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Abstract

A method has been developed to efficiently implement
supersonic aerodynamic predictions from Euler solutions

into a highly constrained, multidisciplinary design opti-
mization of a High-Speed Civil Transport (HSCT) con-
figuration. The method alleviates the large computational

burden associated with performing CFD analyses and elim-
inates the numerical noise present in the analyses through
the use of response surface (RS) methodologies, a vari-
ation of the variable-complexity modeling (VCM) tech-

nique, and coarse grained parallel computing. Variable-
complexity modeling techniques allow one to take advan-
tage of information gained from inexpensive lower fidelity

models while maintaining the accuracy of the more expen-
sive high fidelity methods. In this research, simple con-
ceptual level aerodynamic models provide the functional

form of the drag polar. Response surface models are there-
fore created for the intervening functions (drag polar shape
parameters) revealed by the simple models instead of for

the drag itself. Optimization results using linear theory
RS models are used to select the allowable ranges of the
design variables. Stepwise regression analysis, performed
using data from linear theory aerodynamic results, pro-

vides information on the relative importance of each term
in the polynomial RS models. With this information, re-
duced term RS models representing a correction to the

linear theory RS model predictions are constructed using
fewer Euler evaluations. Studies into five, ten, fifteen, and
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twenty variable HSCT design problems show that accurate
results can be obtained with the reduced term models at

a fraction of the cost of creating the full term quadratic
RS models. Specifically, 11 hour, 47 hour, 115 hour, and
255 hour savings in CPU time on a single 75 MHz IP21

processor of a SGI Power Challenge are obtained for the
five, ten, fifteen, and twenty variable design problems, re-
spectively. Errors in the RS model cruise drag predictions,

based on actual Euler calculations, for the optimal designs
range from 0.1 counts to 0.8 counts for the twenty variable
optimum.

1. Introduction

With advances in computational fluid dynamics (CFD)
code maturity, grid generation capabilities, and computer

performance, the application of CFD in the aircraft design
process1 has received much attention. Introducing accu-
rate CFD predictions in the early stages of design has a

large potential advantage in terms of aircraft life cycle cost
and time-to-market. According to Nicolai,2 about eighty
percent of the aircraft life cycle cost is set after the con-
ceptual design stage. Using more accurate aerodynamic

predictions early in the design process, when the aircraft
is taking shape, can result in less time and money spent
in redesign and an overall improved product. However,

the relatively large computational expense associated with
CFD analyses can discourage its application in high dimen-
sional design optimization procedures. A new procedure

must be developed to enable the efficient implementation
of aerodynamic predictions from CFD solutions into high
dimensional, highly constrained MDO procedures.

Previous work performed at Virginia Tech3–6 tackled

the computational expense problem by employing a variable-
complexity modeling (VCM) technique to the multidisci-
plinary design optimization (MDO) of a High-Speed Civil
Transport (HSCT) configuration (Fig. 1). This technique

utilized both conceptual level and preliminary level mod-
els for predicting aerodynamic performance and structural
weights. The simple conceptual design level methods (alge-

braic relations) were used predominantly in the optimiza-
tion due to their low computational costs. More accurate



Figure 1: Typical HSCT Configuration.

and more computationally expensive methods (linear the-
ory aerodynamics and structural optimization) are used to
periodically update the simpler models. In this way, one

incorporates the accuracy of the higher level codes with
the computational efficiency of the simpler models.

This procedure was effective in reducing the computa-
tional cost, but it was still plagued by poor convergence

and the appearance of artificial local minima. These prob-
lems were a result of high frequency, low amplitude varia-
tions in the results from aerodynamic and structural anal-

yses. This numerical noise is present in any method with
iterative procedures or discrete representations of contin-
uous geometric shapes or physical phenomena.7,8 Low

amplitude, high frequency oscillations have been found
in wave drag predictions from slender body theory7 and
in panel level drag-due-to-lift results.9 Numerical noise
can also result from suboptimizations which are performed

within the complete optimization framework. Balabanov10

et al. show such noise from structural optimization and
wing camber optimization procedures.

Response surface modeling techniques for aerodynamic

and structural design improve the performance of highly
constrained gradient based optimizations.7,10,12,13 Using
RS models offers a number of benefits. First, the RS mod-

els smooth out numerical noise present in the analyses, im-
proving the performance of the gradient based optimizer

and eliminating artificial local minima. Second, the anal-
ysis codes are separated from the optimization routines.
This eliminates problems associated with integrating large

production level grid generators, analysis codes, and post
processing utilities with the optimizer. It also allows anal-
yses to be performed by experts in the specific discipline

on parallel architecture machines. Aspects of the paral-
lel computing performed in this research is presented in
Appendix B.

Modeling a complex response, such as the aircraft drag,

in high dimensional design spaces via polynomial RS mod-
els is difficult because the accuracy of RS models often
degrades with the dimension, and the cost of creating RS
models increases rapidly with the dimension of the prob-

lem. Response surfaces must overcome these problems
associated with the curse of dimensionality. As the di-
mension of the problem increases, the number of terms in

a quadratic polynomial RS model increase quadratically.
The number of design point evaluations required to ac-
curately model the polynomial terms, and the associated

computational expense, grows even faster. Balabanov11

dealt with this by applying constant and linear corrections
to the lower fidelity RS models in order to create RS models
for detailed level structural optimization results. Another

issue in the curse of dimensionality is that the accuracy
of the RS models tends to degrade as the dimension in-
creases. Due to computational expense issues, the distri-

bution of design points used to evaluate the polynomial
becomes quite sparse in large dimensional design boxes.
Another contributing factor to the degradation in the RS

model fit is the fact that the assumption of a quadratic
variation in the response becomes less appropriate. Kauf-
man14 et al. found that the accuracy of RS models for the

wing weight in high dimensions can be increased by using
conceptual level analyses to select an appropriate set of
intervening variables.

Studies at Virginia Tech were performed using variable-
complexity RS modeling techniques for both the aerody-

namic design7 and structural design10,14 aspects of HSCT
design. To this point, the aerodynamic design was per-
formed using only panel level methods as the highest fi-

delity aerodynamic model instead of CFD solutions. The
same is true for HSCT MDO performed by other groups
at the Georgia Institute of Technology,15,16 the University

of Notre Dame,17 and Stanford University.18 Computer
programs such as ACSYNT19 and FLOPS20 also perform
aircraft MDO with lower fidelity aerodynamic and struc-
tural models.

Studies performed by Knill21 et al. demonstrate sig-

nificant changes in the HSCT performance estimates and
aircraft weight resulting from the use of more accurate
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Euler/Navier-Stokes aerodynamics in place of linear theory
methods. The HSCT is a highly leveraged design, and its

estimated performance is very sensitive to small changes
in the predicted drag. An underprediction in the cruise
drag of only 2 counts results in a 120 n.mi. overestimate

of the range. The resulting aircraft TOGW is also sensi-
tive to changes in the drag. A 2 count increase in the drag
over the entire mission results in an increase in the optimal

TOGW of 56, 000 lb. Clearly, more accurate aerodynamic
predictions must be included in the design optimization.
However, due to the large computational costs associated
with complex CFD analyses, novel approaches must be de-

vised to allow the implementation of high level calculations
while retaining an efficient optimization procedure

A method has been developed which utilizes informa-

tion gained from lower fidelity aerodynamic methods to
more efficiently create response surface (RS) approxima-
tions to the supersonic Euler drag predictions. This method
is tested using an existing multidisciplinary High-Speed

Civil Transport (HSCT) design optimization procedure de-
veloped at Virginia Tech.3–6 Conceptual level aerodynamic
models provide the functional form of the drag polar:

CD(x) = CD0(x) +K(x) CL
2. (1)

Response surface models of the intervening functions, CD0(x)
and K(x), are created. Details of the RS modeling tech-

niques are given in Appendix A. Response surface model-
ing techniques are employed using linear theory aerody-
namic prediction methods to determine which terms in
the RS models play a significant role in the evaluation of

the drag. With this information, reduced term RS models
representing a correction to the linear theory RS model
predictions are constructed using fewer Euler evaluations.

By eliminating unnecessary terms, the accuracy of the RS
models is not compromised, and fewer CFD evaluations
are required to evaluate the coefficients of the polynomi-

als, thus reducing the problems associated with the curse of
dimensionality. In addition, results from the inexpensive
linear theory analyses are used to identify the suspected

neighborhood of the optimal designs from Euler analyses.
This enables smaller bounds on each design variables to be
specified while maintaining confidence that the optimum
lies within those bounds. This method is tested on sim-

plified five, ten, fifteen, and twenty variable HSCT design
problems.

2. HSCT Design Testbed

The design problem involves minimizing the take-off

gross weight (TOGW) of a High-Speed Civil Transport
(HSCT) with a 5500 n.mi. range. The aircraft is designed

Table 1: Twenty-Nine Variables in HSCT Design.

DV Description

1 wing root chord, croot ( f t)

2 LE break, x ( f t)

3 LE break, y ( f t)

4 TE break, x ( f t)

5 TE break, y ( f t)

6 LE wing tip, x ( f t)

7 wing tip chord, ctip ( f t)

8 wing semispan, b/2 ( f t)

9 location airfoil max. thickness, (x/c)max-t
10 LE radius parameter, RLE
11 t/c at wing root, (t/c)root

12 t/c at LE break, (t/c)break

13 t/c at wing tip, (t/c)tip
14 fuselage axial restraint #1, xfus1

( f t)

15 fuselage radius at axial restraint #1, rf us1
( f t)

16 fuselage axial restraint #2, xfus2
( f t)

17 fuselage radius at axial restraint #2, rf us2
( f t)

18 fuselage axial restraint #3, xfus3
( f t)

19 fuselage radius at axial restraint #3, rf us3
( f t)

20 fuselage axial restraint #4, xfus4
( f t)

21 fuselage radius at axial restraint #4, rf us4
( f t)

22 location of inboard nacelle, ynacelle ( f t)

23 location of outboard nacelle (ft)

24 mission fuel weight, Wf uel ( lb)

25 starting cruise altitude ( f t)

26 cruise climb rate ( f t/min)

27 vertical tail area ( f t2)

28 horizontal tail area ( f t2)

29 thrust per engine ( lb)

to cruise at Mach 2.4 and carry 250 passengers. The gen-

eral HSCT configuration and mission is parameterized by
29 design variables. The aircraft geometry (Table 1) is
described with 26 design variables. This provides a realis-

tic description of the complex geometry with a relatively
small number of design variables and allows the flexibility
required to investigate a wide variety of aircraft configu-

rations. Eight variables are used to describe the cranked
delta planform (Fig. 2). The airfoil sections are described
using five design variables. The axi-symmetric fuselage
is defined with eight design variables which provide the

fuselage radii at four axial restraint locations. The shape
of the body between these points is then determined by
considering it as a minimum wave drag body of a fixed

volume.4,22 The spanwise location of the nacelles is de-
fined with two design variables. A single design variable
describes the thrust of each engine. The horizontal and

vertical tail areas are given by the final two geometric de-
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Figure 2: Geometry for 29-Variable HSCT Design
Problem.

sign variables. The idealized mission profile is composed
of take-off, subsonic climb, supersonic cruise/climb, and

landing segments. Three design variables describe the mis-
sion: the cruise climb rate, initial cruise altitude, and fuel
weight.

A two-level optimization formulation is employed with

the aerodynamic design as the upper level and the struc-
tural design as the lower level. The structural design takes
the geometric information determined from the aerody-
namic design and returns the structural weight. As de-

scribed by Sobieszczanski-Sobieski and Haftka,23 this asym-
metric interaction between the two disciplines offers large
savings in computational cost because there is no need to

compute derivatives of the aerodynamic quantities with
respect to the structural variables.

The aerodynamic design uses up to 68 inequality con-

Table 2: Constraints in HSCT Design.

# Constraint Description

1 Range ≥ 5, 500 n.mi.

2 Required CL at landing speed ≤ 1

3–20 Section C` ≤ 2

21 Landing angle of attack ≤ 12◦

22 Fuel volume ≤ half of wing volume

23 Spike prevention

24–41 Wing chord ≥ 7.0 f t

42–43 No engine scrape at landing α

44–45 No engine scrape at landing α, with 5◦ roll

46 No wing tip scrape at landing

47 Crosswind landing rudder deflection ≤ 22.5◦

48 Bank angle for crosswind landing ≤ 5◦

49 Takeoff rotation to occur ≤ 5 sec

50 Tail deflection for approach trim ≤ 22.5◦

51 Wing root T.E. ≤ horiz. tail L.E.

52 Balanced field length ≤ 11, 000 ft

53 TE break scrape at landing with 5◦ roll

54 LE break ≤ semispan

55 TE break ≤ semispan

56–58 (t/c)root, (t/c)break , and (t/c)tip ≥ 1.5%

59 xf us1
≥ 5ft

60 xf us2
− xf us1

≥ 10 f t

61 xf us3
− xf us2

≥ 10 f t

62 xf us4
− xf us3

≥ 10 f t

63 300 f t− xf us4
≥ 10 f t

64 ynacelle ≥ side of fuselage

65 ∆ynacelle ≥ 0

66 Engine-out limit with vertical tail design;
otherwise ynacelle + ∆ynacelle ≤ 0.5(b/2)

67-68 Maximum thrust required ≤ available thrust

straints (Table 2) dealing with the aircraft geometry and
performance/aerodynamics. These constraints are devised
to ensure feasible aircraft geometries and impose realis-

tic performance and control capabilities. Fuel volume and
wing chord length limits are examples of geometric con-
straints. Aerodynamic constraints include, for example,

landing angle-of-attack limits; balanced field length re-
quirements; and wing, tail, and engine scrape prevention
criteria. Emergency conditions are used to enforce the
landing constraints. It is assumed that the aircraft lands

on a runway 5000 f t above sea level at 145 knots , car-
rying 50% of its initial fuel weight. Other aerodynamic
constraints establish controllability during adverse flight

conditions. For example, the aircraft must be capable of
trimmed flight with both engines on one side of the aircraft
inoperable. These are complicated, nonlinear constraints

that require aerodynamic forces and moments, stability
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Figure 3: Nonconvex Design Space in Ten Variable
Problem.

and control derivatives, and center of gravity and inertia
estimates.

An example of the complicated constraint boundaries
present in the design spaces associated with this HSCT

optimization is shown in Fig. 3. This figure represents a
plane in ten dimensional design space, created using three
design points. Two of the design points represent local op-
tima found by the optimizer, and the third point is a sub-

optimal feasible point. The remaining points on the plot
are created by linearly varying all design variables between
those three points. The design points represented by the

open circles are feasible points, while those represented by
the filled circles have violated some constraints. The plot
clearly shows the nonconvexity of the design space caused

by the aerodynamic constraints. If the optimizer drives
the design near Optimum 1, it cannot cross the boundary
created by the range constraint to arrive at Optimum 2
which is 2000 lb lighter. In addition to enabling the rapid

creation of these types of useful plots, using response sur-
face modeling techniques allows one to investigate a num-
ber of different starting points in the optimization in order

to discover these local optima. The bulk of the compu-
tational effort is spent up front in the creation of the RS
models, and performing a number of optimizations using

the polynomial RS models is relatively inexpensive.

3. HSCT Design Tools

3.1. Linear Theory Aerodynamic Codes

The supersonic linear theory predictions are obtained

from three codes, each computing a particular component
of the drag. The volumetric wave drag is computed using
the Harris24 wave drag program. Drag-due-to lift is calcu-

lated using a panel method by Carlson25 et al. with at-
tainable leading edge thrust corrections.26 Viscous drag es-
timates are obtained using standard algebraic estimates27

of the skin friction.

The optimal camber for our HSCT designs is deter-

mined using the linear theory code WINGDES.25,28 WING-
DES attempts to find the camber distribution along the
wing which minimizes the drag-due-to-lift. Two runs of

WINGDES per wing were required to get the proper cam-
ber distribution. The second run serves to smooth the cam-
ber distribution and provide the maximum leading edge

suction parameter closer to the design lift coefficient.

3.2. Computational Fluid Dynamics Code

Version 2.2 of the General Aerodynamic Simulation
Program29 (GASP) is used to obtain the Euler solutions.
GASP is a fully conservative CFD code which solves the

Reynolds averaged Navier-Stokes equations and many of
its subsets. The code uses an upwind three dimensional
finite volume spatial discretization. Roe, Van Leer, Steger-

Warming, and full flux functions are available in each di-
rection. For our calculations, a third order upwind biased
interpolation of the Roe fluxes is used in each of the march-

ing planes.

The finite volume formulation of the Reynolds averaged

Navier-Stokes equations may be written in terms of the
vector of conserved variables, Q, the vector of primitive
variables, q, the cell volume, V , and a residual vector, R(q),

as
∂ <Q>

∂q

∂ <q>

∂t
V +R(q) = 0.

The cell averaged quantity, <Q>, is defined as an integral
over the volume of the cell

<Q>=
1

V

∫∫∫
V

Q(x, y, z, t) dV.

The cell averaged quantity for the primitive variables,<q>,

is defined in the same manner. The residual vector can be
written as a function of the cell edge area averages of the
inviscid fluxes, ~F and viscous fluxes, ~Fv, the unit normal

vectors, n̂, to the cell faces, and the areas, ∆A, of the nf
cell faces as

R(q) =

nf∑
j=1

(
~F− ~Fv

)
·n̂j ∆Aj.

The norm of this residual vector represents the conver-
gence to the steady state solution. GASP iteratively solves
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Figure 4: HSCT Wing-Fuselage with CFD Grid Planes.

the system of equations until a prescribed reduction in the
residual norm is reached. Due to the large savings in com-
putational time, space marching has been performed for

all of the supersonic CFD calculations presented in this
report.

3.3. Grid Generation

Grids suitable for space marching calculations on the

HSCT wing-fuselage configurations are created using a grid
generator originally developed by Barger.30 The code has
been modified by the author to provide better resolution

of the leading edge and remain robust for large changes
in the aircraft geometry. The grid generator receives as
input the aircraft configuration stored in the Craidon31

geometry format, extends the wing to join the fuselage,

performs filleting of the wing-fuselage intersection,32 and
then creates a grid for space marching calculations. Since
our HSCT optimization code creates a Craidon description

file from its set of design variables, the conversion from a
set of design variables to a space marching CFD grid is
straightforward.

The space marching planes are created along planes of

constant x-value. Two of these computational planes for a
wing-fuselage configuration are shown in Fig. 4. A Mach
cone analysis is used to form the outer boundary to ensure

that all shocks are contained within the computational do-
main. The grid generator allows for flexible stretching of
the grid points around and normal to the aircraft to create

grids suitable for both Euler and Navier-Stokes calcula-
tions. Measures are employed to reduce grid skewness at
the wing tip and wing-fuselage juncture. The grid gener-
ator is automated and robust for large planform changes,

essential qualities for application in design optimization.
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± 1/2 count

Figure 5: Euler Grid Convergence for Maneuver Wing.

3.4. Code Validation

Verification of the CFD results has been performed to
ensure solutions that are both grid and steady state con-

verged. Figure 5 shows the convergence of the Euler drag
coefficient with the number of grid cells, N , on a maneu-
ver wing configuration. The accuracy of the CFD solutions

has been ascertained through comparisons to experimen-
tal data of the forces and moments of forebody and wing
geometries. Complete documentation of these studies are
found in Ref. 21. These studies have confirmed that the

Euler drag results are accurate within 1/2 count in the
range of flight conditions considered.

3.5. Structural Analysis Codes

All components of the take-off gross weight are calcu-

lated using empirically based functions obtained from the
Flight Optimization System20 (FLOPS) weight equations.
Work by Huang33 et al. indicated that the FLOPS wing

bending material weight predictions for HSCT configura-
tions had insufficient accuracy. Substantial work has been
performed using structural optimization from the finite el-

ement code GENESIS34 to predict the wing bending mate-
rial weight.6,10,14 In this research, only the FLOPS weight
equations are used in the HSCT optimization results.

3.6. Optimization Routine

Optimization is performed using Design Optimization

Tools35 (DOT). The constrained optimization is performed
using sequential quadratic programming (SQP) and cen-
tral difference gradient approximations.

4. Simplified HSCT Design Problems

A series of simplified optimization problems serve to
evaluate the methods of including Euler analyses in multi-
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Table 3: Active Design Variables in the Simplified
Optimization Problems.

No. of Design Variables

Design Variable 5 10 15 20

Planform Variables

croot X X X X

ctip X X X X

b/2 X X X

sLEI X X

ΛLEI X X X X

ΛLEO X X X

sTEI (straight TE) X

ΛTEI (straight TE) X

Airfoil Variables

(x/c)max-t X X X

RLE X X X

(t/c)root X X X X

(t/c)break (t/c constant) X

(t/c)tip (t/c constant) X

Fuselage Variables

xfus1

rfus1
X X

xfus2

rfus2
X X

xfus3

rfus3
X X

xfus4

rfus4 X X

Nacelle, Mission, and Empennage Variables

ynacelle X X X

∆ynacelle X

Wf uel X X X X

Starting Cruise Alt.

Cruise Climb Rate

Vertical Tail Area

Horizontal Tail Area (No horizontal tail)

Engine Thrust

disciplinary HSCT design. The design variables (Table 3)
used to define the geometry and mission are subsets of
those used in the full 29 variable design, although some

appear in a different form. For example, instead of spec-
ifying the x and y locations of the leading edge (LE) and
trailing edge (TE) break points, the simplified problems

use more meaningful variables specifying the wing sweep
angles and the inboard surface lengths. In the same way,
the variable specifying the x-location of the wing tip LE

is replaced with a variable stipulating the outboard LE

Table 4: Design Variable Limits in the Simplified
Optimization Problems.

No. of Design Variables

Design Variable 5 10 15 20

Planform Variables

croot 150− 190 f t

ctip 7− 13 f t

b/2 [74 f t] 58− 78 f t

sLEI [132 f t] 105− 135 f t

ΛLEI 67◦ − 76◦

ΛLEO [25◦] 12◦ − 32◦

sTEI (straight TE) 10− 30 f t

ΛTEI (straight TE) -55◦ − 16◦

Airfoil Variables

(x/c)max-t [40%] 38− 52%

RLE [2.5] 2.1− 4.1

(t/c)root 1.5− 2.7%

(t/c)break (t/c constant) 1.5− 2.7%

(t/c)tip (t/c constant) 1.5− 2.7%

Fuselage Variables

xf us1
[50 f t]

rf us1
[5.2 f t] 4.5− 6.0 f t

xf us2
[100 f t]

rf us2
[5.7 f t] 4.5− 6.0 f t

xf us3
[200 f t]

rf us3
[5.9 f t] 4.5− 6.0 f t

xf us4
[250 f t]

rf us4
[5.5 f t] 4.5− 6.0 f t

Nacelle, Mission, and Empennage Variables

ynacelle [20 f t] 10− 35 f t

∆ynacelle [6 f t] 6− 18 f t

Wf uel No Limits

Starting Cruise Alt. [65, 000 f t]

Cruise Climb Rate [100 f t/min]

Vertical Tail Area [548 f t2]

Horizontal Tail Area (No horizontal tail)

Engine Thrust [39, 000 lb]

[ · ] variable value when not active in the design

sweep angle. The upper and lower limits of the active de-
sign variables (Table 4) remain the same throughout the

series of optimization problems. These bounds on the de-
sign variables are selected from optimization results per-
formed using the linear theory RS models. These optima

provided clues on the general location of the optimal de-
signs from Euler analysis which allows smaller ranges on
the design variables and results in more accurate RS model

predictions.
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The simplified designs are subject to a reduced set of
constraints (Table 5). There are three basic reasons why
certain constraints are eliminated:

1. The design variable(s) on which the constraints de-
pend are not active.

2. Explicit limits on the design variables prevent geo-
metric constraints from becoming active.

3. Simplifications to the mission eliminate related con-

straints.

Vertical tail sizing is not active for the simplified designs,
therefore constraints number 47 and 48 do not appear.

Unlike the 29 variable design, these configurations have
no horizontal tail. This eliminates constraints 49, 50, and
51. The engine thrust also remains constant, removing

constraints 52, 67, and 68 from the active list.

A simplified five variable wing design is considered first.
The ten variable design problem is an extension of the
five variable problem, enabling more general planform and

airfoil geometries, and allowing variation in the spanwise
location of the nacelles. Fuselage shaping is enabled with
the fifteen variable design. Finally, the twenty variable
design provides a complete description of the wing, airfoil,

fuselage, and nacelles.

4.1. Five Variable HSCT Design

The geometry for the five variable wing design (Fig. 6)
is created with four design variables specifying the root

chord, croot; tip chord, ctip; inboard leading-edge (LE)
sweep angle, ΛLEI ; and the thickness-to-chord ratio, t/c.
The fifth design variable gives the fuel weight, Wf uel. The

allowable ranges of values for the variables are shown in
Table 4. These ranges are chosen using results from pre-
vious optimization studies in an attempt to bracket the
optimal designs within the bounds of the design variables.

To uniquely describe the aircraft, a number of geometric
parameters are specified. The fuselage and vertical tail
shapes remain constant. The trailing edge (TE) for these

configurations is straight with no TE break. The length
of the LE from the wing apex to the LE break is con-
stant (sLEI = 132 f t), as is the sweep angle of the outboard

LE (ΛLEO = 25◦) and the wing semispan (b/2 = 74 f t).
Two airfoil parameters are held fixed: the leading-edge
radius parameter (RLE = 2.5) and the chordwise location
of the maximum thickness ((x/c)max-t = 40%). The en-

gine thrust, spanwise nacelle positions, relative position of
the wing to the fuselage, and the cruise altitude are also
invariant.

Table 5: Active Constraints in the Simplified
Optimization Problems.

No. of Variables
# Constraint (Abbrev.) 5 10 15 20

1 Range ≥ 5, 500 n.mi. X X X X

2 CL at landing speed X X X X

3–20 Section C` ≤ 2 X X X X

21 Landing α ≤ 12◦ X X X

22 Fuel volume X X X X

23 Spike prevention X X X X

24–41 Wing chord ≥ 7.0 f t X X X X

42–43 Engine scrape X X X

44–45 Engine scrape (5◦ roll) X X X

46 Wing tip scrape X X X

47 Rudder deflection

48 Bank angle ≤ 5◦

49 Takeoff rotation

50 Tail deflection

51 Wing TE ≤ HT LE

52 Balanced field length

53 TE break scrape (5◦ roll) X X X

54 LE break ≤ semispan X X X X

55 TE break ≤ semispan X

56–58 (t/c)≥ 1.5%

59 xf us1
≥ 5ft

60 xf us2 − xf us1 ≥ 10 f t

61 xf us3 − xf us2 ≥ 10 f t

62 xf us4
− xf us3

≥ 10 f t

63 300 f t− xf us4
≥ 10 f t

64 ynacelle ≥ fuselage

65 ∆ynacelle ≥ 0

66 Engine-out limit; X X X X
(vertical tail design)

67-68 Maximum thrust

Total Active Constraints 42 49 49 50

The optimization problem is the minimization of the
take-off gross weight (TOGW) subject to 42 constraints

(Table 5) related to both the geometry and the mission.
Side constraints limit the values of the design variables.
The optimization problem can be written as

min
x∈<5

TOGW (x) , (2)

subject to: g(x) ≤ 0,

xmin ≤ x ≤ xmax

where x is the five dimensional vector of design variables,

and g(x) is the 42 dimensional vector of nonlinear inequal-
ity constraints. The minimum and maximum values of the
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Figure 6: Geometry for Five Variable Design Problem.

design variables are given by xmin and xmax.

4.2. Ten Variable HSCT Design

The wing planform for the ten variable design (Fig. 7)
is created with five design variables specifying the root
chord, croot; tip chord, ctip; semispan, b/2; inboard LE

sweep angle, ΛLEI ; and outboard LE sweep angle, ΛLEO .
The airfoil sections are described using three design vari-
ables: the leading-edge radius parameter, RLE; location

of maximum thickness, (x/c)max-t; and thickness-to-chord
ratio, t/c. The final two variables specify the inboard
nacelle placement, ynacelle, and the mission fuel weight,

Wf uel. The allowable ranges of values for these variables
are shown in Table 4. For these configurations, the fuselage
and vertical tail shapes are fixed. The length of the lead-

ing edge from the wing apex to the leading-edge break is
constant (sLEI = 132 f t), and the trailing edge is straight.
The engine thrust, spanwise distance between nacelles, rel-
ative position of the wing to the fuselage, and the cruise

altitude are also fixed.

fu
se

la
g

e
 c

e
n

te
rl
in

e

(fixed)

(fixed)

x

z

y

x

x3

x2

x4

x7

x8

x6

x1

length of inboard LE
(fixed)

x5

x9

x1=root chord

x2=tip chord

x3=wing semispan

x4=inboard LE sweep angle

x5=outboard LE sweep angle

x6=location of max. thickness

x7=LE radius parameter

x8=thickness−to−chord ratio

x9=location of inboard nacelle

x10=fuel weight

Figure 7: Geometry for Ten Variable Design Problem.

The optimization problem is to minimize the TOGW
subject to 49 constraints (Table 5). This can be written as

min
x∈<10

TOGW (x) , (3)

subject to: g(x) ≤ 0,

xmin ≤ x ≤ xmax

where x is the ten dimensional vector of design variables,
and g(x) is the 49 dimensional vector of nonlinear inequal-

ity constraints.

4.3. Fifteen Variable HSCT Design

The wing planform for the fifteen variable design (Fig. 8)
is created with six design variables specifying the root
chord, croot; tip chord, ctip; semispan, b/2; inboard LE

length, sLEI ; inboard LE sweep angle, ΛLEI ; and outboard
LE sweep angle, ΛLEO . The airfoil sections are described
using three design variables: the leading-edge radius pa-

rameter, RLE; location of maximum thickness, (x/c)max-t;
and thickness-to-chord ratio, t/c. The fuselage radii, rfusi

,
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Figure 8: Geometry for Fifteen Variable Design
Problem.

are specified at four axial locations. The final variables
specify the inboard nacelle placement, ynacelle, and fuel

weight, Wf uel. The allowable ranges of values for these
variables are shown in Table 4. For these configurations,
the wing TE is straight. The vertical tail shape, engine
thrust, distance between nacelles, relative position of the

wing to the fuselage, and the cruise altitude are constant.

The optimization problem is the minimization of the
take-off gross weight (TOGW) subject to 49 constraints
(Table 5) related to both the geometry and the mission.

Side constraints limit the values of the design variables.
The optimization problem can be written as

min
x∈<15

TOGW (x) , (4)

subject to: g(x) ≤ 0,

xmin ≤ x ≤ xmax
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Figure 9: Geometry for Twenty Variable Design
Problem.

where x is the fifteen dimensional vector of design vari-
ables, and g(x) is the 49 dimensional vector of nonlinear
inequality constraints.

4.4. Twenty Variable HSCT Design

The wing planform for the twenty variable design (Fig. 9)
is created with eight design variables specifying the root
chord, croot; tip chord, ctip; semispan, b/2; inboard LE

length, sLEI ; inboard LE sweep angle, ΛLEI ; outboard
LE sweep angle, ΛLEO ; the inboard TE length, sTEI ; and
the inboard TE sweep angle, ΛTEI . The airfoil sections
are described using five design variables: the leading-edge

radius parameter, RLE; location of maximum thickness,
(x/c)max-t; and the thickness-to-chord ratios at the wing
root, (t/c)root , LE break, (t/c)break , and wing tip, (t/c)tip.

The thickness-to-chord ratio is varied linearly between these
three spanwise locations. The fuselage radii, rf usi

, are

10



specified at four axial locations. The final variables spec-
ify the inboard nacelle placement, ynacelle, the separation
between the inboard and outboard nacelles, ∆ynacelle, and

fuel weight, Wf uel. The allowable ranges of values for these
variables are shown in Table 4. The vertical tail shape, en-
gine thrust, relative position of the wing to the fuselage,

and the cruise altitude are fixed.

The optimization problem is the minimization of the
take-off gross weight (TOGW) subject to 50 constraints
(Table 5) related to both the geometry and the mission.

Side constraints limit the values of the design variables.
The optimization problem can be written as

min
x∈<20

TOGW (x) , (5)

subject to: g(x) ≤ 0,

xmin ≤ x ≤ xmax

where x is the twenty dimensional vector of design vari-
ables, and g(x) is the 50 dimensional vector of nonlinear

inequality constraints.

5. Optimization Results

5.1. Five Variable HSCT Design

As discussed in Appendix A, using knowledge of the
functional form of the drag polar eliminates the fuel weight

dependency of the response. Therefore, response surface
models for CD0 and K are created using only four of the
five design variables. The quadratic RS models therefore
have 1

2
(4 + 1) (4 + 2) = 15 terms. A 3m−1 full factorial ex-

perimental design36 is used for the initial screening of the
four variable design space, giving a total of 34 =81 design
points. None of these designs are geometrically infeasi-

ble, so the D-optimality criterion37 is used to select the
2.0×n = 30 design points to provide the computational
experiments.

Results from stepwise regression analysis for the five

variable design are shown in Fig. 10. The RMS error in
the linear theory RS models represents the differences be-
tween the linear theory RS model prediction of the cruise

drag and the linear theory analysis value. The RMS error
in the incremental RS models represents the differences be-
tween the incremental RS model prediction of the cruise

drag and the actual Euler value. These errors are com-
puted at a 30 randomly selected set of design points at
vertices of the design bounding box that are not used in
the evaluation of the RS models. The regression analysis

plot shows improved behavior in the errors for the incre-
mental RS models as the number of terms is reduced. Re-
call that the incremental RS models are created by adding
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Figure 10: Stepwise Regression Analysis (5 Variable
HSCT Design).

a reduced term correction RS models for the difference be-

tween the Euler and linear theory RS model predictions
to the full term linear theory RS models. The RMS error
in the cruise drag for the incremental RS models does not

show the abrupt increase below seven terms that is present
in the linear theory RS models.

The stepwise regression plot demonstrates two aspects
that are vital to the success of the reduced term model

approach. First, the stepwise regression technique is suc-
cessful in eliminating unimportant terms from the response
surface models. A large number of terms can be removed
with little or no effect on the error. The second important

aspect is that the errors in the reduced term incremental
RS models, created using terms found from stepwise re-
gression analysis on the linear theory RS models, do not

change significantly as the number of terms is reduced.
This indicates that linear theory analysis does reveal the
terms that are important to the Euler analyses. In fact, it

appears that the linear theory analysis presents a conserva-
tive estimate of the number of terms required for accurate
Euler analysis.

The five term incremental RS model requires only 5.3

hours to create, as opposed to 16 hours required for the
full term model. The optimal design obtained from the
incremental RS models compares well (Fig. 11) to the full

term Euler RS model. Even more importantly, Euler anal-
ysis on the optimal design reveals that the RS model cruise
drag prediction is less than 1/10 count higher than the Eu-
ler value. The design variable values for the incremental

RS model optimum fall within their prescribed bounds,
demonstating the success of selecting these bounds based
on the linear theory optimal designs. Table 6 shows that

the corrected TOGW is only 700 lb higher than that for
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Figure 11: Optimal Designs from Reduced Term

Incremental and Full Term Euler RS Models.

the full term Euler optimum. The corrected TOGW is the

results of adding or subtracting fuel weight to the opti-
mal designs in order to correct for the range discrepancy
between the RS model and Euler predictions.

5.2. Ten Variable HSCT Design

Because of the lack of dependence on the fuel weight,

the RS models forCD0 andK are created using only nine of
the ten design variables. The quadratic RS models there-
fore have 1

2
(9 + 1) (9 + 2) = 55 terms. A face centered

central-composite experimental design36 is used for the ini-
tial screening of the nine dimensional design space, giving
a total of 29 + 2×9 + 1=531 design points. None of these

designs are geometrically infeasible, so the D-optimality
criterion is used to select the 2.5×n = 138 design points
to provide the computational experiments.

Table 6: Optimal Design Variables (5 Variable HSCT
Optimization).

5 Term 15 Term
Incremental RS Euler RS

croot 178.0 f t 174.2 f t

ctip 7.4 f t 7.8 f t

ΛLEI 71.1◦ 70.6◦

t/c 1.81% 1.81%

Wf uel 309, 800 lb 313, 200 lb

Wwing 103, 900 lb 103, 900 lb

WTOGW 622, 800 lb 626, 300 lb

Range:
(Euler) 5503 n.mi. 5544 n.mi.

∆Wf uel −320 lb −4010 lb

WC−TOGW 622, 500 lb 621, 800 lb
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Figure 12: Stepwise Regression Analysis (10 Variable
HSCT Design).

Stepwise regression analysis for the ten variable prob-

lem (Fig. 12) exhibits similar behavior of the incremen-
tal RS models as the number of terms is reduced. The
RMS errors are computed at a 138 randomly selected set
of the initial screening experimental design points that are

not selected by the D-optimality criterion to create the RS
models. As in the five variable problem, linear theory re-
sults capture the terms that are important to the Euler

analyses. The optimal configuration is compared to the
full term Euler RS models in Fig. 13, and the design vari-
ables are presented in Table 7. The RS model prediction of

the cruise drag is 0.64 counts higher than the Euler value,
leading to the 5542 n.mi. actual range. Removing the ex-
tra fuel results in a design with no constraint violations
that is 4000 lb lighter than the full term Euler optimum.
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Figure 13: Optimal Designs from Reduced Term

Incremental and Full Term Euler RS Models.

5.3. Fifteen Variable HSCT Design

For the fifteen-variable design, a central-composite ex-

perimental design36 is used for the initial screening of the
design space, giving a total of 214 + 2×14 + 1 = 16, 413
design points. The fuselage shaping results in 400 infeasi-

ble designs. For these designs, the fuselage radii and wing
thickness are such that the wing root does not intersect the
fuselage. The D-optimality criterion is used to select the

3.0×n = 360 out of the remaining 16, 013 design points to
provide the computational experiments.

Stepwise regression analysis for the fifteen variable de-
sign is presented in Fig. 14. The RMS errors are computed

at a 360 randomly selected set of the initial screening ex-
perimental design points that are not selected by the D-
optimality criterion to create the RS models Optimization

is performed with the 48 term incremental RS models. The

Table 7: Optimal Design Variables (10 Variable HSCT
Optimization).

20 Term 55 Term
Incremental RS Euler RS

croot 170.4 f t 174.3 f t

ctip 9.0 f t 7.5 f t

b/2 72.1 f t 72.3 f t

ΛLEI 70.0◦ 70.1◦

ΛLEO 18.7◦ 26.5◦

(x/c)max-t 50.2% 50.1%

RLE 2.1 2.1

t/c 1.91% 1.82%

ynacelle 30.0 f t 30.2 f t

Wf uel 306, 000 lb 301, 000 lb

Wwing 96, 100 lb 99, 200 lb

WTOGW 610, 400 lb 608, 900 lb

Range:
(Euler) 5542 n.mi. 5485 n.mi.

∆Wf uel −3715 lb 1300 lb

WC−TOGW 606, 300 lb 610, 300 lb
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Figure 14: Stepwise Regression Analysis (15 Variable
HSCT Design).

optimal designs from the full term Euler and reduced term
incremental RS models (Fig. 15) are barely distinguishable

from each other. Table 8 show the very close agreement
in the design variables. In this region of the design space,
both the Euler and incremental RS models are extremely

accurate. This is evident in the fact that there is only a
five mile discrepancy between the range estimates from the
RS models and those from Euler evaluations. When the
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Figure 15: Optimal Designs from Reduced Term

Incremental and Full Term Euler RS Models.

fuel weight is altered to counter the range variations, the

TOGW for the Euler and incremental RS models are only
200 lb different.

5.4. Twenty Variable HSCT Design

A small-composite experimental design36 is used for the
initial screening of the twenty variable design space, giv-

ing a total of 214 +2×19 + 1=16, 423 design points. From
this set of configurations, 688 infeasible configurations are
present. For some of these designs the fuselage radii and

wing thickness are such that the wing root does not inter-
sect the fuselage. Other infeasible designs had very small
chord lengths near the wing LE break and negative taper

ratios. The D-optimality criterion is used to select the
3.5×n = 735 out of the remaining 15, 735 design points to
provide the computational experiments.

Table 8: Optimal Design Variables (15 Variable HSCT
Optimization).

48 Term 120 Term
Incremental RS Euler RS

croot 166.2 f t 166.2 f t

ctip 7.7 f t 7.7 f t

b/2 68.1◦ 68.2◦

sLEI 120.4 f t 120.3 f t

ΛLEI 69.4◦ 69.4◦

ΛLEO 24.2◦ 23.8◦

(x/c)max-t 49.8% 49.7%

RLE 2.1 2.1

t/c 1.99% 1.99%

rfus1
5.2 f t 5.1 f t

rfus2
5.6 f t 5.6 f t

rfus3
5.6 f t 5.6 f t

rfus4
5.2 f t 5.2 f t

ynacelle 28.1 f t 28.0 f t

Wf uel 299, 614 lb 300, 100 lb

Wwing 87, 800 lb 87, 900 lb

WTOGW 590, 700 lb 591, 500 lb

Range:
(Euler) 5495 n.mi. 5505 n.mi.

∆Wf uel 450 lb −440 lb

WC−TOGW ?591, 200 lb 591, 000 lb
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Figure 16: Stepwise Regression Analysis (20 Variable
HSCT Design).

14



0 10 20 30

Number of Design Variables

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r 

of
 T

er
m

s 
in

 P
ol

yn
om

ia
l

Full Term RS Models
Reduced Term RS Models

?

Figure 17: Terms in RS Models.

Due to computational expense, the full quadratic Euler
RS models are not available for the twenty variable design.

This is exactly the situation for which the reduced term in-
cremental RS models were designed. Regression analysis
on the linear theory data (Fig. 16) shows that the RMS

cruise drag error remains nearly constant until about 73
terms remain in the RS models. A sufficient number of
Euler evaluations were performed to create the 100 term

incremental RS models. Since the full term Euler RS mod-
els are not present, this provides a model with which to
evaluate the errors in the 73 term RS models. It is seen
that there is no major difference in the cruise drag errors of

the 100 term and 73 term incremental RS models. This is
expected since the linear theory results have been conser-
vative in selecting the number of terms in the RS models.

The optimal design from the incremental RS models is

shown in Figure 18, and the optimal design variable values
are presented in Table 9. The cruise drag prediction for
the optimal design from the incremental RS models is 0.8

counts lower than the actual Euler value, which is much
lower than the RMS error of the RS models. Compensat-
ing for the range deficiency gives a corrected TOGW of

588, 000 lb. Although the error in the RS models is larger,
this Euler optimum is 3000 lb lighter than the 15 variable
optimum.

Using the reduced term incremental RS models has

provided a means to create RS models for high dimen-
sional problems where computing the coefficients of the full
quadratic RS models is not viable. Figure 17 shows how

the present method extrapolates to 25 and 30 design vari-
ables. The trends indicate that a reduced term response
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Figure 18: Optimal Design from Reduced Term

Incremental RS Models.

surface model in 25 design variables can be created using

the same number of terms as a full quadratic model in 15
design variables.

5.5. RS Model Accuracy

The RMS errors in the incremental RS models are con-
sistently higher than the errors in the optimal designs. In-

vestigation led to the discovery that the incremental RS
model fit through the interior of the design bounding box
is better than that at the vertices. When evaluating the

RMS error in the fifteen variable design using a new set
of 162 design points scattered through the interior of the
design box, the RMS error dropped from 1.5 counts to 0.9

count. This indicates that using points selected only from
the vertices of the design box may not provide a sufficiently
accurate representation of the RS model fit.

15



Table 9: Optimal Design Variables (20 Variable HSCT
Optimization).

73 Term
Incremental RS

croot 169.5 f t

ctip 7.8 f t

b/2 67.4 f t

sLEI 124.8 f t

ΛLEI 70.5◦

ΛLEO 30.4◦

sTEI 27.4 f t

ΛTEI −29.0◦

(x/c)max-t 51.1%

RLE 2.1

(t/c)root 1.99%

(t/c)break 1.91%

(t/c)tip 1.94%

rfus1 5.2 f t

rfus2
5.6 f t

rfus3
5.6 f t

rfus4
5.2 f t

ynacelle 27.7 f t

∆ynacelle 6.0 f t

Wf uel 293, 000 lb

Wwing 86, 900 lb

WTOGW 583, 200 lb

Range:
(Euler) 5449 n.mi.

∆Wf uel 4430 lb

WC−TOGW ?588, 000 lb

? Adding fuel results in constraint violation

The RMS errors in the linear theory and incremen-
tal RS models steadily increase from satisfactory levels
in the 5 variable to unacceptable levels in the 20 vari-

able problem. Cursory examinations of three methods
to improve the accuracy of the RS models have been in-
vestigated. The first method involves using a more accu-
rate physical model to provide the functional form for the

drag polar. With an additional CFD evaluation per de-
sign, a more accurate cambered form of the drag polar,
CD(x) = CDm(x) +K(x) [CL − CLm(x)]

2
, can be evalu-

ated. While not addressing the nonquadratic behavior of
the response, this approach was found to reduce the RMS

error in the RS models by approximately 0.3 count. The
nonquadratic nature of the response can be addressed in
two ways: reducing the size of the design bounding box

and including cubic terms in the RS model. Reducing the
size of the design box has a significant effect on the error;
however, care must be taken to ensure that the optimal

design lies within the reduced box. Including cubic terms
allows one to maintain the size of the original box, but the
computational expense of evaluating all the cubic terms

makes it unattractive for high dimensional problems. Us-
ing the more accurate drag polar along with a “zooming”
technique to reduce the size of the design box appears to
be a promising approach.

6. Conclusions

A method for efficiently implementing supersonic Eu-
ler analyses in a combined aerodynamic–structural opti-
mization of a HSCT configuration has been developed and

tested on problems of five, ten, fifteen, and twenty de-
sign variables. This method takes advantage of informa-
tion obtained from inexpensive lower fidelity aerodynamic

analyses to more effectively create RS models for the Eu-
ler solutions. Accuracy of the RS model predictions is
enhanced by selecting the functional form of the drag po-
lar, CD = CD0 (x)+K (x) CL

2, based on conceptual level

aerodynamic models and creating RS models involving the
intervening functions CD0 (x) and K (x). Creating cor-
rection RS models representing the difference between lin-

ear theory and Euler values of the intervening functions,
∆CD0 (x) and ∆K (x), proves advantageous. Incremental
RS models for the Euler predictions are then created by

adding the correction RS models to the quadratic linear
theory RS models. Optimization results from the linear
theory RS models are used to select the design bounding
box within which the optimum from Euler analysis should

lie. This improves the accuracy of the RS models by al-
lowing smaller ranges on the design variables compared to
those required if no information was available on the gen-

eral location of the optimal design. Errors in the RS model
cruise drag predictions, based on actual Euler calculations,
for the optimal designs range from 0.1 counts to 0.8 counts

for the twenty variable optimum.

Computational expense is reduced using stepwise re-
gression analysis results gained from linear theory analy-
sis. Stepwise regression analysis removes terms from the

quadratic polynomial RS models that are not important in
the evaluation of the response. Since the Mach 2.4 cruise
flight regime is predominantly linear, terms that are unim-

portant to the linear theory RS models are also unimpor-
tant to Euler RS models. By removing unnecessary terms,
the number of CFD analyses required to evaluate the co-
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efficients in the resulting reduced term RS models, and
therefore the computational effort, is reduced. Creating
the reduced term RS models results in a savings of 11

hours, 47 hours, 115 hours, and 255 hours of CPU time
on a single 75 MHz IP21 processor of a SGI Power Chal-
lenge for the five, ten, fifteen, and twenty variable design

problems, respectively. For consistency all times are given
in terms of single processor performance, however paral-
lel computing is performed on the 119 node, distributed

memory Intel Paragon XP/S at Virginia Tech to reduce
the computational burden.

The bulk of the computational effort involved in using
the RS approach to optimization lies in the initial cre-

ation of the RS models. After they are created, the RS
models can be evaluated and used repeatedly with mini-
mal computational effort. This is exploited by using more

accurate central difference gradient information in the op-
timization, which would be very expensive in high dimen-
sional problems without the use of RS models. In addition,
valuable information concerning the complex design spaces

encountered and design trade-offs and sensitivities can be
obtained through the simple evaluation of a polynomial.

While the cruise drag errors in the optimal designs are
within 1 count, the RMS errors in the RS models steadily

increase from the five through the twenty variable prob-
lems. The inability to perform calculations at all vertices
of the design bounding box and the nonquadratic behavior

of the response are contributing factors. These errors can
be reduced by using the more accurate functional form of
the drag polar, CD(x) = CDm(x)+K(x) [CL − CLm(x)]

2
.

However, other methods are necessary to bring the RS
model errors in the twenty variable case to acceptable lev-
els. Using the more accurate drag polar along with a
“zooming” technique to reduce the size of the design box

appears to be a promising approach. Research is currently
under way to investigate the use of these procedures in the
multidisciplinary HSCT design problem.
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A. Response Surface Modeling

To use relatively expensive Euler solutions for the large
number of constraint evaluations required in our multidis-
ciplinary optimization, RS models of the supersonic aero-

dynamics are created. Response surface modeling tech-
niques for aerodynamic and structural design improve the
performance of highly constrained gradient based optimiza-

tions.7,10,12,13 Using RS models offers a number of ben-
efits. First, the RS models smooth out numerical noise
present in the analyses. This noise can distort gradient
information and lead to artificial local minima in the de-

sign space. Second, the analysis codes are separated from
the optimization routines. This eliminates problems as-
sociated with integrating large, production level grid gen-

erators, analysis codes, and post processing utilities. It
also allows analyses to be performed by experts in the
specific discipline on parallel architecture machines. Re-

sults from parallel computing efforts are described in Sec-
tion B. Finally, by replacing complex analysis codes with
simple quadratic polynomials, one can readily obtain in-
formation on design trade-offs, sensitivities to certain vari-

ables, and insight into the highly constrained, nonconvex
design spaces. These aspects are presented in Appendix C.

A.1. Design of Experiments

Design of experiments (DOE) theory provides a sys-

tematic means of selecting the set of points (called an ex-
perimental design) within the design space at which to
perform computational analyses. The 2m vertices formed

by the upper and lower bounds on the design variables de-
fine the design bounding box or hypercube within which the

19



X1

X2

X3

Figure 19: 33 Full Factorial Experimental Design.

experimental design is created. The range of each design

variable is scaled to span [−1, 1] for both numerical sta-
bility and ease of notation.38 To create the experimental
design, the ranges of the design variables are discretized
at evenly spaced intervals. For example, a 2m full facto-

rial design is created by specifying each design variable at
two levels: the lower bound (−1) and the upper bound (1).
Therefore, this experimental design consists of every vertex

in the design bounding box. The type of experimental de-
sign created is defined by the number of intervals and the
distribution of the points on those intervals. The choice

of experimental design depends on the dimension of the
problem, the computational resources available, and the
type of function to which one wishes to fit the data. Four

types of experimental designs are used in this research: 3m

full factorial experimental designs,36 face centered central-
composite designs,36,38 small-composite designs,38 and D-
optimal experimental designs.37

A 3m full factorial design36 is created by specifying the
design variables at three levels (−1,0,1) corresponding to

the lower bound, midpoint, and upper bound of the design
variables. A 33 experimental design is presented in Fig. 19.
This experimental design provides sufficient information to
construct quadratic polynomial RS models. However, as

the number of design variables increases, the number of
computational experiments required becomes prohibitively
large. For example, a 3m full factorial design in twenty

dimensional space requires 320 ≈ 3.5×109 computational
experiments.

A face centered central-composite design36,38 (CCD)

enables resolution of quadratic terms in the RS models
with fewer computational experiments. It is created by
taking a 2m full factorial design and adding 2m “star”

points on the faces of the hypercube and another point in
the middle of the design hypercube. The “star” points cor-

respond to a set of design variables in which all variables
are held at their midpoint value except for a single variable
which is specified at either its upper or lower bound. As

the number of design variables is further increased, these
experimental designs also become prohibitively large. Cre-
ating a face centered CCD in a twenty dimensional space

requires 220 + 2 · 20 + 1 ≈ 1.0×106 computational experi-
ments.

The small-composite experimental design38 allows even
fewer computational experiments with which to evaluate

quadratic RS models. This experimental design is con-
structed in a manner similar to that for the central-composite
design except that a fractional factorial38 experimental de-
sign is used in place of the 2m full factorial design. The

fractional factorial design includes only 2m−β vertices of
the m dimensional bounding box (β is an integer number
smaller than m). There is some freedom in the value of

β, however it can not be too large or there will be insuf-
ficient data to properly resolve all terms in the quadratic
polynomial. Certain vertices of the design space will not

have any associated data when using this experimental de-
sign. While this is not an ideal situation, it is inevitable
since the number of vertices grows exponentially with the
number of design variables.

The final experimental design used in this study is the

D-optimal experimental design.37 D-optimal designs allow
great flexibility in the number of computational experi-
ments that is not allowed in the previously discussed ex-

perimental designs. D-optimal designs are also well suited
for irregularly shaped design spaces, while the classical
designs are geared toward rectangular design spaces. D-

optimal designs minimize the uncertainty in the polyno-
mial coefficient estimates and in the predicted value of the
response. To create a D-optimal experimental design, one
selects p design points out of q candidate points. In this

research, the candidate points are derived from one of the
three classical experimental designs described above. An
iterative optimization method is then used to find the p

D-optimal points.

For the five and ten variable cases, the JMP39 statisti-
cal software package is used to provide the D-optimal de-
signs. The approach implemented in JMP uses sets of ran-

domly selected seed candidate points, and the best points
in terms of the prediction variance are kept throughout the
iterative procedure. Because the design points are selected
in a quasi-random manner, it is unlikely that the experi-

mental design chosen from JMP is truly a D-optimal set.
Limitations in JMP prevent its use for the larger design
problems. A routine employing Mitchell’s “k-exchange”

method,40 developed by Dr. Dan Haim, is used for the
fifteen and twenty variable cases.
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A.2. Functional Form of the Response

Conceptual level aerodynamic models provide useful
information into basic relationships between the lift and

drag coefficients. One of the simplest relationships is the
uncambered form of the drag polar, which is written as

CD(x) = CD0(x) +K(x) CL
2. (6)

Knowledge of the functional form of the aircraft drag

suggests using RS models for the intervening functions,
CD0 and K, instead of a single RS model for the drag
coefficient, CD, itself. There are a number of reasons why

this approach is beneficial:

1. CD0 and K are functions of only the geometric
variables, thereby reducing the dimension of the
RS model by eliminating mission related variables

such as the fuel weight. The fuel weight is repre-
sented completely by CL.

2. From a design standpoint, more insight is obtained

from the intervening functions than from individ-
ual drag values.

3. Using knowledge of the simple aerodynamic the-

ory enables the selection of an accurate functional
form for the response without relying on the RS
models to capture the correct form. In the same

way, Kaufman41 used information about the ba-
sic form of statistical weight functions to improve
the accuracy of RS models for the wing bending

material weight.

4. Experience has indicated that more accurate re-
sults are obtained by building the function from

quadratic RS models for its components, instead
of using a single RS model for CD. Golovidov42

found similar improvements in the accuracy of the

aircraft range predictions by using RS models for
the drag components to compute the range rather
than using RS models for the range itself.

The HSCT wings have little camber since they are op-

timized for cruise at Mach 2.4; therefore, this form of the
drag polar for uncambered wings is still fairly accurate.
The error in fitting the Euler drag polars to this form is

less than 0.5 count over 0.05 ≤ CL ≤ 0.12. These values of
CL cover the range of cruise lift coefficients found for our
HSCT designs.

A.3. Creating Quadratic RS Models

The procedure for creating the RS models for CD0 and

K is illustrated in Fig. 20. The first step is to perform an

Geometric
Constraints

D−Optimal
Point Selection

Grid Generator

Euler RS Models 
for CDoand K

Design of 
Experiments

CFD Code 
(GASP)

Linear Theory 
Analysis

+
−

Euler RS Models 
for ∆CDoand ∆K

Linear Theory 
RS Models for 

CDoand K

+
+Statistical 

Software (JMP)

Statistical 
Software (JMP)

Statistical 
Software (JMP)

drag contributions 
from vertical tail 

and nacelles
2

1

feasible 
design space

Wing Camber
(WINGDES)

drag polar data

drag polar data

Figure 20: Flowchart for Creating RS Models.

initial screening using a full factorial, central-composite, or
small-composite experimental design. After creating the
experimental design, geometric constraints are applied to

eliminate infeasible designs. With only geometrically fea-
sible designs from which to choose, the D-optimality crite-
rion is used to further reduce the size of the experimental

design to an acceptable size.

WINGDES is used to provide a camber distribution for
each of the D-optimal design points. The lift and drag are
then computed from both linear theory and Euler analy-

sis. Since the Euler calculations are only for wing–fuselage
configurations, wave drag predictions for the vertical tail
and nacelles from linear theory analysis are added to the

Euler drag data. The values of CD0 and K are computed
using data from two points on the drag polar. Response
surface models for CD0 and K are found from the set of

computational experiments using JMP.

A quadratic response surface model in m variables has
the form

y = c0 +
∑

1≤j≤m

cj xj +
∑

1≤j≤k≤m

cjk xj xk, (7)

where y is the response, the xj are the design variables, and

c0, cj , and cjk are the polynomial coefficients. There are
(m+1)(m+2)/2 coefficients for a quadratic response sur-
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face model in m variables, requiring a minimum of
(m+1)(m+2)/2 design calculations to evaluate them. Stud-
ies by Giunta43 et al. reveal that using approximately

twice the minimum number of required points is sufficient
to accurately compute the value of the coefficients for prob-
lems with five variables. However, as the dimension of the

problem increases, the ratio of the number of points to
the number of terms p/m in the response surface also in-
creases. A systematic increase from p/m = 2.0 in the five

variable case to p/m = 3.5 in the twenty variable case
is used to provide adequate information for accurate RS
modeling. This translates to 60, 276, 720, and 1470 CFD
evaluations per RS model for the 5, 10, 15, and 20 variable

problems, respectively. To compute the coefficients for the
quadratic RS models of both CD0 and K for a 30 variable
problem would require 4184 CFD evaluations. On a single

processor of the SGI Power Challenge R8000, this would
require over 46 days of computation! Clearly, a method
must be developed which enables accurate response sur-

face estimates with a reduced number of required CFD
analyses.

A.4. Reduced Term RS Models

Linear theory RS models can be readily created for
moderately high dimensional spaces because the evalua-

tions are so computationally inexpensive. Regression anal-
ysis, performed to obtain the coefficients of the polynomial
models, also provides a means of systematically removing

terms38 from the RS models that have little or no impact
on the response through a process called stepwise regres-
sion analysis. Terms are eliminated using a measure of

the significance level of the term called the p-value. This
represents the probability that the coefficient of a partic-
ular term is actually zero, not the value computed. Typ-
ically, a p-value of 0.05 or less indicates that the term is

significant in predicting the variation in the response. As
the prescribed value of the p-value is reduced, more terms
are eliminated from the RS model. At some point in the

stepwise regression process, the error in the RS model fit
increases noticeably, indicating that too many terms have
been eliminated in order to satisfy the p-value limit. For

this research, the statistical package JMP39 is used to per-
form the stepwise regression analysis.

The root mean square (RMS) error estimate is used to
indicate the error in the RS model fit. The RMS error is
calculated as

RMS error =

√√√√√ N∑
i=1

(yi − ŷi)2

N
, (8)

where yi is the observed value of the response and ŷi is the

predicted value of the response at the N sample points.
The N sample points are a randomly selected subset of the
points used in the initial screening experimental design not

including the design points used in the creation of the RS
models.

The stepwise regression technique is applied to the RS
models for the linear theory aerodynamics to create reduced
term RS models. Since the Mach 2.4 cruise regime is pre-

dominantly linear, performing regression analysis on the
RS models for the linear theory aerodynamics should give
a polynomial with nearly the same terms as the reduced

term RS models for the Euler aerodynamics. Instead of
creating quadratic RS models for the Euler results, one
needs only to create the reduced term models found using
linear theory analyses. Computational time is therefore

not wasted evaluating coefficients which do not have a sig-
nificant effect on the response.

The approach to implementing the reduced term mod-
els uses reduced term RS models for the difference between
the Euler and linear theory RS model predictions, ∆CD0

and ∆K To estimate the Euler values of the response, these
correction RS models are added to the full term quadratic
linear theory RS models. The sum of the linear theory and

correction RS models will be referred to as the incremental
RS models (i.e., n term incremental RS model = full term
linear theory RS model + n term correction RS model).

These results are presented in Chapter 5.

B. Parallel Computing

Over one thousand CFD drag solutions are required to
create the RS models and evaluate the errors for the 15

variable and 20 variable designs. Performing these calcu-
lations on a single processor of the SGI Power Challenge
R8000 machine takes nearly two weeks of wall clock time.

This time can be reduced significantly by taking advantage
of parallel computing.

A coarse-grained parallelization of the CFD analyses
has been implemented on the 119 node, distributed mem-
ory Intel Paragon XP/S at Virginia Tech. While fine-

grained parallelization offers potentially better performance,
especially for large numbers of nodes, coarse-grained par-
allelization is easier to implement and does not require
in-depth knowledge of or modifications to the complex

codes used. The parallel computations are organized in a
“master-slave” paradigm, where one processor creates the
directory structure and input files, distributes the jobs,

and checks for their completion. Each individual CFD cal-
culation is performed entirely by a single “slave” node.

Two measures of parallel performance are presented:
the parallel speedup and efficiency. Speedup represents
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the ratio of the serial calculation time to the parallel com-
putation time on np nodes. The parallel efficiency is the
speedup divided by the number of nodes. Ideally, the

speedup equals the number of nodes, bringing the effi-
ciency to 1.0; however, this ideal behavior is not realized.
File I/O, which is inherently serial, increases with np and

prevents the user from approaching ideal speedup and ef-
ficiency for large numbers of nodes. Reading and writing
of input files, CFD grid files, and CFD solution files are

examples of the file I/O present in the procedure.

In spite of these detractors, good performance is achieved
when implementing the CFD calculations in parallel. Fig-

ure 21 shows the parallel speedup and efficiency obtained
from performing 1080 CFD calculations for 360 HSCT con-
figurations used in the 15 variable design. When using

27 nodes, a speedup of 24.3 (0.90 efficiency) is realized.
When using 53 nodes, a speedup of 45.4 (0.86 efficiency)
is achieved. Even though a single processor of the Intel

Paragon is about ten times slower than a single proces-
sor of the SGI Power Challenge, significant improvements
in the turn-around time are achieved when using a large
number of nodes. On 53 nodes, the 1080 Euler calculations

require only 2.8 days to complete.

C. Design Trade-offs and Sensitivities

Parametric studies are invaluable to a designer. These
studies provide information on trade-offs between various

disciplines and influences, sensitivities to variations in de-
sign variables, and effects of perturbations to a chosen de-
sign. To perform a single parametric study, 25–50 analyses

may be required. To completely examine a design, many
of these parametric studies would be desired. The com-
putational burden involved in performing these numerous

studies is greatly reduced by using results from RS models
instead of data from a large number of CFD calculations
since the expense lies only in the evaluation of the simple
quadratic polynomials. In this section, we examine varia-

tions in selected design variables to gain insight into the
behavior and relative importance of these parameters.

The optimal designs predicted from linear theory and
Euler RS models for the five, ten, and fifteen variable
design problems show the effects of the higher drag pre-

dictions typical of the supersonic Euler solutions. The
thickness-to-chord ratio, t/c, is a direct trade-off (Fig. 1)
between aerodynamics and structures. Aerodynamics dic-
tates that the wing should be as thin as possible to reduce

the drag and therefore the fuel weight. Structural opti-
mization, on the other hand, would attempt to increase
the thickness of wing to reduce the wing weight. A com-

promise is met between the fuel weight and wing weight to
obtain the minimum TOGW. The effects of replacing the
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Figure 21: Parallel Speedup and Efficiency

linear theory aerodynamics with Euler solutions is appar-

ent in the fuel weight. The higher drag from Euler analysis
translates to higher fuel weights and a design in which the
aerodynamic aspects are more dominant. The optimal de-

sign is obtained at a lower t/c value to counter the effects
of the higher drag at the expense of the wing weight.

The linear theory curve for the fuel weight variation
with t/c has a nearly zero slope at t/c = 1.5%. This oc-

curs because the fuel weight required to meet the range
constraint is not influenced only by the aerodynamics. As
the wing gets thinner and the wing weight increases, there

is a point where the fuel weight penalty associated with
the increasing weight of the aircraft becomes as impor-
tant as the fuel weight benefit from the reduced the drag.
This point occurs near t/c = 1.5% when using linear the-

ory analysis. When using Euler analysis, the fuel weight is
still dominated by the aerodynamic benefits over the range
of t/c investigated.

The decreased inboard leading-edge sweep in the opti-
mal design from Euler aerodynamics is an interesting oc-
currence. This is not a result of aerodynamic–structural
trade-offs, but rather it is due mainly to a compromise
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Figure 1: Aerodynamic–Structural Trade-Off for t/c.

between aerodynamic influences. With the semispan, b/2,
and inboard LE length, sLEI , fixed, there is an increase in

the size of the outboard section implicit with any increase
in ΛLEI . The aerodynamic trade-off (Fig. 2) is between the
high inboard sweep desired for improved supersonic perfor-

mance and the size of the outboard section, which has poor
supersonic performance. The nonlinear aerodynamic pre-
dictions have a relatively larger fuel weight penalty associ-

ated with the outboard section than do the linear theory
results. This naturally shifts the optimal ΛLEI to a lower
value.

The wing weight plot in Fig. 2 shows a ΛLEI compro-

mise between structural effects as well. At the lowest wing
sweep, the planform takes on a structurally sound shape.
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Figure 2: Trade-Off Study for ΛLEI .

However, the large planform area results in extra weight.
At the other extreme, the planform area is reduced, but
the design is not as sound structurally. Extra weight is

required to strengthen the structure. The best design is a
trade-off between these two influences.
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