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Abstract

The full potential flow model is still widely used. In this
paper we provide a new explanation of its principle short-
coming in terms that can be easily understood by aerody-
namicists. The classical nozzle problem is examined to
show that the use of the full potential shock jump pre-
cludes the influence of back pressure in locating the jump
in the nozzle. Although the difference in properties be-
tween the potential and Rankine-Hugoniot jumps do not
look to be that different when viewed in the customary
manner,  an analysis by Laitone some years ago reveals
startling differences between the potential and Rankine-
Hugoniot jumps. This difference provides an improved un-
derstanding of the failure of the full potential theory as
soon as even modest shock strengths occur. It also suggests
a physical basis for the non-uniqueness of potential solu-
tions.

an example. In Fig. 1(a), pressure distributions are com-
pared for Euler and full potential equation solutions over
an NACA 0012 airfoil at M = 0.8, α = 0°. There is is only
a small difference between the results. The full potential
solution has a slightly stronger shock that is just slightly aft
of the Euler result. Increasing the angle of attack to 1.25°
leads to a stronger shock on the upper surface, which
moves aft 13% of the chord. The effect of increasing the
angle of attack on the Euler solution is shown in Fig. 1(b).
Next we compare the full potential solution with the Euler
solution for the 1.25° angle of attack case. Now the differ-
ence between the potential and Euler results, given in Fig.
1(c), is extremely large. In this case the potential equation
solution shock has moved to the trailing edge, a shock
movement of 50% chord. Although this is an extreme case,
it is indicative of the large differences between Euler and
full potential results when the shocks are strong.** 

This paper provides an explanation of the problems with
the full potential solutions in physical terms. The differenc-
es between the correct and potential jumps are illustrated in
a manner that may also explain the non-unique solution
problems.

Introduction

The potential flow approximation was the dominate model
for transonic aerodynamics for many years. It is still wide-
ly used in engineering applications,1 and can be used effec-
tively in aerodynamic design and analysis. Indeed, consid-
erable effort is still being devoted to the development of
potential flow methods for use in design, e.g., Huffman, et
al.2  The potential methods may even be of interest for use
in multidisciplinary design methodology3 because of the
comparatively small computational cost.

The properties of potential flow jumps were examined by
several investigators when numerical solutions of the po-
tential flow equation started being computed for transonic
flows including shocks. It was found in the 1980s, when
reliable Euler solutions became routinely available for tran-
sonic flow calculations, that the full potential solutions
were seriously in error when shock waves became even
moderately strong (Ms > 1.25). Both shock strength and
position were incorrect. That there was an erroneous pre-
diction was not surprising since the jump relations for the
potential flow equation are physically incorrect. However,
the magnitude of the error was surprising. Figure 1 shows

** The Euler equation solutions were provided by Robert Nar-
ducci of Virginia Tech, the full potential solutions were from
FLO364 (α = 0°) and TAIR5 (α = 1.25°).

Shock Jump Wave Drag Studies

One of the first analyses of the differences between the
Rankine-Hugoniot and potential flow (isentropic) jump
characteristics was presented by Steger and Baldwin.6,7

Further analysis of the isentropic jump relations was car-
ried out by Van der Vooren and Slooff.8 Murman and Cole
also examined this problem.9 Under the full potential as-
sumption, entropy was held constant across the discontinu-
ity, and mass was conserved while momentum was not.
This is the traditional full potential formulation. These
studies were primarily concerned with the possibility of us-
ing the isentropic equation to predict drag. The basic accu-
racy of the method was not yet in question.

Subsequently, Klopfer and Nixon10 reexamined the basis
for potential flow when shocks were present and proposed
a nonisentropic potential formulation. Examining possible
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jump formulations, they showed that a potential jump
which conserved momentum instead of energy was much
closer to the actual Rankine-Hugoniot jump condition.
They then presented a method using the momentum con-
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Figure 1. Illustration of the agreement between Euler and
full potential solutions at different conditions (concluded).

b. effect of change of angle of attack on pressure distribu-
tion predicted by the Euler equations

Figure 1. Illustration of the agreement between Euler and
full potential solutions at different conditions

servation condition to obtain solutions almost identical to
the Euler results for the cases shown above. Lucchi11 also
presented a method of using the potential equation with a
modified jump condition to obtain results that agreed with
the Euler solutions for these same examples. Both Klopfer
and Nixon10 and Lucchi11 also make changes to the Kutta
condition. Hafez and Lovell have also investigated this
problem and proposed a correction method.12

At supersonic speeds Siclari and Visich and Siclari13 and
Rubel14 demonstrated that by correcting the isentropic
jump at the bow shock, the potential flow equation could
be used to obtain accurate results for extremely strong
shocks, with freestream Mach numbers as high as ten.
Their fundamental analysis was based on the conical flow
over circular cones at zero angle of attack, and they pre-
sented results for a variety of jump conditions in a manner
analogous to the study by Klopfer and Nixon.10

Nonunique Solutions

Another problem with the solution of the full potential
equation was the discovery that the solution was nonunique
by Steinhoff and Jameson.15  It appeared that the incorrect
shock jump using the potential flow model leads directly to
the nonuniqueness problem.15,16 Further discussion is con-
tained in Hirsch’s textbook.17 However, a more recent
analysis by McGratten18 produced nonunique solutions for
the Euler equations also. In this case the shock was fairly
weak, and he concluded that: “it is unlikely that it is due to
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the isentropic assumption of the potential model”. The im-
plication is that the details of the treatment of the flow at
the trailing edge through the Kutta condition or its equiva-
lent for the Euler equation is equally important in produc-
ing nonunique solutions.

Classical Isentropic Jump

Although the breakdown in the isentropic flow model is
expected, the suddenness with which the breakdown oc-
curs is surprising. Numerous computational results have
demonstrated this very sudden breakdown in the potential
flow approximation. The potential flow equation solution
agrees with Euler equation results for cases with weak
shock waves. The agreement then seems to deteriorate
quite suddenly as the shock becomes stronger. To quantize
the difference between the actual and potential flow mod-
els, it is common to compare the shock jump Mach number
between the classical isentropic jump and the Rankine-
Hugoniot. Unfortunately, there is no closed form solution
in the case of the isentropic jump, and a numerical solution
is required. An especially attractive approach to the solu-
tion is given in Appendix C of the report by Steger and
Baldwin.6 Defining 
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the value of M2 can be found (after use of some identities),
by solving the polynomial

The solution can be found by Newton’s method using
about three lines of code.

The result from Eqn. 2 is shown compared with the Ran-
kine-Hugoniot jump in Fig. 2(a). In this figure the potential
flow shock jump is seen to be asymptotically correct as the
upstream Mach number goes to unity, and to depart
smoothly from the real jump condition as the upstream
Mach number increases. The potential flow shock jump is
larger than the Rankine-Hugoniot jump. This figure does
not suggest a sudden breakdown. The error between the is-
entropic and Rankine-Hugoniot jump values is not too dif-
ferent between M = 1.2 and M = 1.3. Yet the expectation,
as illustrated in Fig. 1, would be that the difference be-
tween Euler and potential solutions would be much greater
for the M =1.3 case. The other typical comparison between
the Rankine-Hugoniot and isentropic jump conditions is
the pressure ratio, p2/p1. This comparison is given in Fig.
2(b). The difference between the two cases grows smooth-
ly, and is consistent with the Mach number differences in
Fig. 2(a).
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Laitone’s Analysis

Recent evaluations of the aerodynamic methods used in
ACSYNT19 revealed the importance of early work by Lai-
tone.20 ACSYNT21 is an aircraft sizing and optimization
program. Many of the key aerodynamic estimates in AC-
SYNT are based on approximations developed by John
Axelson,22 and implemented in AEROX.23 A variety of
approximations are used to obtain aerodynamic character-
istics. One of these approximations is based on the tran-
sonic flow limiting velocity obtained from momentum re-
lations by Laitone.20 This work predates the modern
transonic era and has been overlooked, except by Axelson.

Laitone derived a condition for a limiting velocity expect-
ed to occur over an airfoil at transonic speeds. It is the ra-
tio of static pressure behind the shock to the stagnation
pressure ahead of the shock.* Laitone only considered the
Rankine-Hugoniot jump conditions. However, when this
condition is examined for both the Rankine-Hugoniot and
isentropic shock relations, a remarkable difference occurs,
as shown in Fig. 3. Using the Rankine-Hugoniot condi-
tions, the maximum Mach number corresponding to this
pressure is found to be M = [(γ + 3)/2]1/2 , or 1.483 for air.
In contrast, no limit occurs for the isentropic jump rela-
tions. As the shock Mach number approaches 1.3, a dra-
matic difference between the Rankine-Hugoniot and isen-
tropic model develops. Laitone gave the following
explanation of the significance of the Rankine-Hugoniot
result:

“If M1 > 1.483 then p2 is less than it would be for M1 =
1.483. Therefore the downstream pressure, which is al-
ways greater than p2, can force the normal shock upstream
until the location where M1 = 1.483 is reached, since the
entire flowfield behind the shock is subsonic.”

Laitone is defining what amounts to a stability criteria.
This natural limiting phenomena is completely absent in
the isentropic shock jump model, which does not have a
maximum value or slope reversal with Mach number. He
is also pointing out the importance of the downstream
pressure field in controlling shock position and strength. A
subsequent paper by Laitone provides further justification
for this limit.24 Note that inviscid conditions are of interest
here, and viscous effects would prevent this limit from oc-
curring in an actual flowfield. However, aerodynamic de-
signers and optimization methods often use inviscid mod-
els for initial design work. The potential model continues
to offer advantages in terms of storage and execution
speed. With the widespread use of workstations, potential
solutions continue to be used. The users of these methods
need to be aware of the results presented in Fig. 3.

* This relation is also given in NACA 1135, although it is not tab-
ulated, and the characteristic property of the relation was not dis-
cussed.
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The 1D Nozzle Problem Example**

The importance of the downstream flowfield pressure on
shock position can also be illustrated by considering the
case of quasi-one dimensional flow in a nozzle. Consider
first the usual (Rankine-Hugoniot jump) case. Over a range
of specified exit pressures, the exit pressure controls the
position of the shock wave in the nozzle. The equivalent
situation fails to occur using the potential flow model. As
shown in Fig. 4, the potential flow model jump is simply  a
jump from the supercritical curve to the subcritical curve.
The isentropic jump can satisfy only one distinct value of
the exit pressure. Hirsch17 also used this property to illus-
trate the problem of solution nonuniqueness using the po-
tential flow model. The one specific subcritical value of
exit pressure can be obtained with a shock located any-
where in the divergent portion of the nozzle. A more physi-
cal and troubling interpretation is possible. The nozzle
problem shows that the potential flow model cannot re-
spond to a change in exit, or downstream, pressure by ad-
justing the shock location. This accounts for the erroneous
shock position predictions in potential flow calculations
once the shock strength becomes strong, and has not been
identified explicitly previously. It also shows why the con-
ditions at the airfoil trailing edge are so important.

** During the final preparation of the paper, I discovered that
Hirsch17 has already used this problem for the same purpose in
his Volume I, pages 122-123.
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Conclusion

The Laitone ratio reveals a fundamental difference be-
tween the potential and Euler flow models. Although the
difference between the Rankine-Hugoniot and isentropic
Mach jumps does not change drastically with Mach num-
ber, the Laitone pressure ratio does show a major change.
The potential flow model results in the removal of a funda-
mental stability point in the flow.

The sudden breakdown in the potential flow approximation
can be explained by two considerations. First, there is pro-
found difference in the Laitone ratio, p2/p01, between Ran-
kine-Hugoniot and isentropic jumps with increasing Mach
number. Secondly, we have shown for the quasi-one di-
mensional nozzle flow model problem that the potential
flow model cannot respond to the downstream pressure
field through a change of shock position. 

Finally, with increasing emphasis on multidisciplinary
methods that frequently require thousands (or more) flow
analyses, it appears worthwhile to reconsider the use of
corrected potential flow models. Experience with Euler so-
lutions has shown that the increase in model fidelity did
not eliminate all the problems of obtaining robust and ac-
curate numerical solutions.
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