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Abstract

The presence of numerical noise inhibits gradient-
based optimization and therefore limits the practi-
cality of performing aircraft multidisciplinary design
optimization (MDO). To address this issue, a pro-
cedure has been developed to create noise free alge-
braic models of subsonic and supersonic aerodynamic
performance for use in the MDO of high-speed civil
transport (HSCT) configurations. This procedure em-
ploys methods from statistical design of experiments
theory to select a set of HSCT wing designs (fuse-
lage/tail/engine geometry fixed) for which numerous
detailed aerodynamic analyses are performed. Polyno-
mial approximations (i.e., response surface models) are
created from the aerodynamic data to provide analyti-
cal models relating aerodynamic quantities (e.g., wave
drag and drag-due-to-lift) to the variables which de-
fine the HSCT wing configuration. A multidisciplinary
design optimization of the HSCT is then performed
using the response surface models in lieu of the tra-
ditional, local gradient based design methods. The use
of response surface models makes possible the efficient
and robust application of MDO to the design of an
aircraft system. Results obtained from five variable
and ten variable wing design problems presented here
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demonstrate the effectiveness of this response surface
modeling method.

1. Introduction

Multidisciplinary design optimization (MDO) has re-
ceived considerable attention in the aircraft industry
as manufacturers employ concurrent engineering design
practices in an attempt to reduce the time to market
of new products. In these efforts, MDO practitioners
would like to use the highest fidelity analysis methods
as early as possible in the design process, preferably be-
fore the aircraft design is frozen. However, the realities
of finite computational resources and time constraints
limit the extent to which the high fidelity analysis meth-
ods may be applied early in the design process.

Computer models produce numerical noise as a re-
sult of the incomplete convergence of iterative pro-
cesses, round-off errors, and the discrete representa-
tion of continuous physical phenomena (e.g., fluids) or
objects (e.g., wing shapes). Such numerical noise is
typically manifested as a high frequency, low amplitude
variation in the results obtained from the computer
models as design parameters vary. This oscillatory
behavior creates numerous, artificial local optima and
causes slow convergence or even convergence failures1,2.
When a combined aerodynamic and structural analysis
of an aircraft requires hours of CPU time on a su-
percomputer, numerous local optima and convergence
difficulties are unacceptable for aircraft MDO.

To understand the link between numerical noise and
computational expense in aircraft MDO, it is useful to
consider the aerospace vehicle design process as tradi-
tionally divided into three phases: conceptual, prelimi-
nary, and detailed. Each of these design phases entails
a particular of accuracy and computational expense.
For example, in the conceptual level of design, each
discipline (e.g., aerodynamics, structures, controls, or
propulsion) is typically modeled using algebraic equa-
tions or simple numerical models which require only a
few CPU seconds to compute. At the preliminary level
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of design, more computationally expensive numerical
models are used, e.g., linear-theory aerodynamics or
simple beam theory, which may require several CPU
minutes. Similarly, at the detailed level of design more
expensive methods such as Euler/Navier-Stokes aero-
dynamics and finite-element structural modeling are
employed extensively. It is important to emphasize the
computational expense of the detailed level methods
in which several days and sometimes months of effort
may be required to create the computational grid for a
complete aircraft configuration and then tens of CPU
hours are required on a supercomputer to evaluate the
aerodynamic forces at a single altitude, Mach number,
and angle-of-attack.

Traditional, derivative-based optimization methods3

and derivative-free pattern search methods4 require
hundreds or thousands of aircraft evaluations to con-
verge to an optimal design. Thus, while there are
several computer programs which perform inexpen-
sive, conceptual level aircraft MDO (e.g., ACSYNT5,

FLOPS6), preliminary level and detailed level aircraft
systemMDO in the presence of numerical noise remains
computationally intractable.

Clearly, new strategies are needed to alleviate the op-
timization problems posed by numerical noise, and this
has spurred much active research in both the aircraft
design and numerical optimization communities7,8.
These research efforts may be broadly divided into two
categories: (1) novel modeling methods, and (2) novel
optimization methods.

The novel modeling methods employ statistical tech-
niques based on design of experiments theory9 and re-
sponse surface modeling methodologies10. Here, the air-
craft designer performs a limited number of computa-
tional analyses or “numerical experiments” using ex-
perimental design theory to prescribe values for the
independent variables. With the resulting data, the
designer creates mathematical models using some type
of function (e.g., polynomial functions, rational func-
tions, interpolating functions, neural networks). The
mathematical model is often called a response surface
model. The designer then uses the response surface
(RS) model in subsequent calculations during the op-
timization process. Response surface models filter out
the numerical noise which inhibits derivative-based op-
timization. Although the computational expense of
creating a response surface model may be significant,
this cost is incurred prior to the use of the RS model
in numerical optimization. Thus, a RS model may be
evaluated hundreds or thousands of times during an
optimization process without significant computational
expense. There has been considerable interest in the
application of RS modeling methods to MDO problems

and examples of this research are given in References
11-18.

The novel optimization methods include a variety
of both derivative-based and derivative-free techniques.
The derivative-based methods include “collaborative
optimization” schemes developed by Kroo19 et al. in
which the MDO problem is decomposed along disci-
plinary boundaries and a series of discipline-specific
suboptimizations are performed under the authority
of a system level optimizer. Another novel derivative-
based method is the “implicit filtering” technique devel-
oped by Gillmore and Kelley20 which employs a scheme
where the step size used in finite-difference gradient es-
timates is systematically varied until convergence using
several step sizes is attained. The novel derivative-free
methods include pattern search schemes such as genetic
algorithms21 and simulated annealing22,23, along with
modern simplicial search algorithms24.

Figure 1. A typical HSCT configuration.

A method proposed here to overcome the difficul-
ties imposed by numerical noise in aircraft MDO is
termed variable complexity response surface modeling
(VCRSM). The multidisciplinary design optimization
of a High-Speed Civil Transport (HSCT) aircraft (Fig-
ure 1) is used as a testbed for the VCRSMmethod. The
design of an HSCT is an ideal MDO test case since the
technical and economic feasibility of such an aircraft
relies on synergistic interactions between the various
aircraft design disciplines.

The variable complexity portion of VCRSM denotes
the use of both conceptual level and preliminary level
aircraft analysis methods. Here, the conceptual level
methods are used to analyze numerous HSCT wing de-
signs and to identify which of the wing designs merit
further consideration. The preliminary level analysis
methods are then used to evaluate some of the promis-
ing HSCT wing designs. The response surface modeling
portion of VCRSM denotes the use of two statistical
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Figure 2. Multidisciplinary optimization method for HSCT design.

methods, design of experiments theory and response

surface modeling. Here, design of experiments theory is
used to select the HSCT wing designs which will be an-

alyzed with the conceptual level and preliminary level
analysis methods, and response surface models are cre-

ated from the aerodynamic data resulting from the pre-

liminary level analyses. The response surface models
remove the numerical noise present in the preliminary

level analyses and are computationally inexpensive to

evaluate. The response surface models are then used for
HSCT wing design optimization in lieu of the original,

noise producing aerodynamic analysis methods.

For this study, response surface models are used
to approximate four aerodynamic quantities as func-

tions of the geometric variables which define the HSCT

wing. These four aerodynamic quantities are super-
sonic volumetric wave drag, two components of super-

sonic drag-due-to-lift, and the subsonic lift curve slope.
Two HSCT wing design cases, the first involving five

variables and the second involving ten variables, were

studied. In each case, the fuselage and tail layouts for
the HSCT were held fixed while only the five or ten

variables relating to the wing geometry were varied.

Although not discussed in this paper, parallel com-
puting is crucial in reducing the computational expense
of using the VCRSM method for aircraft MDO. See
Reference 25 for details on how parallel computing
strategies are employed in the VCRSM method.

The remainder of this paper is divided in the fol-
lowing manner. Section 2 contains a description of
the HSCT configuration along with the analysis and
optimization methods used in this study. This in-
cludes descriptions of the five and ten variable wing
design problems. Section 3 reviews issues concerning
numerical noise and the difficulties it introduces into
optimization problems. Section 4 details the statistical
techniques underlying the VCRSMmethod and Section
5 describes how the VCRSMmethod is used to perform
aircraft MDO. Sections 6 and 7 contain the results from
the five and ten variable HSCT wing design problems,
and Section 8 concludes the paper.

2. HSCT Design Optimization

2.1 Design Tools

The design problem is to minimize the takeoff gross
weight (TOGW) for a 250 passenger High-Speed Civil
Transport with a range of 5,500 nautical miles and a
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cruise speed of Mach 2.4. For these efforts we have de-
veloped a suite of conceptual level and preliminary level
analysis and design tools which include several software
packages obtained from NASA along with in-house soft-
ware. An abbreviated list of the HSCT analysis and
design software is given in Table 1 and a description
of these tools is given in Reference 2. The numeri-
cal optimization software is the commercially available
program DOT26 (Design Optimization Tools). DOT
offers several algorithms for performing constrained op-
timization and we employ its sequential quadratic pro-
gramming (SQP) optimization option. Figure 2 shows
how the analysis and optimization tools are coupled to
perform HSCT design optimization.

Currently, detailed level analysis tools (e.g., Euler or
Navier-Stokes aerodynamic analyses) are not included
because of their high computational expense. However,
we have been evaluating an Euler/Navier-Stokes solver
for use in HSCT design. These efforts are detailed in
Reference 27.

Table 1. Analysis and optimization
tools for HSCT design.

Method Description
Subsonic Aero. In-house Codes
Supersonic Aero. In-house Codes

WINGDES28 (NASA)
Harris Wave Drag
Code29 (NASA)

Propulsion In-house Codes
Stability & Control In-house Codes
TO/Landing Performance In-house Codes
Mission Performance In-house Codes
Weights and Structures FLOPS6 (NASA)

GENESIS30 (VMA, Inc.)
Optimizer DOT26 (VR&D, Inc.)

2.2 HSCT Parametrization

The HSCT configuration and mission are defined
using 29 variables (Appendix, Table A-1). Twenty-six
of these variables describe the geometric layout of the
HSCT and three variables describe the mission pro-
file. The airfoil and planform variables are shown in
Figure 3. In this parametrization, eight variables de-
scribe the wing planform, eight variables define the area
ruled fuselage shape distribution, five variables define
the wing leading edge and airfoil section properties,
two variables define the engine nacelle locations, two
variables define the horizontal and vertical tail areas,
and one variable defines engine thrust. For this HSCT
design problem the fuselage has a fixed length of 300
ft and an internal volume of 23,720 ft3.

z
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x11−13 t/c ratio at 3 spanwise locations^

fuselage centerline
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x

^
x̂23

x22
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(x2 , x3)^^
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^

Figure 3. HSCT wing variables for the
29 variable optimization problem.

The idealized mission profile is divided into three

segments: takeoff, supersonic cruise/climb at Mach

2.4, and landing. The three mission design variables

are fuel weight, starting altitude for the supersonic

cruise/climb segment, and rate-of-climb during the su-

personic cruise/climb segment. If the HSCT reaches

the maximum ceiling of 70,000 ft, supersonic cruise at

Mach 2.4 is maintained at that altitude for the duration

of the supersonic mission leg.

The HSCT design employs 69 nonlinear inequal-

ity constraints which consist of both geometric con-

straints (e.g., all wing chords ≥ 7.0ft), and aerody-

namic/performance constraints (e.g., CL at landing ≤
1, and range ≥ 5,500 naut.mi.). These are listed in the

Appendix in Table A-2. The HSCT design objective

is to minimize TOGW, where TOGW is a nonlinear,

implicit function of the 29 design variables. In formal

optimization terms this problem may be expressed as

min
x̂∈R29

TOGW (x̂)

subject to gi(x̂) ≤ 0, i = 1, . . . , 69,
(1)

where x̂ is the 29-dimensional vector of design variables,

and g(x̂) is the 69-dimensional vector of nonlinear in-

equality constraints.
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2.3 HSCT Wing Design - Five Variables

A simple five variable HSCT wing design problem

is used to develop and validate the variable complex-

ity response surface modeling method. This five vari-

able problem is based on the 29 variable HSCT MDO

problem described above. The five variables are wing

root chord (Croot), wing tip chord (Ctip), thickness-

to-chord ratio (t/c ratio), inboard leading edge sweep

angle (ΛLEI ), and fuel weight (Wfuel). Their initial

values along with the minimum and maximum values

are listed in Table 2.

Table 2. Five HSCT wing variables
and initial values.

Variable Initial Min. Max.
Croot 185.0 ft 148.0 ft 222.0 ft
Ctip 10.0 ft 8.0 ft 12.0 ft
ΛLEI

75.0◦ 68.3◦ 81.8◦

t/c ratio 2.0% 1.6% 2.4%
Wfuel 315,000 lb 305,550 lb 324,450 lb

The wing planform and airfoil section definitions

are shown in Figure 4. To uniquely define the wing

planform, the length of the leading edge from the

wing/fuselage intersection to the leading edge break

is held constant at 150.0 ft, and the outboard lead-

ing edge sweep angle is held constant at 44.2◦. For

the airfoil section definitions, the chordwise location of

maximum thickness is constant at 40.0 percent and the

leading edge radius is constant at a value of 1/3 that

of a NACA 6-series airfoil (i.e., the leading edge radius

parameter is constant at a value of 2.63). Additionally,

the vertical tail area is fixed at 700 ft2, and the thrust

is constant at 39,000 lb per engine. A horizontal tail is

not considered for this aircraft. The mission profile also

is simplified from the 29 variable HSCT design problem

to include only a supersonic cruise leg and landing. The

altitude for the Mach 2.4 supersonic cruise mission is

constant at 65,000 ft. Landing constraints on both the

overall lift coefficient and 18 wing section lift coeffi-

cients are examined for emergency landing situations.

For the five variable design problem there are 42 con-

straints (Appendix, Table A-3) and the optimization

problem may be expressed as

min
x̂∈R5

TOGW (x̂)

subject to gi(x̂) ≤ 0, i = 1, . . . , 42,
(2)

where x̂ is the five-dimensional vector of design vari-

ables, and g is the 42-dimensional vector of nonlinear

inequality constraints.
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Figure 4. HSCT planform for the five
variable optimization problem.

2.4 HSCT Wing Design - Ten Variables

A ten variable HSCT wing design problem was ex-

amined to further validate the VCRSM method. The

ten variables for this design problem are wing root

chord (Croot), wing tip chord (Ctip), wing semi-span

(bhalf ), inboard leading edge sweep angle (ΛLEI
), out-

board leading edge sweep angle (ΛLEO), chordwise lo-

cation of maximum thickness (max. thk.), leading edge

radius parameter (RLE param.), thickness-to-chord ra-

tio (t/c ratio), spanwise location of the inboard nacelle

(bnacelle), and fuel weight (Wfuel). Their initial values

along with the minimumand maximumvalues are listed

in Table 3. Figure 5 shows the airfoil and planform

variables for this problem.

As in the five variable problem, the area-ruled fuse-

lage shape is held constant, the length of the leading

edge from the wing/fuselage intersection to the leading

edge break is held constant at 150.0 ft, the vertical tail

area is fixed at 700 ft2, and the thrust is held constant

at 39,000 lb per engine. Additionally, the outboard

nacelle is fixed at a spanwise distance of 6 ft from the

centerline of the inboard nacelle and the Mach 2.4 cruise

altitude is constant at 70,000 ft.
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Table 3. Ten HSCT wing variables
and initial values.

Variable Initial Min. Max.
Croot 174.0 ft 139.2 ft 208.7 ft
Ctip 8.1 ft 6.5 ft 9.7 ft
bhalf 73.9 ft 66.5 ft 81.3 ft
ΛLEI 71.9◦ 65.4◦ 78.3◦

ΛLEO
44.2◦ 40.2◦ 48.2◦

max. thk. 39.6% 31.7% 47.5%
RLE param. 2.6 2.1 3.2
t/c ratio 2.3% 1.8% 2.7%
bnacelle 20.9 ft 16.7 ft 25.1 ft
Wfuel 310,000 lb 300,700 lb 319,300 lb
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Figure 5. HSCT planform for the ten
variable optimization problem.

Along with the 42 constraints from the five variable
wing design problem, there are seven additional con-
straints on the subsonic aerodynamic performance at
landing. The first of these is an angle-of-attack (AOA)
constraint of AOA ≤ 13◦ at landing. The other six are
runway strike constraints on the wing tip and engines at
the landing AOA with both 0◦ and 5◦ roll angles. The
ten variable HSCT wing design optimization problem
may be expressed as

min
x̂∈R10

TOGW (x̂)

subject to gi(x̂) ≤ 0, i = 1, . . . , 49,
(3)

where x̂ is the ten-dimensional vector of design vari-
ables, and g is the 49-dimensional vector of nonlinear
inequality constraints.

3. Numerical Noise Issues

3.1 Noise Sources

Convergence difficulties were encountered in previ-
ous research on the aerodynamic-structural optimiza-
tion of the HSCT1,2. The convergence problems were
traced to numerical noise in the computation of aero-
dynamic lift and drag components. This oscillatory
behavior creates numerous, artificial local optima and
leads to convergence failures or slow convergence to
poor designs.

The lift and drag values predicted by some of
the aerodynamic analysis tools are sensitive to slight
changes in the aircraft design. This sensitivity is illus-
trated in Figure 6 which shows supersonic volumetric
wave drag (CDwave) calculated for an HSCT cruising
at Mach 2.4. Here, the analysis method uses the Harris
wave drag code29 where all of the HSCT design vari-
ables are fixed, with the exception of the wing semi-
span which is varied from 50 to 100 ft. As the semi-span
increases, numerical noise is created by a high frequency
variation in the calculated wave drag values. Physically,
wave drag should change smoothly as the wing shape
is varied. Note that this numerical noise occurs on an
extremely small scale with variations in wave drag on
the order of 0.02 to 0.1 drag counts (drag in counts =
CD×104). The Harris wave drag code has an accuracy
of approximately 0.5 to 1.0 drag counts and was not
developed with optimization in mind. Hence, wave
drag variations of 0.02 to 0.1 counts were considered
inconsequential by the original programmers.

Figure 6 also shows a quadratic response surface
model obtained by performing a least squares curve fit
to the noisy data. The RS model smoothes out the
various scales of numerical noise present in the data
while it captures the global trends of the variation in
wave drag.

The problems associated with numerical noise in op-
timization are ubiquitous in engineering, with exam-
ples appearing in the structural optimization software31

used in HSCT aerodynamic-structural design research
related to this study, and in an Euler flow solver used
for a nozzle design study32.

Derivative-based optimization methods employ an-
alytic or finite difference derivatives of the objective
function and constraints with respect to the design
variables. Finite differences naively applied to noisy
function values can produce grossly erroneous deriva-
tive estimates, which may lead to slow or incomplete
convergence. Often the result is that the optimizer
identifies many locally optimal designs, each of which
is obtained by starting the optimization process from a
different initial design. Here, the optimization process
is deterministic, i.e., the same optimal design is found
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for a specific set of initial variables. However, numerical
noise creates artificial local optima which trap the op-
timizer far from the true optimal design. Gillmore and
Kelley20 have developed derivative-based optimization
methods in which the finite difference step size is sys-
tematically varied until convergence is attained. This
method has been successful on a number of problems
in which numerical noise has posed optimization diffi-
culties.
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0.00073

0.00074

0.00075
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Figure 6. Numerical noise in computed wave drag.

3.2 Smooth Response Surface Models

The VCRSM method counters the adverse affects of
numerical noise by creating smooth, polynomial models
to replace the noise producing aerodynamic analysis
codes used in this study. This is accomplished by an-
alyzing many different HSCT configurations prior to
starting the design optimization. Smooth polynomial
models (i.e., response surface models) are then created
by fitting curves to the noisy aerodynamic analysis
data. The aerodynamic analysis tools which create
numerical noise are then replaced by the smooth re-
sponse surface models and the design optimization is
performed. Without numerical noise to inhibit opti-
mization, there is a greater probability that the globally
optimal design will be found, regardless of the initial
variable values used to start the optimization.

In addition to the CDwave analyses, two components
of the supersonic drag-due-to-lift (CDlift) are affected
by numerical noise as well. Here, supersonic drag-due-
to-lift is calculated as

CDlift = (
1

CLα
− kt

CT

CL
2 )CL

2, (4)

where CLα is the supersonic lift curve slope at M=2.4,

CT /CL
2 is the leading edge thrust term, and kt is an

attainable leading edge thrust factor. The numerical
noise in the drag-due-to-lift evaluation occurs in the su-
personic lift curve slope and leading edge thrust terms.
The “Mach-box” methods of Carlson28 et al. utilize a
wing discretization scheme that is sensitive to planform

changes. Thus, slight modifications to the leading and
trailing edge sweep angles, along with changes in the
location where the Mach angle intersects the leading
edge, produce noisy variations in the predicted drag.
As was the case for the noise levels in the wave drag
analyses, the numerical noise in the drag-due-to-lift cal-
culations is within the intended accuracy of the analysis
method.

In addition to improving optimization convergence
and reliability, the response surface models have the
added benefit of being extremely inexpensive to eval-
uate during optimization. This is of paramount im-
portance since a particular aerodynamic analysis may
be needed thousands of times during the optimization
process. Thus, it becomes advantageous to also use
response surface models to approximate the results ob-
tained from expensive analysis methods, even though
the expensive analysis tools may not produce numerical
noise. In this manner, the computational expense is
incurred in the creation of the response surface model
and the resulting cost for use of the model during op-
timization is computationally insignificant. One such
relatively expensive analysis method is a vortex-lattice
method which is used to estimate subsonic aerodynamic
performance. In particular, the subsonic lift curve slope
CLα at M=0.2 is the parameter of interest.

In the five variable HSCT wing design problem, RS

models for CDwave, CLα at M=2.4, and CT /CL
2 are

used to approximate supersonic aerodynamic perfor-
mance. Note that subsonic aerodynamic performance
is not considered for the five variable problem. The
ten variable wing design problem employs the three
supersonic RS models along with a RS model forCLα at
M=0.2 to estimate subsonic aerodynamic performance.

4. Statistical Methods

Experimental design theory9 is a branch of statistics
which provides the researcher with numerous methods
for selecting the independent variable values at which
a limited number of experiments will be conducted.
The various experimental design methods create cer-
tain combinations of numerical experiments (analyses)
in which the independent variables are prescribed at
specific values or levels. The results of these planned
experiments are used to investigate the sensitivity of
some dependent quantity, identified as the response, to
the independent variables. Other statistical techniques
known as regression analysis and analysis of variance
(ANOVA) are employed in the response sensitivity in-
vestigation. They are used to perform a systematic de-
composition of the variability in the observed response
values and to assign portions of the variability to either
the effect of an independent variable or to experimental
error. In using ANOVA with numerical experiments,
numerical noise takes the place of experimental error.
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4.1 Response Surface Modeling

A response surface methodology (RSM) is a formal
process combining elements of experimental design, re-
gression analysis, and ANOVA10. RSM employs these
statistical methods to create functions, typically poly-
nomials, to model the response or outcome of a numer-
ical experiment in terms of several independent vari-
ables, e.g., wave drag expressed as a function of several
wing planform variables.

In many RSM applications, either linear or quadratic
polynomials are assumed to accurately model the se-
lected response. Although this is certainly not true
for all cases, RSM becomes prohibitively expensive
when cubic and higher-order polynomials are chosen
for experiments involving several variables. Giunta1 et
al. concluded that quadratic polynomial models were
sufficiently accurate for HSCT configuration design.

A quadratic response surface model has the form

y = co +
∑

1≤j≤m

cjxj +
∑

1≤j≤k≤m

cjkxjxk, (5)

where y is the response, xj represents the m design vari-
ables, and co, cj , and cjk are the unknown polynomial
coefficients. Note that there are n = (m+ 1)(m+ 2)/2
coefficients in this quadratic polynomial. To estimate
the unknown polynomial coefficients in the RS model,
at least p response values must be available, where
p ≥ n. Under such conditions, the estimation prob-
lem may be formulated in matrix notation as Y ≈ Xc,
where Y is the p by 1 vector of observed response values,
X is a p by n matrix of constants assumed to have rank
n, and c is the n by 1 vector of unknown coefficients
to be estimated. The least squares solution to Y ≈ Xc
is ĉ = (XTX)−1XTY. Typically values for p of at least
1.5n to 2.5n are required to produce response surface
models which accurately model the trends in the calcu-
lated data1.

Besides the polynomial coefficients, the regression
analysis also provides a measure of the uncertainty in
these coefficients, called the t-statistic. The reciprocal
of the t-statistic is an estimate of the standard deviation
of each coefficient as a fraction of its value. Accordingly,
coefficients with “low” values for the t-statistic are not
accurately estimated. It is the prerogative of the user
to select the minimum allowable t-statistic. This choice
typically depends on the number of numerical experi-
ments (degrees of freedom (DOF) in the statistical lex-
icon) used to create the response surface model. For
a coefficient estimated with at least of one degree of
freedom, a 90 percent confidence interval requires a t-
statistic of greater than 6.31 for that coefficient to be
accurately estimated. This criterion will be used in all
subsequent regression analyses.

Various procedures exist for removing coefficients
with low t-statistics because leaving these coefficients in
the response surface model may reduce the prediction
accuracy of the model. A common measure of the util-
ity of removing coefficients for improving the accuracy
of the response surface is called the adjusted R2 value
(R2

adj). The adjusted R2 value is calculated as

R2
adj = 1− SSE/DOFSSE

SY Y/DOFSY Y
, (6)

where SSE (error sum of squares), SY Y (total sum of
squares), DOFSSE , and DOFSY Y are obtained from

ANOVA calculations10. If removing coefficients from
the response surface model leads to substantial in-
creases in R2

adj , then it is recommended to remove

them. The best possible value for R2
adj is 1.0.

4.2 Experimental Design Methods

4.2.1 Full Factorial Design

Prior to experimental design, the allowable range of
each of the m variables is defined by lower and up-
per bounds. The allowable range is then discretized
at equally-spaced levels. For numerical stability and
for ease of notation the range of each variable is
scaled to span (−1, 1)10. The region enclosed by the
lower and upper bounds on the variables is termed
the design space, the vertices of which determine an
m−dimensional cube or hypercube. If each of the vari-
ables is specified at only the lower and upper bounds
(two levels), the experimental design is called a 2m full
factorial. Similarly, a 3m full factorial design is created
by specifying the lower bound, midpoint, and upper
bound (three levels) for each of the m variables. A 33

full factorial design is shown in Figure 7.

X1

X2 X3

Figure 7. A 33 full factorial design (27 points).

The construction of a quadratic response surface
model in m variables requires at least n = (m+1)(m+
2)/2 response evaluations. A 3m full factorial design
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provides ample response evaluations to permit the es-
timation of the RS model coefficients. For example,
fitting a quadratic response surface model in three vari-
ables (m = 3) requires at least ten evaluations, and a

33 full factorial design provides 27 evaluations. How-
ever, as m becomes large the evaluation of both 2m

and 3m full factorial designs becomes impractical (e.g.,

210 =1,024 and 310 =59,049). A full factorial design
typically is used for ten or fewer variables.

4.2.2 D-Optimal Design

RSM typically employs a full factorial or similar
experimental design. However, full factorial designs
are intended for use with rectangular design spaces
and not the irregularly shaped (even nonconvex) design
spaces that may arise in the HSCT design problems
considered here. Previous studies1,12,14 found that the
D-optimality criterion10,33 provides a rational means
for creating experimental designs inside an irregularly
shaped design space.

The objective of the D-optimality criterion is to se-
lect the set of p locations in a design space from a
pool of q candidate locations (q ≥ p), such that the

quantity |XTX| is maximized. Note that the pool of
q candidate locations is defined a priori by the user,

and the p locations which maximize |XTX| are found
iteratively using a numerical optimization method.

The set of p locations for which |XTX| is maximum
is called aD-optimal experimental design. The statisti-
cal reasoning behind the creation of aD-optimal design
is that it leads to response surface models for which
the maximum variance of the predicted responses is
minimized. In non-statistical terms, the D-optimality
criterion ensures that the p locations are selected at
points in the design space which will minimize the error
in the estimated coefficients, ĉ, in the response surface
model.

For this study, two methods were used to create
D-optimal experimental designs. In the five variable
problem, the commercial statistical package JMP34

was used. JMP employs the “k-exchange” method of
Mitchell35 to select a set of p D-optimal locations from
a user supplied list of q candidate locations. For the
ten variable problem, JMP became computationally
inefficient. Therefore, we programmed our own “k-
exchange” method to efficiently create D-optimal ex-
perimental designs. Earlier work1,14,25,31 used genetic
algorithms to create D-optimal experimental designs.

5. The VCRSM Method

The construction of the response surface models may
be viewed as a series of steps to be completed before
the aircraft system optimization is performed. This

methodology is illustrated in the flowchart shown in
Figure 8.

If Needed

Define New Design 
Space Boundaries

Initial Design

Optimal Design

Create Full Factorial Experimental Design

Perform Conceptual Level Analyses

Remove Infeasible HSCT Configurations

Create D−Optimal Experimental Design

Perform Preliminary Level Analyses

Create Response Surface Models

Perform HSCT Optimization Using
Response Surface Models

Define Design Space Boundaries
Around Initial Design

Figure 8. Flowchart depicting the use of the VCRSM
method in HSCT design optimization.

Starting from an initial HSCT configuration, a 3m

or similar full factorial design is constructed with the
initial HSCT at the center of the design space. The full
factorial design points are evaluated using the compu-
tationally inexpensive conceptual level analysis tools,
and the HSCT analyses are screened to eliminate any
grossly infeasible HSCT configurations from consider-
ation. Next, the D-optimality criterion is applied to
select a subset of the remaining HSCT configurations
for evaluation using the preliminary level analysis tools.
Response surface models for the aerodynamic quanti-
ties are then constructed using the preliminary level
analysis data. In the final step of the VCRSM method
the response surface models are used in the HSCT
optimization software to replace the noise producing
aerodynamic analysis methods. Thus, optimization is
conducted without the problems associated with nu-
merical noise.

6. HSCT Wing Design - Five Variables

6.1 Conceptual Level HSCT Analyses

A 55 full factorial design (i.e., five levels in each vari-
able) based on DOE methods was constructed around

an initial HSCT configuration. The 3,125 (55) full
factorial HSCT configurations were analyzed using the
inexpensive conceptual level analysis tools. These 3,125
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HSCT configurations were then screened to eliminate
from consideration any grossly infeasible designs, i.e.,
those which exceeded any of the geometric constraints
by more that five percent or any of the aerodynamic
constraints by ten percent. After screening, 1,860
HSCT configurations remained.

6.2 Preliminary Level HSCT Analyses

In the next step of the VCRSM process, JMP was
used to create a D-optimal experimental design com-
prised of 50 HSCT configurations out of the 1,860 re-
maining HSCT candidates. Note that at least 21 HSCT
configuration analyses are needed to fit a quadratic
polynomial in five variables. Choosing 50 HSCT config-
urations for analysis provides slightly more than double
the minimum number of analyses. As described above,
past research indicates that at least 1.5 to 2.5 times the
minimum number of analyses are required. The distri-
bution of the 50D-optimal HSCT configurations within
the design space yields a condition number of 18 for the
matrix X in the least squares fit which creates the RS
model. This indicates that the D-optimal HSCT con-
figurations are positioned throughout the design space
in a manner that allows accurate estimation of the RS
model terms without significant numerical error.

Once selected, the 50 D-optimal HSCT configura-
tions were evaluated using the preliminary level analy-
sis methods and RS models were constructed from the
analysis data for CDwave, CLα (M=2.4), and CT /CL

2.

Adjusted R2 values were calculated as 0.9953, 0.9965,

and 0.9908 for CDwave, CLα (M=2.4), and CT /CL
2,

respectively.
Of the 21 coefficients in the CDwave RS model, 15

had a t-statistic above 6.31. All linear terms were signif-
icant as were the quadratic terms for Croot, t/c ratio,
and ΛLEI

. The regression analysis procedure in JMP
was then used to remove the less significant coefficients
from the RS model and R2

adj was recomputed. How-

ever, R2
adj changed only from 0.9953 to 0.9956. There-

fore, the complete (21 coefficient) polynomial RS model
for CDwave was retained.

Regression analyses also were performed on the

CLα (M=2.4) and CT /CL
2 RS models. For the CLα

(M=2.4) model, 11 of the coefficients had t-statistic
values greater than 6.31. The retained coefficients in-
cluded all linear terms except for Wfuel, and quadratic

terms for Croot and ΛLEI . Again, the recomputed R2
adj

value changed only slightly from 0.9965 to 0.9969 so
the complete RS model for CLα (M=2.4) was used.

For the CT /CL
2 model only seven coefficients were re-

tained which included the linear terms Croot, Ctip, and
ΛLEI , and the quadratic terms for Croot and ΛLEI . The

recomputed R2
adj value improved only slightly from

0.9908 to 0.9913 so the complete RS model also was

retained for CT /CL
2.

Another quantitative measure of the quality of the

RS model is to evaluate the residual error in the least

squares fit which creates the RS model. The residual

error is the difference between the calculated response

from the numerical experiment data and the predicted

response from the RS model. The residual error is a

composite measure of error due to numerical noise and

error due to bias. Bias error occurs when using a low

order polynomial RS model when the data have higher

order trends. For the five variable HSCT optimization

problem, the average error, root-mean-square (RMS)

error, and maximum error are shown in Table 4, where

the residual error calculations are performed for the

data from the 50 HSCT analyses used to create the RS

models. Here, the errors are expressed as a percentage

of the total variation in each RSmodel. The small mag-

nitude of the errors further indicates that the quadratic

polynomials are good models of the data trends.

Table 4. Accuracy of the response surface
models for the five variable HSCT optimization.

Avg. RMS Max.
Error Error Error

CDwave 0.82% 1.06% 3.07%
CLα at M=2.4 0.24% 0.31% 0.88%
CT /CL

2 2.02% 2.46% 5.78%

The quality of the RS models is further shown by

comparing the mission range of the initial HSCT com-

puted using both the RS models and the original aero-

dynamic analysis methods. The range computed us-

ing the RS models is 5,579.7 naut.mi. whereas the

range computed using the original methods is 5,509.7

naut.mi., a difference of 1.27 percent.

6.3 HSCT Optimization - Five Variables

Figures 9 and 10 show optimization results for the

five variable HSCT wing designs obtained with and

without using the VCRSMmethod. As shown in Figure

9, there were slight changes in the planform geometry

between the initial and optimal designs. Specifically,

the initial and final designs are listed in Table 5. These

design changes result in a savings of approximately

7,000 lb in the structural weight of the wing and about

10,000 lb of fuel weight. These weight savings more

than offset the slight decrease in aerodynamic efficiency

in the optimal wing which had a maximum lift-to-drag
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ratio (L/D)max of 9.76 compared to (L/D)max of 9.85
for the initial wing.
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Figure 9. Five variable initial and optimal
designs obtained using RS models.

For the optimal HSCT wing configuration, the range
computed using the RS models is 5,499.2 naut.mi.
whereas the range computed using the original methods
is 5,443.2 naut.mi., a difference of 1.03 percent. Since
the true range is below 5,500 naut.mi., the HSCT con-
figuration would need to carry additional fuel to meet
the range constraint. This would add approximately
5,000 lb to the TOGW of the HSCT, an increase of 0.80
percent in TOGW for the optimal HSCT configuration.

Table 5. Five HSCT wing initial
and optimal variables.

Variable Initial Optimal
Croot 185.0 ft 165.2 ft
Ctip 10.0 ft 8.6 ft
ΛLEI

75.0◦ 72.9◦

t/c ratio 2.0 % 2.2 %
Wfuel 315,000 lb 305,550 lb

In contrast, Figure 10 shows almost no change be-
tween the initial and optimal wing designs when the RS
models were not used. This occurred because numerical
noise in the wave drag and drag-due-to-lift calculations
led to numerical noise in the TOGW and constraint
calculations. This numerical noise created local min-
ima in the design space which prevented the optimizer
from locating the globally optimal wing design. The
consequence of not using the RS models was a 14,000
lb difference in TOGW between the globally optimal
design and the locally optimal design.

Similar results were obtained when different initial
values for the variables were used in the HSCT op-
timization. With the RS models, the optimizer con-
verged to the same globally optimal wing configuration.
Without the RS models, the optimizer became trapped

in different, artificial locally optimal wing configura-
tions. The locally optimal wings yielded significantly
higher values of TOGW than the optimal wing, often
with considerably poorer aerodynamic performance.
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Figure 10. Five variable initial and optimal
designs obtained without using RS models.

6.4 Computational Expense

The computational expense of performing a com-
plete five variable HSCT wing optimization using the
RS models is approximately 0.75 CPU minutes on a
Silicon Graphics Indigo2 workstation. In comparison,
an optimization without using the RS models requires
approximately 30 CPU minutes. As described above,
the computational expense of the VCRSM method oc-
curs in the creation of the RS models. For the five
variable problem the cost of creating the RS models
is approximately four CPU hours. Thus, optimization
performed using the VCRSM method has a lower com-
putational cost than traditional optimization for this
HSCT design problem if more than eight traditional
optimizations are performed. In a typical study the
HSCT design optimization is performed many more
than eight times. For example, the designer will per-
form the HSCT optimization starting with several dif-
ferent choices for the initial variable values. In addition,
the designer often repeats the optimization to explore
different objective criteria (e.g., maximize range, max-
imize payload). Therefore, the computational expense
of creating the RS models is quickly recovered in a
typical HSCT optimization study.

7. HSCT Wing Design Problem - Ten Variables

7.1 Conceptual Level HSCT Analyses

A 310 full factorial design (i.e., three levels in each
variable) was constructed around an initial HSCT con-

figuration. The 59,049 (310) full factorial design points
were analyzed using the inexpensive, conceptual level
analysis tools and the HSCT analysis results were
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screened to eliminate from consideration any grossly in-
feasible HSCT configurations. Here an HSCT configu-
ration was eliminated if it violated any of the geometric
constraints by more than five percent. After screening
29,163 HSCT configurations remained; 51 percent of
the original HSCT candidate configurations were elim-
inated.

7.2 Preliminary Level HSCT Analyses

The next step in the VCRSM process was to select
a set of 132 D-optimal HSCT configurations from the
remaining candidate set of 29,163. For this problem, an
in-house version of Mitchell’s k-exchange algorithm was
used to create the D-optimal experimental design. The
distribution of the 132D-optimal HSCT configurations
within the design space gives a condition number of 27
for the matrix X, which allows the estimation of the
RS model terms without significant numerical error.

The 132 D-optimal HSCT configurations were eval-
uated using the preliminary level analysis methods.
Quadratic RS models, each having 66 coefficients, were

created for CDwave, CLα at M=2.4, CT/CL
2, and CLα

at M=0.2. The R2
adj values for these RS models were

0.9603, 0.9976, 0.9982, and 0.9979, respectively. Re-
gression analyses were performed on these RS models
and coefficients that did not have a t-statistic greater
than 6.31 were removed. The recomputed R2

adj values
for the RS models were 0.9667, 0.9978, 0.9986, and
0.9983, respectively. All of the recomputed R2

adj values
were only slightly greater, so the original RS models
with all 66 coefficients were retained for use.

The results of the regression analyses indicated that
the CDwave RS model was most strongly influenced by
17 coefficients. These included all of the linear terms
except for Ctip, bnacelle, and Wfuel, and included the
quadratic terms for t/c ratio and ΛLEI

. The 31 coef-
ficients in the CLα (M=2.4) RS model included all of
the linear terms except for max. thk., and included the
quadratic terms for Croot, bhalf , RLE param., t/c ratio,

and ΛLEI . The 17 coefficients in the CT /CL
2 RS

model contained the linear terms for Croot, Ctip, bhalf ,
RLE param., ΛLEI , and ΛLEO , along with the
quadratic terms for Croot,ΛLEI , and ΛLEO . The 18
coefficients in the CLα (M=0.2) RS model included the
linear terms for Croot, Ctip, bhalf , t/c ratio,ΛLEI , and
ΛLEO

, along with the quadratic terms for Croot, bhalf ,
and ΛLEI . In summary, all of the linear coefficients
are important in at least one of the RS models and
six of the quadratic coefficients (Croot, t/c ratio, bhalf ,
RLE param.,ΛLEI

, ΛLEO
) are important in at least

one of the RS models.
The average error, RMS error, and maximum error

for the complete RS models (66 coefficients) are shown
in Table 6, where the residual error calculations are
performed for the data from the 132 HSCT analyses

used to create the RS models. Note that the residual
errors are considerably higher for CDwave and CT /CL

2

in the ten variable RS models than in the five variable
RS models.

Table 6. Accuracy of the response surface
models for the ten variable HSCT optimization.

Avg. RMS Max.
Error Error Error

CDwave 4.36% 5.78% 18.31%
CLα at M=2.4 0.21% 0.27% 0.91%
CT /CL

2 8.39% 13.19% 47.45%
CLα at M=0.2 0.24% 0.30% 0.90%

For CDwave the increase in residual error is the result
of bias error since the magnitude of the numerical noise
in the CDwave, data is known to be small compared to
typical values of CDwave (see Section 3.1). In contrast,

for CT/CL
2 the increase in residual error is due to

numerical noise error. It is known that the leading
edge thrust estimation methods are extremely sensitive
to changes in the HSCT planform. This sensitivity

produces numerical noise in the CT /CL
2 data where

the magnitude of the noise may be up to 25 percent of

typical CT /CL
2 values36. Although a predicted value

for CT /CL
2 from the RS model may contain signifi-

cant error, the supersonic drag-due-to-lift calculation
is dominated by the CLα (M=2.4) term. Thus, there is
minimal effect on the overall HSCT wing design due to

the residual error in the CT/CL
2 RS model. Also, note

that for the initial HSCT configuration the range com-
puted using the RS models is 5,503.7 naut.mi. and the
range computed using the original methods is 5,519.8
naut.mi., a difference of 0.29 percent.

7.3 HSCT Optimization - Ten Variables

Using the RS models, various initial HSCT config-
urations were optimized, within the allowable limits
of the ten variables. Figure 11 shows the planform
changes from the initial to the optimal wing configu-
ration for one of these optimization cases. The initial
and optimal wing variables are listed in Table 7. The
optimal wing has a smaller area and a lower aspect
ratio than the initial wing which results in a wing struc-
tural weight savings of 23,500 lb, a decrease of 18.3
percent. In addition to the structural improvements,
the (L/D)max of the HSCT increased from 9.37 to 9.54,
an improvement of 1.8 percent. This contributes to
a savings in fuel weight of approximately 18,000 lb.
The initial and optimal wing configurations are also
shown in an isometric view in Figure 12 where the
difference in the chordwise location of maximum thick-
ness is more apparent. Additional optimization cases
were performed, each with a different set of initial wing
variables. In all cases, the optimizer converged to wing
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configurations virtually identical to the optimal wing

described above.
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Figure 11. Ten variable initial and optimal wing
designs obtained using RS models.

Note: The x-z plane is scaled to show airfoil differences.

Optimal Wing
Initial Wing

z
y

x

Figure 12. Ten variable initial and optimal wing
designs (with RS models) showing airfoil differences.
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Figure 13. Ten variable initial and optimal wing
designs obtained without using RS models.

For the optimal HSCT wing configuration, the range
computed using the RS models is 5,500.2 naut.mi.
whereas the range computed using the original methods
is 5,393.2 naut.mi., a difference of 1.98 percent. Since
the true range is below 5,500 naut.mi., the HSCT con-
figuration would need to carry additional fuel to meet
the range constraint. This would add approximately
9,600 lb to the TOGW of the HSCT, an increase of 1.57
percent in TOGW for the optimal HSCT configuration.

When optimization was attempted without using
the RS models, the various initial wing configura-
tions converged to substantially different optimal con-
figurations. This is consistent with the occurrence
of multiple local optima and the convergence difficul-
ties which originally motivated the use of RS mod-
eling methods. One such locally optimal design is
shown in Figure 13. The HSCT with the locally op-
timal wing design in Figure 13 is 17,000 lb heavier
than the HSCT with the globally optimal wing design.

Table 7. Ten HSCT wing initial
and optimal variables.

Variable Initial Optimal
Croot 150.0 ft 167.7 ft
Ctip 9.0 ft 8.1 ft
t/c ratio 2.1 % 2.3 %
bhalf 80.0 ft 73.4 ft
max. thk. 33.0 % 47.5 %
RLE param. 2.5 2.1
ΛLEI 68.0◦ 71.1◦

ΛLEO 47.0◦ 40.3◦

bnacelle 18.0 ft 16.7 ft
Wfuel 319,000 lb 300,700 lb

7.4 Computational Expense

The computational expense of performing a com-
plete ten variable HSCT wing optimization using the
RS models is approximately 1.5 CPU minutes on a
Silicon Graphics Indigo2 workstation. In comparison,
an optimization without using the RS models requires
approximately 60 CPU minutes. The computational
cost of creating the RSmodels is approximately 55 CPU
hours when the HSCT analyses are performed serially.
However, if the parallel computing methods of Burgee25

et al. were applied to this problem, it is estimated that
the computational cost would be reduced to approxi-
mately five CPU hours. It is apparent that the compu-
tational affordability of the VCRSM method depends
on the extent to which parallel computing may be used
to reduce the computational cost of creating the RS
models. Without parallel computing there is little or
no computational savings in using the VCRSMmethod.
Conversely, with parallel computing the computational
savings in using the VCRSM method quickly accrue.
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8. Conclusions

Response surface modeling methods have been com-
bined with statistical techniques from design of exper-
iments theory to create variable complexity response
surface modeling. The results of this study show that
the use of the VCRSM method avoids the convergence
difficulties encountered in numerical optimization due
to numerical noise. In this particular investigation,
the VCRSM method was used to design optimal wing
configurations for an HSCT aircraft, subject to aero-
dynamic and structural constraints. Both five variable
and ten variable wing design problems were studied.

The aerodynamic analysis methods used in this
HSCT optimization study produced numerical noise
which would misdirect or slow the convergence of the
optimization process if not addressed. The VCRSM
method was used to select a limited number of HSCT
configurations for analysis. From the resulting anal-
ysis data, response surface models were created to ap-
proximate four computationally expensive aerodynamic
quantities. These were the supersonic volumetric wave
drag CDwave, the supersonic lift curve slope CLα at

M=2.4, the supersonic leading edge thrust CT /CL
2,

and the subsonic lift curve slope CLα at M=0.2. The
response surface models were then used to perform the
five and ten variable HSCT wing design optimizations.

In the five variable HSCT wing optimization problem
the use of the response surface models allowed the iden-
tification of the globally optimal wing configuration.
which had a TOGW which was 14,000 lb less than for
the artificial, locally optimal wing configuration found
without using the response surface models. This rep-
resents a savings of 2.1 percent in TOGW. The five
variable optimization problem was repeated for several
cases, each starting with a different initial wing config-
uration. When using the response surface models, each
case converged to the globally optimal wing configura-
tion. In contrast, without using the RS models, each
case converged to a locally optimal wing configuration
significantly heavier than the global optimum.

Similar results were obtained in the ten variable
HSCT wing optimization problem where the globally
optimal wing configuration identified using the re-
sponse surface models was 17,000 lb lighter than the
corresponding artificial, locally optimal wing configura-
tion. This yielded a savings of 2.7 percent in TOGW.
Several optimization cases were conducted for the ten
variable optimization problem, each starting with a dif-
ferent initial wing configuration. Again, in all cases
where the response surface models were employed the
globally optimal wing configuration was consistently
identified by the optimizer. Without using the response
surface models, the optimizer became trapped in the

artificial, locally optimal wing configurations created
by the presence of numerical noise.
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Appendix

Table A-1. Twenty-nine HSCT variables and
nominal values.

Num. Value Description
1 181.48 Wing root chord, ft
2 155.9 LE break point, x ft
3 49.2 LE break point, y ft
4 181.6 TE break point, x ft
5 64.2 TE break point, y ft
6 169.5 LE wing tip, x ft
7 7.00 Wing tip chord, ft
8 75.9 Wing semi-span, ft
9 0.40 Chordwise max. thk. location
10 3.69 LE radius parameter
11 2.58 Airfoil t/c ratio at root, %
12 2.16 Airfoil t/c ratio at LE break, %
13 1.80 Airfoil t/c ratio at tip, %
14 2.20 Fuselage restraint 1, x ft
15 1.06 Fuselage restraint 1, r ft
16 12.20 Fuselage restraint 2, x ft
17 3.50 Fuselage restraint 2, r ft
18 132.46 Fuselage restraint 3, x ft
19 5.34 Fuselage restraint 3, r ft
20 248.67 Fuselage restraint 4, x ft
21 4.67 Fuselage restraint 4, r ft
22 26.23 Nacelle 1 location, ft
23 32.39 Nacelle 2 location, ft
24 697.9 Vertical tail area, ft2

25 713.0 Horizontal tail area, ft2

26 39,000 Thrust per engine, lb
27 322,617 Mission fuel, lb
28 64,794 Starting cruise/climb altitude, ft
29 33.90 Supersonic cruise/climb rate, ft/min

Table A-2. Constraints for the 29 variable
HSCT optimization problem.

Num. Geometric Constraints
1 Fuel volume ≤ 50% wing volume
2 Airfoil section spacing at Ctip ≥ 3.0ft

3-20 Wing chord ≥ 7.0ft
21 LE break ≤ semi-span
22 TE break ≤ semi-span
23 Root chord t/c ratio ≥ 1.5%
24 LE break chord t/c ratio ≥ 1.5%
25 Tip chord t/c ratio ≥ 1.5%

26-30 Fuselage restraints
31 Nacelle 1 outboard of fuselage
32 Nacelle 1 inboard of nacelle 2
33 Nacelle 2 inboard of semi-span

Num. Aero. & Performance Constraints
34 Range ≥ 5, 500 naut.mi.
35 CL at landing ≤ 1

36-53 Section Cl at landing ≤ 2
54 Landing angle of attack ≤ 12◦

55-58 Engine scrape at landing
59 Wing tip scrape at landing
60 LE break scrape at landing
61 Rudder deflection ≤ 22.5◦

62 Bank angle at landing ≤ 5◦

63 Tail deflection at approach ≤ 22.5◦

64 Takeoff rotation to occur ≤ Vmin

65 Engine-out limit with vertical tail
66 Balanced field length ≤ 11,000 ft

67-69 Mission segments:
thrust available≥ thrust required

Table A-3. Constraints for the five variable
HSCT wing optimization problem.

Num. Geometric Constraints
1 Fuel volume ≤ 50% wing volume
2 Airfoil section spacing at Ctip ≥ 3.0ft

3-20 Wing chord ≥ 7.0ft
21 LE break ≤ semi-span
22 Airfoil t/c ratio ≥ 1.5%

Num. Aero. & Performance Constraints
23 Range ≥ 5, 500 naut.mi.
24 CL at landing ≤ 1

25-42 Section Cl at landing ≤ 2
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