraint #3 (ft)
18 fuselage radius at axial restraint #3 (ft)
19 fuselage axial restraint #4 (ft)
20 fuselage radius at axial restraint #4 (ft)
21 location of inboard nacelle (ft)
22 location of outboard nacelle (ft)
23 mission fuel weight (lbs)
24 starting cruise altitude (ft)
25 cruise climb rate (ft/min)
26 vertical tail area (ft² )
27 horizontal tail area (ft² )
28 thrust per engine (lbs)

Table 2. HSCT optimization constraints.
# Description

1 Range ≥ 5,500 n.mi.
2 Required CL at landing speed ≤ 1

2-30 Section CO ≤ 2
21 Landing angle of attack ≤ 12°
22 Fuel volume ≤ half of wing volume
23 Spike prevention

24-41 Wing chord ≥ 7.0 ft.
42-43 No engine scrape at landing angle-of-attack
44-45 No engine scrape at landing angle-of-attack, with 5°  roll

46 No wing tip scrape at landing
47 Rudder deflection for crosswind landing ≤ 22.5°
48 Bank angle for crosswind landing ≤ 5°
49 Takeoff rotation to occur ≤ 5 sec
50 Tail deflection for approach trim ≤ 22.5°
51 Wing root T.E. ≤ horiz. tail L.E.
52 Balanced field length ≤ 11,000 ft
53 T.E. break scrape at landing with 5°  roll
54 L.E. break ≤ semispan
55 T.E. break ≤ semispan

56-58 Root, break, tip t/c ≥ 1.5%
59 Fuselage: xrest1 ≥ 5ft
60 Fuselage: xrest1 + 10ft ≤ xrest2

61 Fuselage: xrest2 + 10ft ≤ xrest3

62 Fuselage: xrest3 + 10ft ≤ xrest4

63 Fuselage: xrest4 + 10ft ≤ 300ft
64 Nacelle 1, y ≥ side-of-body
65 Nacelle 1, y ≤ nacelle 2, y
66 Engine-out limit with vertical tail design; otherwise 50%

67-68 Maximum thrust required ≤ available thrust
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The analysis methods used to calculate the three
drag components ( DwaveC , αLC , and 2

LT CC ) used in
the drag calculation and their corresponding ranges are
described in References 5, 15, 16. The aerodynamics
calculations are based on the Mach box method [17,
18], and the Harris wave drag code [19]. A simple strip
boundary layer friction estimate is implemented as in
[5]. A vortex lattice method with vortex lift and ground
effects included [20] is used to calculate landing angle
of attack.

All optimizations were performed on a SGI Power
Challenge using the modified method of feasible
directions algorithm in the optimization software
package DOT [21]. If the RS model optimum design
violates the range constraint calculated by exact
analyses by a small amount, it is sometimes possible to
add fuel to the aircraft to increase the range without
violating any other constraints. When this is done, the
aircraft TOGW used for comparison is replaced by the
corrected take-off gross weight (CTOGW) that includes
the added fuel weight.

3. Construction of RS Models

The RSM process begins with the selection of a
central (or baseline) design. The central design becomes
the centroid of a box over which the RS model is
created. The central design for this work was chosen to
be an optimum design that was achieved using variable
complexity modeling (VCM). The initial (starting pt. A)
and optimal performance data for this optimization are
listed in Table 3 and the corresponding planform shapes
are shown in Figure 1.

Table 3. Performance data for VCM optimization run
(starting pt. A).

Initial
VCM 

Optimum

Range, RS (n. mi.)  ---  --- 
Range, Exact (n. mi.) 5,607 5,500

TOGW (lbs) 805,955 750,350
CTOGW (lbs)  --- 750,350

CPU Time (min.)  --- 184
Active Side Constraints  ---  --- 

The next step in the RSM process involves the
definition of variable bounds. Ideally the bounds would
be selected to give the greatest volume to allow a wide
variation in the design parameters. However, as the
design box becomes large, the maximum error in the
quadratic RS model also grows. The goal here is to
have a design box that provides a significant amount of
variation in designs while keeping errors acceptable.
For this study, the variable bounds were set at ±15% of
the baseline values of each design variable.

With the design box defined, a design sample set is
generated. Initially, two different methods were used in
the construction of the data set. One of the data sets is
an orthogonal array created using a method by Bose
[22] consisting of 47 levels for a total of 2209 points.
The other data set is a small composite design (SCD)
[11] consisting of 2105 points (a 2048 SCD plus face
points and the central design). The number of points in
each design set is then slightly decreased by the removal
of geometrically impossible designs. The impossible
designs include configurations with negative chords that
arise from a combination of extreme design variable
values that occurs at certain vertices of the design box.
Only 3 designs were removed from the 2209 point
orthogonal array, while 512 were eliminated from the
2105 point SCD-based data set. Since such a large
number of points were removed from the SCD, an
additional SCD was created for a box with ±7.5%
variable bounds, providing a second level of points. The
total number of points remaining was 2206 for the
orthogonal array and 2617 for the SCD-based set after
pruning.

 Initial
 VCM Optimum

Figure 1. Planform shapes for VCM optimization run
(starting pt. A).

Once the design set has been pruned, the analyses
are run for each point and the RS models can be
generated. A total of four RS models are generated for
the aerodynamics. Since the noise is seen primarily in
the range constraint, it was decided to approach this
problem from two directions: to model the range itself
as a function of the 28 design variables and to model the
individual drag components used to calculate the range
as a function of the 28 design variables. The
aerodynamic calculations took 597 CPU minutes to
analyze the 2206 point set and 685 CPU minutes for the
2617 point set on the Power Challenge.

The statistical software SAS [23] is used to create
all of the RS models, which are quadratic least square
fits of the sample design set data. The error of each RS
modelÆs range calculated at the design points is listed in
Table 4. As can be seen from the Table, the orthogonal
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array RS models have smaller errors compared to those
of the SCD set. For this reason, the orthogonal array RS
models were selected for use in this optimization study.
The space filling ability of orthogonal arrays also makes
more physical sense than the SCD that is composed of
design box vertices, since most of the feasible design
space exists near the center of the box and not around
the edges.

Table 4. Errors of RS models.

Range RS Drag RS Range Range RS Drag RS Range

median 24 17 39 21
rms 46 31 63 36

Orthogonal Array SCD-based Data SetError    
(n. mi.)

Table 5. Performance data for VCM and RS model
optimization runs (starting pt. A).

Initial
VCM 

Optimum
Range RS 
Optimum 

Drag RS 
Optimum

Range, RS (n. mi.)  ---  --- 5,500 5,500
Range, Exact (n. mi.) 5,607 5,500 5,522 5,481

TOGW (lbs) 805,955 750,350 768,859 761,836
CTOGW (lbs)  --- 750,350 766,879 763,546

CPU Time (min.)  --- 184 45 30
Active Side Constraints  --- none none none

 Initial
 Range RS Optimum
 Drag RS Optimum

Figure 2. Planform shapes for RS model optimization
runs (starting pt. A).
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Figure 3. Convergence histories for optimization runs
(starting pt. A).

4. Optimization from Multiple Starting
Points

The first RS model optimization run was conducted
from starting point A, the same starting point as the
VCM optimization that produced the central design.
The performance data for these optimizations are listed
in Table 5. The resulting planform shapes and
convergence histories are shown in Figures 2 and 3,
respectively.

Table 6. Performance data for VCM and RS model
optimization runs (starting pt. B).

Initial
VCM 

Optimum 
Drag RS 
Optimum

Range, RS (n. mi.)  ---  --- 5,500
Range, Exact (n. mi.) 4,946 5,500 5,463

TOGW (lbs) 823,331 791,066 789,386
CTOGW (lbs)  --- 791,066 792,716

CPU Time (min.)  --- 326 56
Active Side Constraints  --- none none

 Initial
 VCM Optimum
 Drag RS Optimum

Figure 4. Planform shapes for VCM and RS model
optimization runs (starting pt. B).
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Figure 5. Convergence histories for optimization runs
(starting pt. B).

For the optimum designs, the range RS model
under-predicted the exact range by 22 nautical miles
and the range calculated using drag RS models was 19
miles short of the exact range. The sets of models
yielded a similar optimum, while using only 25% of the
time needed for the VCM optimization. The
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convergence history of the VCM also shows a slow,
noisy convergence when compared to those of the RS
models. The VCM optimization not only takes twice as
many cycles to converge, the cycles are twice as long
due to the multifidelity calculations.

Table 7. Performance data for VCM and RS model
optimization runs (starting pt. C).

Initial
VCM 

Optimum
Drag RS 
Optimum

Range, RS (n. mi.)  ---  --- 5,500
Range, Exact (n. mi.) 4,621 5,500 5,478

TOGW (lbs) 795,161 765,751 756,515
CTOGW (lbs)  --- 765,751 758,495

CPU Time (min.)  --- 293 98

Active Side Constraints  --- 
max. vert. 
tail area

max. vert. 
tail area

 Initial
 VCM Optimum
 Drag RS Optimum

Figure 6. Planform shapes for VCM and RS model
optimization runs (starting pt. C).
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Figure 7. Convergence histories for optimization runs
(starting pt. C).

For the remainder of the optimization runs, the
single range RS model was abandoned in favor of the
drag RS models. This was done to simplify comparison
of the results, providing a single RS optimum for every
VCM optimum. The drag RS models were chosen
because they had slightly smaller errors (Table 4) and
because it was felt that the individual drag components,
being at a more fundamental level, are better modeled
by a quadratic function of the 28 design variables than
their resulting range.

A total of four more starting points were used to
explore the design space. The starting points were
selected primarily for their variety, with starting point B
representing a conventional HSCT design and the other
points being considerably more unorthodox. Details of
optimizations from starting points B, C, D, and E are
shown in Figures 4 to 11 and Tables 6 to 9.

Table 8. Performance data for VCM and RS model
optimization runs (starting pt. D).

Initial
VCM 

Optimum 
Drag RS 
Optimum

Range, RS (n. mi.)  ---  --- 5,500
Range, Exact (n. mi.) 5,295 5,500 5,472

TOGW (lbs) 872,763 733,785 743,431
CTOGW (lbs)  --- 733,785 745,951

CPU Time (min.)  --- 218 51
Active Side Constraints  --- none none

 Initial
 VCM Optimum
 Drag RS Optimum

Figure 8. Planform shapes for VCM and RS model
optimization runs (starting pt. D).
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Figure 9. Convergence histories for optimization runs
(starting pt. D).

Starting points B and C resulted in essentially the
same optimum design independently of the method
used. The discrepancies in the optimum weights can be
attributed to small differences in the optimal airfoil
design variables.

The optimum designs obtained from starting point D
show a little more diversity between them and are by far
the lightest designs achieved. The biggest difference in
these two designs is the size of the horizontal tail. The
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RS model optimum has a much larger horizontal tail
and is consequentially much heavier. Other notable
differences between these two designs are the length of
the root chord and the sweep of the outboard section of
the wing.

Table 9. Performance data for VCM and RS model
optimization runs (starting pt. E).

Initial
VCM 

Optimum 
Drag RS 
Optimum

Range, RS (n. mi.)  ---  --- 5,500
Range, Exact (n. mi.) 4,316 5,500 5,464

TOGW (lbs) 769,080 766,249 770,256
CTOGW (lbs)  --- 766,249 773,496

CPU Time (min.)  --- 146 44
Active Side Constraints  --- none none

 Initial
 VCM Optimum
 Drag RS Optimum

Figure 10. Planform shapes for VCM and RS model
optimization runs (starting pt. E).

0 5 10 15 20
740000

760000

780000

800000

820000

840000

T
O

G
W

Optimization Cycle

 VCM
 Drag RS

Figure 11. Convergence histories for optimization runs
(starting pt. E).

For starting points A and E, the VCM and RS model
optimum designs have very different weights. The only
major difference seen in designs is the sweep of the
outboard section of the wing. In both cases the RS
model converges at a design that has an outboard sweep
angle roughly halfway between that of the initial and
optimal VCM design. This difference leads to the RS
model designs being more than 10,000 lbs heavier than
the VCM optimum.

Again, a distinct difference between the two
methods can be seen in the convergence history and

CPU time used for each optimization. In all cases the
optimization using RS models moved swiftly and
smoothly to their optimum while the VCM approachÆs
convergence is visibly hindered by the presence of
noise. Because of the smooth convergence and short
function evaluation time, the RS model optimizations
converged 76% faster on average, in terms of CPU
time, than the VCM optimizations.

The drag RS models also proved to be highly
accurate in all of the optimizations. The maximum error
seen in the range calculated using the drag RS models at
any of the optima was only 37 nautical miles.

From all of the starting points, the optimizer was
successful in overcoming a large initial range deficit to
produce a lighter, feasible design whether using the
VCM approach or RS models. The best optimum design
for each method came from starting point D, where the
VCM approach produced a design with a TOGW of
733,785 lbs and the RS models produced a design with
a TOGW of 745,951 lbs. A compilation of optimum
design variables and performance data for all of the
optimization runs is given in Table 10.

5. Discussion

In the five HSCT configuration optimizations that
were performed, we were able to see the advantages and
disadvantages of quadratic RS models. In our
implementation, RSM has the advantage of accurate
noise filtering and computational efficiency over the
VCM approach when using a sufficient number starting
points. However, the VCM approach has the advantage
of not being confined to a design box as well as the
ability to jump through the design space toward
promising regions.

The values of range predicted by the drag RS
models were exceptionally accurate over the entire
design box. The RS models were also able to capture
the governing trends of the exact values of range
(excluding the noise) since most of the optimizations
started from the same initial design were able to find
very similar optimum designs whether the VCM
approach or RS models were used.

The biggest gain in using the RS models for design
space exploration is not necessarily in the optimum that
is found, but in how efficiently this optimum is found.
Even though there is an initial investment of almost 600
CPU minutes put into the construction of the RS
models, the increase in optimization performance using
the RS models over the five optimization runs from
different starting conditions can be seen in Figure 12. In
this case, after three optimizations were performed the
total CPU time used by RS model optimizations was
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surpassed by that of conventional optimizations using
VCM.

While the results obtained for starting points B and
C were virtually identical, the VCM optimization is able
to make substantial improvements over the RS models
for the other three starting points. These improvements
are most likely due to the behavior of the VCM
approach during an individual optimization cycle. Since
VCM uses low fidelity analyses with some initially
calculated correction factor, it is possible, as each
optimization cycle progresses, for it to jump through
constraints that exist in the high fidelity analyses and
RS models. For example, the RS model optimization
from starting point A begins by following the path of
the VCM optimization until the RS models encounter a
local minimum due to the range constraint. The VCM
optimization continues on to reduce the weight by an
additional 13,000 lbs to converge at an optimal weight
of 750,350 lbs. If a RS model optimization is then
transplanted into this better region of the design space
and started from the VCM optimum, it is able to

converge at a feasible design similar to the VCM
optimization, weighing 752,810 lbs. In this case, the
VCM approach was able to move to a region of the
design space that is better than what it started in.
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Figure 12. Comparison of total CPU time used for
VCM and RS model optimizations.

6. Concluding Remarks

The use of RS models in this study was valuable in
providing a relatively quick and accurate means of

A B C D E A B C D E
wing root chord (ft) 183.6 179.6 175.1 183.7 173.7 184.6 173.5 170.1 171.4 178.9

LE break, x (ft) 116.9 114.8 120.7 121.9 115.1 119.6 117.9 116.5 114.0 122.4
LE break, y (ft) 41.6 42.7 44.9 43.2 42.9 42.1 42.7 42.5 43.9 40.7
TE break, x (ft) 156.5 156.4 156.4 156.5 152.3 159.3 160.7 153.9 148.6 161.1

LE wing tip, x (ft) 141.9 159.5 144.6 163.0 143.4 137.2 156.7 143.4 146.2 131.8
wing tip chord (ft) 10.3 9.8 11.0 11.8 11.2 10.2 9.4 11.1 11.6 11.3
wing semispan (ft) 72.3 78.2 75.3 69.3 74.4 73.5 77.4 71.7 66.7 76.6

location airfoil max. thickness 0.491 0.491 0.494 0.500 0.492 0.495 0.524 0.498 0.561 0.487
LE radius parameter 2.95 2.82 2.52 3.34 3.00 2.96 2.81 2.60 3.33 3.00

t/c at wing root 0.0232 0.0247 0.0259 0.0236 0.0249 0.0237 0.0255 0.0262 0.0242 0.0259
t/c at LE break, 0.0173 0.0181 0.0160 0.0191 0.0180 0.0175 0.0187 0.0159 0.0196 0.0180
t/c at wing tip 0.0150 0.0154 0.0161 0.0169 0.0159 0.0158 0.0150 0.0172 0.0172 0.0162

fuselage axial restraint #1 (ft) 2.8 3.1 2.7 2.5 2.8 3.2 2.3 3.2 2.3 2.9
fuselage radius at restraint #1 (ft) 0.63 0.64 0.54 0.56 0.67 0.66 0.72 0.53 0.70 0.58

fuselage axial restraint #2 (ft) 14.1 16.0 14.0 15.5 15.5 14.4 16.3 13.2 16.3 13.7
fuselage radius at restraint #2 (ft) 2.48 2.75 2.54 2.47 2.50 2.61 2.63 2.25 2.11 2.12

fuselage axial restraint #3 (ft) 114.5 111.1 120.0 128.2 122.3 111.7 109.0 116.2 131.6 126.3
fuselage radius at restraint #3 (ft) 5.60 5.69 5.61 5.32 5.45 5.50 5.77 5.71 5.60 5.37

fuselage axial restraint #4 (ft) 178.8 171.0 165.3 195.6 190.2 181.4 167.8 171.6 193.8 193.1
fuselage radius at restraint #4 (ft) 5.53 5.53 5.45 5.71 5.64 5.42 5.47 5.58 5.76 5.69

location of inboard nacelle (ft) 7.00 7.50 7.46 7.89 7.41 7.08 7.54 7.56 8.06 7.33
location of outboard nacelle (ft) 14.45 15.25 14.94 16.47 15.71 14.42 15.34 14.56 16.47 14.71

mission fuel weight (lbs) 386,666 408,497 396,397 380,357 397,152 394,834 406,911 390,581 388,345 396,675
starting cruise altitude (ft) 58,949 58,845 58,830 57,640 59,111 58,680 58,994 59,624 58,395 59,212

climb rate (ft/min) 37.5 37.1 37.3 36.1 38.1 37.4 37.2 37.9 37.7 37.5
vertical tail area (ft² ) 443.8 465.3 509.9 486.9 452.3 454.9 460.9 510.0 496.5 446.3

horizontal tail area (ft² ) 729.9 809.3 632.4 767.6 728.1 744.5 805.1 657.1 828.6 691.7
thrust per engine (lbs) 4,866 5,086 4,941 4,405 5,062 4,883 5,114 5,121 4,728 5,061

Range, RS (n.mi.)  ---  ---  ---  ---  --- 5,500 5,500 5,500 5,500 5,500
Range, Exact (n. mi.) 5,500 5,500 5,500 5,500 5,500 5,481 5,463 5,478 5,472 5,464

TOGW (lbs) 750,350 791,066 765,751 733,785 766,249 761,836 789,386 756,515 743,431 770,256
CTOGW (lbs) 750,350 791,066 765,751 733,785 766,249 763,546 792,716 758,495 745,951 773,496

Cycles 23 41 36 28 18 8 14 23 12 11
CPU Time (min.) 184 326 293 218 146 30 56 98 51 44

Active Side Constraints none none
max. vert. 
tail area

none none none none
max. vert. 
tail area

none none

VCM OptimaParameter Drag RS Model Optima

Table 10. Optimum design variables and performance data from all optimization starting points.
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exploring the design space. The large size of the design
box that was used is evident in the variety of initial
designs that were available for optimization. The
spaciousness of the design box can also be seen in the
fact that the side constraints did not play an important
role in the optimization process.

When performing design space exploration in a
nonconvex space without the aid of a global optimizer,
multiple starting points are required with or without RS
models. In this case, the RSM used was successful in
filtering out the effects of noise while providing savings
of almost 5 hours of CPU time when compared to the
VCM approach. Alternatively, the VCM approach was
successful in navigating to better regions of the design
space.

In addition to other research conducted with higher
fidelity aerodynamic RS models [24], work has been
done on structural RS models for a HSCT configuration
optimization over a small design box [25]. Work is
currently in progress to use the RSM presented to
construct structural RS models for the large design box
used in this study. The ultimate goal here is to use both
the aerodynamic and the structural RS models together
in a HSCT configuration optimization.
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