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ABSTRACT

Convergence difficulties were encountered in our re-
cent efforts toward a combined aerodynamic-structural
optimization of the High Speed Civil Transport (HS-
CT). The underlying causes of the convergence prob-
lems were traced to numerical noise in the calculation
of aerodynamic drag components for the aircraft. Two
techniques were developed to circumvent the obstacles
to convergence. The first technique employed a se-
quential approximate optimization method which used
large initial move limits on the design variables. This
helped dislodge the optimizer out of the local minima
in the design space created by the noisy drag data.
The second method utilized response surface methods
to construct smooth approximations to the noisy data.
The response surfaces were formed by analyzing several
individual HSCT configurations and then fitting poly-
nomial functions to selected objective function data. A
simplified example design problem was used to demon-
strate the response surface technique and to investigate
various other issues relating to the construction of the
response surfaces.

1. INTRODUCTION

The design of modern aerospace vehicles involves
multidisciplinary interactions and presents a formidable
challenge to the designer in a competitive marketplace.
Multidisciplinary optimization (MDO) technology is a
major tool for addressing this need, but its current use
in the design process is limited by its enormous compu-
tational burden. To address this challenge, our group at
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Virginia Tech recently developed a variable-complexity
modeling approach, involving the use of refined and
computationally expensive models together with sim-
ple and computationally inexpensive models'. We have
applied this approach to the combined aerodynamic-
structural optimization of transport wings and recently
have focused on the aerodynamic-structural optimiza-
tion of the High Speed Civil Transport (HSCT)?~*.

The issues addressed in this paper arose in a recent
HSCT study where we found that the final vehicle con-
figurations varied significantly depending on the choice
of initial conditions for the design variables. One of the
causes of this problem was traced to numerical noise
in the computation of aerodynamic drag components.
This noise contributed to the formation of a jagged
multidimensional objective function with many local
minima. It appeared that our previous HSCT designs
had become trapped in these local minima during the
optimization process and were prevented from converg-
ing to an optimal configuration.

This paper describes two techniques for constructing
smooth approximations to the drag components in an
effort to counter the noisy, drag data. The first utilizes
a variation on the sequential acrodynamic optimization
techniques currently employed in our research. The sec-
ond uses the concept of multipoint approximation and
response surface methodology to replace the sequential
evaluation of point designs. Response surface methods
have been used by other investigators, e.g., References

5 and 6.
2. DESIGN PROBLEM

2.1 HSCT Configuration

Successful aircraft configuration optimization re-
quires a simple yet meaningful mathematical charac-
terization of the geometry. We have developed a model
that completely defines the wing-body-nacelle config-
uration, using twenty-six design variables. The wing
planform is described by eight design variables, and the
airfoil thickness distribution by an additional five. The
nacelles move axially with the trailing-edge of the wing,
and two parameters define their spanwise locations.
The axisymmetric fuselage requires eight parameters



to specify both the axial positions and radii of the four
fuselage restraint locations. Details of the geometry
specification appear in References 4 and 7. While the
configuration is defined using this set of parameters,
the aircraft geometry is actually stored as a discrete
numerical description in the Craidon format®.

2.2 HSCT Mission

The optimization problem is to minimize the take-
off gross weight of an HSCT configuration with a range
of 5500 nautical miles and a cruise speed of Mach 2.4
while transporting 251 passengers.
in addition to the geometric parameters mentioned
above, three variables defined the idealized cruise mis-
sion. One variable was the mission fuel and the other
two were the initial cruise altitude and the constant
climb rate used in the range calculation. Fifty-five con-
straints which include performance/aerodynamic con-
straints and geometric constraints, such as fuselage vol-
ume and tail scrape angle, prevent the optimizer from
creating physically improbable designs”.

For this mission,

3. SEQUENTIAL APPROXIMATE
OPTIMIZATION

3.1 Variable-Complexity Modeling

Our detailed aerodynamic analysis utilized the Har-
ris program? for the supersonic volumetric wave drag,
a Mach-box'9~12 type method for supersonic drag due
to lift, and a vortex-lattice program for landing per-
formance. When compared to the computational costs
of current computational fluid dynamics analysis tech-
niques, the aerodynamic analysis methods used in this
study are relatively inexpensive. However, when im-
plemented in design optimization, where the same cal-
culation may be repeated thousands of times, the cost
associated with these techniques quickly becomes sub-
stantial. Therefore, we also employed simple, less com-
putationally intensive analyses in a variable-complexity
modeling approach?~*7. We used this methodology
within a sequential approximate optimization technique
whereby the overall design process was composed of
a sequence of optimization cycles. At the beginning
of each cycle, approximations to the wave drag and
drag due to lift were constructed using either linear,
scaled, or global-local approximations?~%7. The scaled
approximation method was utilized in this study and
employed a constant scaling function, o, given as

— fd(l‘o) (1)
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where f; represents a detailed model analysis result,

and f; represents a simple model analysis result, both

o(zo)

evaluated at a specified design point, zg, at the begin-
ning of an optimization cycle. During an optimization
cycle, the scaled approximate analysis results, f(z),
were calculated as

f(x) = o(zo) fs(x). (2)

Move limits then were imposed on the design variables
to avoid large errors, and the optimization was per-
formed using the NEWSUMT-A program'3, which im-
plements a sequential unconstrained minimization tech-
nique utilizing an extended interior penalty function.
At the end of the optimization cycle the scaling function
o was recalculated and the above process was repeated.

3.2 Design Convergence Problems

In optimizing the HSCT, two kinds of convergence
difficulties were encountered. First, at the completion
of the final optimization cycle, there was little improve-
ment in the objective function when compared to the
objective function evaluated from the initial data. Sec-
ond, when the optimization process was restarted using
different initial design variables, it converged to differ-
ent final HSCT configurations. This is demonstrated
in Figure 1 which shows two different starting design
planforms and the corresponding, unconverged final de-
sign planforms. The failure to converge to a single final
design occurred because the optimizer was trapped in
spurious local minima. Further, the optimization pro-
cess was impeded by the inaccurate sensitivity deriva-
tives stemming from the noisy analysis results.

3.3 Large Move Limit Method

During a standard optimization process the move
limits on the variables initially were approximately
eight percent and were decreased to approximately two
percent as the optimization neared completion. In
an attempt to prevent the optimizer from becoming
trapped in spurious local minima, the move limits were
increased to approximately thirty percent at the start
of the optimization and then decreased as the opti-
mization progressed. Error in the approximate analysis
introduced through the use of large initial move limits
was deemed acceptable because of the previous opti-
mization difficulties. This technique previously was em-
ployed for a different problem by Joh, et al'*. Through
the use of these much larger move limits, the optimizer
initially escaped from the local minima and proceeded
to identify improved designs. However, the newly found
improved designs did not converge to a single HSCT
configuration as demonstrated by the planform views
shown in Figure 1.
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Figure 1. Dissimilar converged designs from different
starting conditions due to spurious local minima.
(All dimensions in feet.)

4. NOISY DRAG CALCULATIONS

As described above, our current HSCT design op-
timization research involves up to twenty-six design
variables and fifty-five constraints. Therefore, the op-
timization problem is to locate optimal HSCT config-
urations within a twenty-six dimensional design space
defined by the limits of the design variables. To study
difficulties associated with the optimization process, we
selected an example design problem involving only two
design variables. Thus, the three dimensional graph of
the objective function may be easily visualized when
plotted against the two design variables. In this exam-
ple problem, the remaining twenty-four variables were
held constant and the constraints were not applied to
the HSCT configurations that were examined.

5. TWO DESIGN VARIABLE PROBLEM

For the example problem, the two design vari-
ables were the axial locations for the leading-edge and

trailing-edge break points on the HSCT wing planform
as shown in Figure 2. The design variables were var-
ied by &£ ten percent from the current baseline HSCT
configuration used in our studies. This corresponded
to a variation of the inboard leading-edge sweep angle
from 77° to 79° and a variation of the inboard trailing-
edge sweep angle from —b5° to 50°. Figure 3 shows
planform views of the four HSCT configurations de-
fined by the limits of the design variables. Because
the design constraints were not applied in the example
problem, several of the HSCT configurations in Figure
3 are quite unrealistic. To investigate the noisy drag
data, we selected the supersonic drag due to lift as the
objective function.
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Figure 2. Design variable definition for
the example problem.

The design space was then discretized using a 21 x 41
uniform grid, and supersonic drag due to lift was calcu-
lated for the HSCT configuration at each point on the
mesh. This produced a detailed map of the objective
function, shown in Figure 4, where drag due to lift is
plotted versus the range of leading and trailing-edge
sweep angles. Figure b shows a cross sectional cut of the



HSCT Design

Examples

L.E. Sweep = 77 deg.
T. E. Sweep = -55 deg.
CD(lift)/CL 2 = 0.567

L.E. Sweep = 77 deg.
T. E. Sweep = 50 deg.
CD(lift)/CL*2 = 0.580

L.E. Sweep = 79 deg.
T. E. Sweep = -55 deg.
CD(lift)/CL"2 = 0.569

L.E. Sweep = 79 deg.
T. E. Sweep = 50 deg.
CD(lift)/CL"2 = 0.573

Figure 3. Extreme HSCT planforms obtained at the limits of the design space.

three dimensional surface taken at a trailing-edge angle
of approximately three degrees. Note the extremely fine
scale of the noise with respect to both the variation in
sweep angle and in the drag due to lift values. This
view of the drag demonstrates the jagged surface fea-
tures which created the multiple spurious local minima.
Similar results were obtained for the volumetric wave
drag.

The irregular surface features shown in Figure 4 can
be attributed to the techniques used in the supersonic
drag due to lift calculations. The methods of Carlson

et al.10-12

utilize a paneling scheme that is sensitive
to planform changes. Thus, slight modifications to
the leading and trailing-edge sweep angles along with
changes in the location where the Mach angle inter-
sected the leading-edge, produced discontinuous varia-
tions in the predicted drag. The variations are small
enough so that at all points the accuracy of the drag is
acceptable. However, the oscillatory behavior creates
difficulties for gradient based optimization techniques.

It is interesting to note that similar oscillatory be-
havior was encountered in a nozzle design problem'® in
which an Euler flow solver was employed. Thus, such
oscillatory problems are not solely related to the use of
panel method flow solvers.

6. RESPONSE SURFACE METHODS

Multipoint approximation methods provide an alter-
native approach to the sequential approximation tech-
niques described above. The term multipoint refers
to the practice of concurrently analyzing many dif-
ferent HSCT configurations; a process which is inher-
ently amenable to parallel computing. The multipoint
analyses yield a database containing both the indepen-
dent design variables and objective function data. Re-
sponse surfaces are smooth functions which define the
relationship between the independent and dependent
variables'®.

The goal of multipoint approximation is to model ei-
ther the objective function on the entire design space or
portions of it using smooth response surfaces. Since the
topography of a multidimensional objective function
generally is unknown and may have many local minima,
the smooth functions are selected so that the prominent
features of the objective function are retained. Thus, in
the optimization process, the region where the global
minimum exists may be readily found while spurious
local minima may be avoided.

This work focuses on the use of multipoint approx-
imations to fit response surfaces to the noisy objec-
tive function of the example problem. Although the



drag due to lift calculations are noisy (Fig. 4), the
variation in the drag is only 2.5 percent. Since the
range of variation is small, low order response surfaces
based on linear and quadratic functions can be used to
model the topography of the objective function. In the
present work response surface methodology has been
applied using surfaces produced by bilinear tensor prod-
ucts, quadratic polynomials, biquadratic tensor prod-
ucts, and rational functions.
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Figure 4. Noisy drag due to lift objective
function data in the design space.

Because of the computational costs associated with
evaluating the large number of point designs required
for multipoint approximation, the present work focuses
on methods to determine the minimum number of cal-
culations required to construct various response sur-
faces. The simple models and the mathematical tech-
niques developed for this work with two design variables
will be extended later to design problems involving
many variables where computational costs are signif-
icant.
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Figure 5. Drag due to lift vs. leading-edge
sweep angle. Trailing-edge sweep angle
approximately three degrees.

Response surface approximations to the surface in
Figure 4 were constructed using both polynomial func-
tions and rational functions. The bilinear tensor prod-
uct model has the form

F(@,y) = (az + ) (asy + aa). (3)

Also employed were the quadratic polynomial

fle,y) = a1z + aszy + asx + aay® + asy + ag (4)

and the biquadratic tensor product
fle,y) = (alxz + asx + a3) (a4y2 + asy + a6). (5)

In addition to these models, the (1,1) rational function

(6)

a1x + asy + as
asx + asy + as

[z, y) =

was utilized.

The construction and evaluation of a response sur-
face requires several steps. In the first step a number
of points were selected using one of the point selection
techniques discussed below. Supersonic drag due to
lift data were then calculated at each of the design
points and a response surface was fit to the data. For
the bilinear tensor product, quadratic polynomial, and
biquadratic tensor product the response surfaces were
found by performing a linear least squares fit to the
drag due to lift data.
proximation, a Levenberg-Marquardt nonlinear least

For the rational function ap-
squares fitting routine was used. For this problem,
the residual was defined as the difference between the
objective function values on the computed surface and
corresponding model values on the response surface.
From the residual data the average error, RMS error,
and maximum error of the residual were calculated to
evaluate the quality of the response surface fits.

7. POINT SELECTION TECHNIQUES

To construct a response surface for an objective func-
tion described by n independent variables, a large num-
ber of individual configuration analyses were required.
To use computational resources wisely, the designer
must consider both the quantity and the distribution
of the design points in the n-dimensional design space.
In this regard, we have examined three design point se-
lection and distribution techniques: D-optimal, central
composite design, and random. The validity of these
depend on statistical assumptions about the nature of
the drag noise. It may be that other statistical estima-
tion procedures, such as robust M- or LMS-estimation,
are more appropriate for the drag noise.



7.1 D-Optimal Criterion

One method for selecting points to be used in re-
sponse surface construction is to choose points in the
design space which satisfy the D-optimal criterion. A
discussion of this criterion is presented by Box and
Draper'”. To explain the D-optimal criterion, or D-
optimality, we consider the linear system Y = Xe,
where Y is the m by 1 vector of objective function
values, ¢ is the k£ by 1 vector of coefficients to be esti-
mated, and X is an m by k matrix of constants having
rank k. The rows of matrix X are formed from the
response surface functions which relate the independent
variables to the evaluated objective function at each
design point. For example, in a two variable design
space for which there are m objective function values
and the response surface model is y = ¢1 + caw1 + c322,
the system has the form

y(x11,29,1) 1z 2o
y(x1,2, 222) 1 z12 29 a
7.’ ' = . .7 .7 C2 . (7)
: : : : ¢s
y($1,max2,m) 1 Tim L2,m

From this system, the least squares estimate of ¢ is
¢ = (XTX)"I1XTY. To satisfy D-optimality we find
the m points from a set of { > m candidate points
existing in the design space that will yield the best
fidelity between the polynomial model and the actual
objective function. The D-optimality criterion states
that the m points to choose are those which maximize
the determinant |[X7X]|. Several properties of this cri-
terion are:

i. the set of points that maximizes |[X7X] is also the
set of points that minimizes the maximum variance
of any predicted value of the objective function,

ii. the set of points that maximizes | X7 X]| is also the
set of points that minimizes the variance of the pa-
rameter estimates,

iii. the design obtained is invariant to changes in scale.

The problem of finding the m points that will give us
the most loyal approximation is the problem of finding
the m points that will maximize | X7 X|. We create a
set of [ > m points by forming a grid over the design
space. Points of intersecting grid lines become candi-
date points. Conceivably, one could consider each of
the (nll) = I!/(m!(l — m)!) combinations of m points
from the set of [ candidate points, evaluate |X7X|,
and identify the set with the largest determinant. A
small problem in two design variables may be to pick
twenty-five points from 121 possible points (discretizing
the design domain into ten sections in both directions
leads to an 11 x 11 mesh). This leads to a total of
5.26 - 10?2 possible combinations, one or more of which
are D-optimal.

It 1s clear that a heuristic method must be applied
to estimate the optimum |X” X|. This nonconvex com-
binatorial optimization problem is difficult because:

1. the discrete feasible set is huge, and
ii. |X7X| may have local maxima.

For lack of a better alternative we use a genetic algo-
rithm (GA) to maximize | XTX]|.

7.1.1 Genetic Algorithm to find D-optimality

The GA employed here is roughly modeled after
the algorithm described in the paper by Furuya and
Haftka'®. A general description of a GA follows. The
GA works with a population of b designs, each rep-
resenting a choice of m out of [ possible points. The
population of designs goes though a selection process
for breeding, whereby designs with a higher merit func-
tion, |X7X| here, have a higher probability of being
selected for breeding. Breeding is performed in such
a manner that the child designs maintain some like-
ness to the parent designs. The next generation of
designs is comprised of b — 1 children created during
the breeding process plus the best parent design of the
parent generation. Thus, the population size remains
constant throughout the generations. This is known as
an “elitist” strategy. The process continues for many
generations, and terminates after a fixed number of
generations, although there are many other reasonable
stopping criteria which may be applied. The design
with the best merit function in the end is used. The
specifics of the GA as applied to seeking D-optimality
are described in the following paragraphs.

The intent of the GA is to select the group of m
points that satisfy D-optimality for the purpose of con-
structing a least squares approximation to the objective
function. Any group of m distinct points among the [
points 1s called a candidate. To start the algorithm,
an initial population of & candidates 1s created. Each
candidate is formed by randomly selecting m distinct
points from the set of [ points spanning the design
space. A genetic string, made from the coordinates
of the m points, is used to describe the candidate. For
example, in a three dimensional design space, if m =4,
the genetic string of a particular design would be
11 X211 £31 £1,2 £22 £32 £13 £23 £33 L1 4 L24 T3 4.
The length G of the genetic string (the number of genes)
is the dimension n of the design space multiplied by m
(G =12 in the above example).

The candidates are selected as parents for breeding
based on the fitness | X7 X|. Candidates with a higher
fitness will be selected more often than candidates with
lower fitness. The rank fitness is defined as b + 1 — 7,
where r is the rank of the candidate in the population
in terms of the value of |[X”X|. The probability of se-
lection as a parent is proportional to the rank fitness,



so that the probability of the rth ranked design being
selected as a parent is

b+1—r

pp= 82D (s)

b(b+1)/2
The selection process for parenting is completed by
generating a uniformly distributed random number z
between zero and one, and selecting the rth ranked
design satisfying P, < # < P41, where

r—1
i=1

After two parents have been selected the breeding pro-
cess begins. A random integer j between one and G —1
(the number of genes—1) is generated. The child is
constructed from the first j genes of the first parent
and the G — j genes from the second parent. Note that
this makes sense only if the design space 1s a Cartesian
product. Otherwise, the new design may fall outside
the design space. In that case, a much more compli-
cated breeding scheme (“crossover” in GA parlance) or
some penalty method would be necessary. Once the
child is generated it goes through a mutation process.
Each gene has a chance of mutating, and a fifteen per-
cent chance was used in the present work. If a gene is
selected for mutation, the gene is replaced with a gene
coming randomly from the set of allowable values for
that gene. Finally the child is checked for uniqueness
and duplicate points. If it is a duplicate or has duplicate
points, it is destroyed.

After b—1 children are created, the parent generation
is replaced, retaining only the best parent for the next
generation. After the given number of generations have
been created, the candidate with the highest |X7X|
is used for forming the response surface. There is no
guarantee that the output of the genetic algorithm is
truly D-optimal. However, known D-optimal sets of
points for test cases have been recovered using the GA.

7.1.2 D-Optimal Points in the Example

Our example problem required the selection of m
D-optimal points from the set of 861 drag due to lift
data points which were used to construct Figure 4. The
genetic algorithm described above was used to search
through a portion of the 861!/(m!(861 — m)!) possi-
ble point combinations to estimate a D-optimal set of
points. Once the best estimate of a set of D-optimal
points was obtained, the appropriate response surface
functions were fit to the data. Note that the GA was
only used to choose the m point locations in the design
space. The GA was not used to find the optimum
HSCT configuration which minimized drag due to lift.

For the GA used in this problem, the population
size for each generation was fixed at ten. The number
of generations varied from 2000 to 25000 depending on

the number of points, m, needed for constructing the
various response surfaces. The values for | X7 X| were
monitored during the breeding process. When |X?X|
remained unchanged for approximately 1000 genera-
tions, the breeding process was terminated. As stated
above, each gene had a fifteen percent chance of mu-
tating during each generation.
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Figure 6. Fifty D-optimal design points chosen
by GA for a quadratic response surface fit.

Figure 6 shows an example set of fifty points ob-
tained by the GA for a quadratic polynomial response
surface model. Note that the points lie predominately
lie along on the perimeter of the design space. For
a bilinear tensor product response surface model, all
points lie on the perimeter. This behavior is expected
since points near the perimeter of the design space have

the strongest influence on | X7 X].

7.2 Central Composite Design Criteria

A second candidate point selection criterion is called
central composite design (CCD). This criterion, which
is based on design of experiments theory!®, permits the
evaluation of both the quadratic and linear terms in
equations (3-6) using a total of 2" + 2n + 1 points,
where n is the number of design variables. This is in
contrast to the 3" points required for a full factorial
design. For n greater than two, the set of CCD points
is smaller than the set of 3” points. Unfortunately, for
twenty-six design variables, even CCD requires an un-
acceptably large number of evaluations. However, the
CCD criterion provides a useful standard of comparison
to the other point selection techniques.

For the example problem where n = 2, the CCD
method requires nine point analyses, which is the same
as that required for a 3" full factorial design. However,



the location of the CCD points in the design space is
different than the location of the full factorial points
as shown in Figure 7, where the parameter § = (27)'/*
determined the spacing for the CCD points. Supersonic
drag due to lift data were calculated for the CCD points
and the response surfaces were fit to the objective func-
tion data.
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Figure 7. CCD and full factorial design
point distributions for a two variable problem.

7.3 Random Point Selection

In this point selection technique m unique points
were randomly chosen from the set of 861 drag due to
lift data points used to construct Figure 4. For this
process a uniform random integer generator, with a
range from one to 861, was used. If duplicate points
were selected, the repeated points were replaced by new
randomly chosen points until all m points were unique.

Trailing-edge

Sweep Angle (deg.)
60
° [ 1)
40 .... [ )
20 ° o ® 8o
o ©
0 [ J
o0 s o
-20 [ 2N J ®
PO ® o o
ol ® 8o oooo.’ %00
76.5 77 77.5 78 78.5 79

Leading-edge

Sweep Angle (deg.)

Figure 8. Fifty randomly chosen design points
for a quadratic response surface fit.

Figure 8 shows an example distribution of fifty,
unique, randomly selected points. Note the difference
in the point distribution between the D-optimal set
of points, the CCD points, and the randomly selected
points.

8. RESULTS

Example response surfaces generated using equa-
tions (3-5) are shown in Figures 9a,b,c, respectively.
These figures were generated using 100 randomly se-
lected points in the design space, which was well above
the minimum number of points needed to construct a
response surface which adequately modeled the objec-
tive function. We discovered initially that the rational
function described by equation (6) produced response
surfaces similar to those of the bilinear tensor product.
Therefore, further analysis using the rational function
was not conducted.

Although the bilinear response surface provides a
reasonable prediction of the overall trend of the com-
puted noisy surface in Figure 4, it is evident that the
quadratic and biquadratic response surfaces best cap-
ture the trends of the noisy surface. In particular,
the global minimum on the noisy surface occurs for a
leading-edge sweep angle of approximately 75.6° and
a trailing-edge sweep angle of approximately —20.0°,
which is roughly predicted in Figures 9b c.
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Figure 9a. Example bilinear tensor product
response surface fit to the noisy objective
function data.

The average error, RMS error, and maximum error
of the residuals for each of the response surface func-
tions and point selection techniques are listed in Tables
1-3. For the randomly selected data the values shown
are averages for either three or five trials as indicated
under each column. Data for the D-optimal and CCD
data are for single trials only. Note that the results for
m =4, 6, and 9 points represent the minimum number
of points needed to construct the bilinear, quadratic,
and biquadratic response surfaces, respectively.

The errors associated with the bilinear tensor prod-
uct response surfaces are given in Table 1 and show
that the error for the D-optimal points decreased only
slightly as the number of points ranged from four to
twenty. This was to expected since the D-optimality
criteria specified points on the perimeter of the design
space when bilinear response surface functions were
used to form X in equation (7). Thus, the points on the
perimeter were effective in capturing the overall trend
of the noisy surface, but adding additional points on the
perimeter did little to change the overall quality of the
fit. In contrast to the D-optimal error, the error for the
randomly selected data points decreased considerably
as m increased. This trend also was expected since
response surfaces constructed using points mainly in
the interior of the design space were more likely to be
affected by the noise in the computed data. As the
number of randomly selected points increased, the ef-
fects of the noise were canceled out and the surface fits

improved. This explains why the error for the randomly
selected points was lower than the errors for the D-
optimal points when more than ten points were used
to construct the response surfaces. The error calcula-
tions for the nine CCD points were approximately the
same as those for the randomly selected points and are
somewhat better than for the D-optimal points. For
the relatively simple bilinear tensor product model, all
three point selection techniques provide point distri-
butions which result in sufficiently accurate response
surfaces comparable to that shown in Figure 9a.

Trailing—edge
Sweep Angle (deg.)
CD(lift)/CL"2

Leading-edge 80
Sweep Angle (deg.)

Figure 9b. Example quadratic polynomial
response surface fit to the noisy objective
function data.

Similar trends for the D-optimal and random points
again occur in the error for the quadratic polynomial
response surface as m increased from six to fifty points
(Table 2). However, the error achieved using ten D-
optimal points provided the same level of accuracy as
was attained using approximately twenty to thirty ran-
domly selected points. Further, all response surfaces
produced from the D-optimal points were similar to
the quadratic response surface shown in Figure 9b. In
contrast, the response surfaces produced by the ran-
domly selected points were significantly different than
Figure 9b until at least twenty randomly selected points
were used. The error from the response surface fit
for the CCD points again was comparable to that of
the D-optimal and randomly selected points. For the
quadratic polynomial response surface the D-optimal
and CCD points required fewer points to accurately
model the noisy surface and therefore are superior to
the random selection of points.



Trailing—edge
Sweep Angle (deg.)
CD(lift)/CL"2

80

Leading—-edge
Sweep Angle (deg.)

Figure 9¢. Example biquadratic tensor product
response surface fit to the noisy objective
function data.

m | Avg. Error | RMS Error | Max. Error
D-optimal Points

4 0.00413 0.00502 0.01490

5 0.00403 0.00492 0.01468

10 0.00381 0.00470 0.01416

15 0.00409 0.00496 0.01502

20 0.00378 0.00464 0.01414
Random Points*

4 0.06568 0.09958 0.34724
5 0.00506 0.00685 0.02310
10 0.00278 0.00355 0.01171
15 0.00260 0.00339 0.01171
20 0.00268 0.00347 0.01222
CCD Points
9] 0.00587]  0.00662]  0.01579

Table 1. Calculated error for the bilinear tensor
product response surface fit.
*Average of three trials for each value of m.
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m | Avg. Error | RMS Error | Max. Error
D-optimal Points

6 0.00189 0.00247 0.00933
10 0.00215 0.00284 0.01102
20 0.00192 0.00252 0.01034
30 0.00192 0.00234 0.00855
40 0.00193 0.00244 0.00892
50 0.00211 0.00258 0.00779

Random Points*

6 0.02178 0.03308 0.10160
10 0.00270 0.00357 0.01198
20 0.00227 0.00283 0.00906
30 0.00197 0.00251 0.00925
40 0.00193 0.00247 0.00906
50 0.00191 0.00240 0.00881

CCD Points
9] 0.00270]  0.00331]  0.00972

Table 2. Calculated error for the quadratic
polynomial response surface fit.
*Average of five trials for each value of m.

The error for the biquadratic tensor product re-
sponse surfaces is shown in Table 3 for the three point
selection techniques. As demonstrated with the pre-
vious response surface functions, the error for the D-
optimal points varied little as m increased and the re-
sponse surfaces were qualitatively in good agreement
with Figure 9c. Approximately fifty randomly selected
points were required to provide the same quality of fit
as did ten D-optimal points. This further demonstrates
that random point selection is not an efficient point
selection method for response surface formation. The
CCD points provide a quality of fit that is somewhat
less accurate than the D-optimal points, but the re-
sponse surface formed using the CCD points did not
qualitatively agree well with Figure 9c¢c. For the bi-
quadratic tensor product, the D-optimal points pro-
vided the most accurate fit to the noisy surface, while
the CCD points provided an adequate fit as well. The
random point selection technique clearly is least accept-
able due to the large number of points necessary to fit
the noisy surface accurately.



m | Avg. Error | RMS Error | Max. Error
D-optimal Points

9 0.00199 0.00259 0.01044
10 0.00201 0.00263 0.00996
20 0.00202 0.00251 0.00774
30 0.00199 0.00240 0.00810
40 0.00183 0.00232 0.00823
50 0.00184 0.00233 0.00893
60 0.00189 0.00234 0.00782
70 0.00188 0.00240 0.00875
80 0.00182 0.00231 0.00907
90 0.00181 0.00231 0.00900

100 0.00180 0.00226 0.00855
Random Points*

9 0.04653 0.08443 0.51657
10 0.01706 0.02994 0.14234
20 0.00300 0.00414 0.01657
30 0.00251 0.00363 0.01793
40 0.00219 0.00292 0.01172
50 0.00200 0.00253 0.00995
60 0.00193 0.00241 0.00869
70 0.00192 0.00244 0.00868
80 0.00185 0.00234 0.00878
90 0.00184 0.00231 0.00889

100 0.00186 0.00231 0.00845
CCD Points
9 | 0.00310 | 0.00399 | 0.01262

Table 3. Calculated error for the biquadratic tensor
product response surface fit.
*Average of five trials for each value of m.

9. FUTURE RESEARCH DIRECTIONS

For future research, several other areas of interest
have been identified which will work in conjunction
with the multipoint response surface methods we have
developed thus far. To combat the “curse of dimenston-
ality” which greatly increases the number of required
point analyses as the dimension of the design space
becomes large, we propose several avenues of investiga-
tion. First, we will apply the fifty-five constraints of our
HSCT design problem to reduce the design space from
an n-dimensional rectangle to a smaller n-dimensional
feasible region in which we will concentrate our anal-
ysis points. The domain of design variables will be
further reduced by only considering design variables
in a vicinity of those found on the basis of a sim-
ple model analysis and optimization. This variable-
complexity approach will play a large role in reducing
the computational cost of the HSCT design problem.
In addition, we plan to apply principal factor analysis
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to identify which design variables have the most impact
on the overall HSCT design. Those variables having the
most effect will be modeled using higher order response
surface functions while those having less effect will be
modeled using lower order functions. Along with these
efforts, we have started the process of converting the
HSCT analysis codes to run on a parallel computer.
Because the multipoint response surface methodology
requires numerous independent calculations, it offers an
excellent way to exploit coarse grained parallel compu-
tations and thereby reduce computational costs.

10. CONCLUDING REMARKS

In the optimization of the high speed civil transport
the computed objective function was found to be ex-
tremely noisy, with many local minima. This noise in-
hibited the use of traditional gradient based sequential
approximate optimization techniques because HSCT
designs became trapped in spurious noise-induced lo-
cal minima. A method of escaping these minima was
found by using large move limits for the first few opti-
mization cycles and then decreasing the move limits to
reasonable sizes as the optimization progressed. This
technique enabled the optimizer to escape local minima
early in the optimization process and several improved
designs were identified with this technique. However,
no single, optimal HSCT configuration was achieved
with this method.

As demonstrated in the two variable example prob-
lem, the use of response surface methodology pro-
vides a technique for calculating smooth approxima-
tions to noisy objective function data. The comparison
between the three point selection techniques demon-
strated that an ordered point selection technique, such
as D-optimality or central composite design, provides
a more accurate and efficient method of modeling the
objective function than does random point selection.
For the example problem where only two design vari-
ables were utilized, there was little difference between
the D-optimal and CCD selection methods. However,
for design problems involving more than two design
variables, the number of analyses required for the CCD
method quickly becomes infeasible. The D-optimal
point selection technique provides a flexible approach
for choosing analysis points within an n-dimensional
design space and can be tailored to provide an optimum
arrangement of any number of analysis points which the
designer can computationally afford. Further, the use
of a genetic algorithm has been shown to be a practical
means of estimating a D-optimal set of analysis points.
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