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ABSTRACT

Convergence di	culties were encountered in our re�
cent e
orts toward a combined aerodynamic�structural
optimization of the High Speed Civil Transport �HS�
CT�� The underlying causes of the convergence prob�
lems were traced to numerical noise in the calculation
of aerodynamic drag components for the aircraft� Two
techniques were developed to circumvent the obstacles
to convergence� The 
rst technique employed a se�
quential approximate optimization method which used
large initial move limits on the design variables� This
helped dislodge the optimizer out of the local minima
in the design space created by the noisy drag data�
The second method utilized response surface methods
to construct smooth approximations to the noisy data�
The response surfaces were formed by analyzing several
individual HSCT con
gurations and then 
tting poly�
nomial functions to selected objective function data� A
simpli
ed example design problem was used to demon�
strate the response surface technique and to investigate
various other issues relating to the construction of the
response surfaces�

�� INTRODUCTION

The design of modern aerospace vehicles involves
multidisciplinary interactions and presents a formidable
challenge to the designer in a competitive marketplace�
Multidisciplinary optimization �MDO� technology is a
major tool for addressing this need� but its current use
in the design process is limited by its enormous compu�
tational burden� To address this challenge� our group at
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Virginia Tech recently developed a variable�complexity
modeling approach� involving the use of re
ned and
computationally expensive models together with sim�
ple and computationally inexpensive models�� We have
applied this approach to the combined aerodynamic�
structural optimization of transport wings and recently
have focused on the aerodynamic�structural optimiza�
tion of the High Speed Civil Transport �HSCT�����

The issues addressed in this paper arose in a recent
HSCT study where we found that the 
nal vehicle con�

gurations varied signi
cantly depending on the choice
of initial conditions for the design variables� One of the
causes of this problem was traced to numerical noise
in the computation of aerodynamic drag components�
This noise contributed to the formation of a jagged
multidimensional objective function with many local
minima� It appeared that our previous HSCT designs
had become trapped in these local minima during the
optimization process and were prevented from converg�
ing to an optimal con
guration�

This paper describes two techniques for constructing
smooth approximations to the drag components in an
e
ort to counter the noisy� drag data� The 
rst utilizes
a variation on the sequential aerodynamic optimization
techniques currently employed in our research� The sec�
ond uses the concept of multipoint approximation and
response surface methodology to replace the sequential
evaluation of point designs� Response surface methods
have been used by other investigators� e�g�� References
� and ��

�� DESIGN PROBLEM

��� HSCT Con�guration

Successful aircraft con
guration optimization re�
quires a simple yet meaningful mathematical charac�
terization of the geometry� We have developed a model
that completely de
nes the wing�body�nacelle con
g�
uration� using twenty�six design variables� The wing
planform is described by eight design variables� and the
airfoil thickness distribution by an additional 
ve� The
nacelles move axially with the trailing�edge of the wing�
and two parameters de
ne their spanwise locations�
The axisymmetric fuselage requires eight parameters
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to specify both the axial positions and radii of the four
fuselage restraint locations� Details of the geometry
speci
cation appear in References � and �� While the
con
guration is de
ned using this set of parameters�
the aircraft geometry is actually stored as a discrete
numerical description in the Craidon format��

��� HSCT Mission

The optimization problem is to minimize the take�
o
 gross weight of an HSCT con
guration with a range
of ���� nautical miles and a cruise speed of Mach ���
while transporting ��� passengers� For this mission�
in addition to the geometric parameters mentioned
above� three variables de
ned the idealized cruise mis�
sion� One variable was the mission fuel and the other
two were the initial cruise altitude and the constant
climb rate used in the range calculation� Fifty�
ve con�
straints which include performance�aerodynamic con�
straints and geometric constraints� such as fuselage vol�
ume and tail scrape angle� prevent the optimizer from
creating physically improbable designs��

�� SEQUENTIAL APPROXIMATE

OPTIMIZATION

��� Variable�Complexity Modeling

Our detailed aerodynamic analysis utilized the Har�
ris program� for the supersonic volumetric wave drag�
a Mach�box����� type method for supersonic drag due
to lift� and a vortex�lattice program for landing per�
formance� When compared to the computational costs
of current computational �uid dynamics analysis tech�
niques� the aerodynamic analysis methods used in this
study are relatively inexpensive� However� when im�
plemented in design optimization� where the same cal�
culation may be repeated thousands of times� the cost
associated with these techniques quickly becomes sub�
stantial� Therefore� we also employed simple� less com�
putationally intensive analyses in a variable�complexity
modeling approach������ We used this methodology
within a sequential approximate optimization technique
whereby the overall design process was composed of
a sequence of optimization cycles� At the beginning
of each cycle� approximations to the wave drag and
drag due to lift were constructed using either linear�
scaled� or global�local approximations������ The scaled
approximation method was utilized in this study and
employed a constant scaling function� �� given as

��x�� �
fd�x��

fs�x��
� ���

where fd represents a detailed model analysis result�
and fs represents a simple model analysis result� both

evaluated at a speci
ed design point� x�� at the begin�

ning of an optimization cycle� During an optimization

cycle� the scaled approximate analysis results� f�x��

were calculated as

f�x� � ��x��fs�x�� ���

Move limits then were imposed on the design variables

to avoid large errors� and the optimization was per�

formed using the NEWSUMT�A program��� which im�

plements a sequential unconstrained minimization tech�

nique utilizing an extended interior penalty function�

At the end of the optimization cycle the scaling function

� was recalculated and the above process was repeated�

��� Design Convergence Problems

In optimizing the HSCT� two kinds of convergence

di	culties were encountered� First� at the completion

of the 
nal optimization cycle� there was little improve�

ment in the objective function when compared to the

objective function evaluated from the initial data� Sec�

ond� when the optimization process was restarted using

di
erent initial design variables� it converged to di
er�

ent 
nal HSCT con
gurations� This is demonstrated

in Figure � which shows two di
erent starting design

planforms and the corresponding� unconverged 
nal de�

sign planforms� The failure to converge to a single 
nal

design occurred because the optimizer was trapped in

spurious local minima� Further� the optimization pro�

cess was impeded by the inaccurate sensitivity deriva�

tives stemming from the noisy analysis results�

��� Large Move Limit Method

During a standard optimization process the move

limits on the variables initially were approximately

eight percent and were decreased to approximately two

percent as the optimization neared completion� In

an attempt to prevent the optimizer from becoming

trapped in spurious local minima� the move limits were

increased to approximately thirty percent at the start

of the optimization and then decreased as the opti�

mization progressed� Error in the approximate analysis

introduced through the use of large initial move limits

was deemed acceptable because of the previous opti�

mization di	culties� This technique previously was em�

ployed for a di
erent problem by Joh� et al��� Through

the use of these much larger move limits� the optimizer

initially escaped from the local minima and proceeded

to identify improved designs� However� the newly found

improved designs did not converge to a single HSCT

con
guration as demonstrated by the planform views

shown in Figure ��
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Case 1

Start Finish
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0
Gross Weight 544124 lbs.

Range 5477 n.mi.
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Gross Weight 546916 lbs.

Range 5031 n.mi.

Case 2
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Range 5476 n.mi.

Figure �� Dissimilar converged designs from di
erent
starting conditions due to spurious local minima�

�All dimensions in feet��

�� NOISY DRAG CALCULATIONS

As described above� our current HSCT design op�
timization research involves up to twenty�six design
variables and 
fty�
ve constraints� Therefore� the op�
timization problem is to locate optimal HSCT con
g�
urations within a twenty�six dimensional design space
de
ned by the limits of the design variables� To study
di	culties associated with the optimization process� we
selected an example design problem involving only two
design variables� Thus� the three dimensional graph of
the objective function may be easily visualized when
plotted against the two design variables� In this exam�
ple problem� the remaining twenty�four variables were
held constant and the constraints were not applied to
the HSCT con
gurations that were examined�

�� TWO DESIGN VARIABLE PROBLEM

For the example problem� the two design vari�
ables were the axial locations for the leading�edge and

trailing�edge break points on the HSCT wing planform
as shown in Figure �� The design variables were var�
ied by � ten percent from the current baseline HSCT
con
guration used in our studies� This corresponded
to a variation of the inboard leading�edge sweep angle
from ��� to ��� and a variation of the inboard trailing�
edge sweep angle from ���� to ���� Figure � shows
planform views of the four HSCT con
gurations de�

ned by the limits of the design variables� Because
the design constraints were not applied in the example
problem� several of the HSCT con
gurations in Figure
� are quite unrealistic� To investigate the noisy drag
data� we selected the supersonic drag due to lift as the
objective function�

L.E. Break

T.E. Break

Inboard Leading−edge
Sweep Angle

Inboard Trailing−edge
Sweep Angle

Figure �� Design variable de
nition for
the example problem�

The design space was then discretized using a �����
uniform grid� and supersonic drag due to lift was calcu�
lated for the HSCT con
guration at each point on the
mesh� This produced a detailed map of the objective
function� shown in Figure �� where drag due to lift is
plotted versus the range of leading and trailing�edge
sweep angles� Figure � shows a cross sectional cut of the
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HSCT Design Examples

L.E. Sweep = 77 deg.
T. E. Sweep = 50 deg.
CD(lift)/CL^2 = 0.580

L.E. Sweep = 77 deg.
T. E. Sweep = −55 deg.
CD(lift)/CL^2 = 0.567

L.E. Sweep = 79 deg.
T. E. Sweep = −55 deg.
CD(lift)/CL^2 = 0.569

L.E. Sweep = 79 deg.
T. E. Sweep = 50 deg.
CD(lift)/CL^2 = 0.573

Figure �� Extreme HSCT planforms obtained at the limits of the design space�

three dimensional surface taken at a trailing�edge angle
of approximately three degrees� Note the extremely 
ne
scale of the noise with respect to both the variation in
sweep angle and in the drag due to lift values� This

view of the drag demonstrates the jagged surface fea�
tures which created the multiple spurious local minima�
Similar results were obtained for the volumetric wave
drag�

The irregular surface features shown in Figure � can
be attributed to the techniques used in the supersonic
drag due to lift calculations� The methods of Carlson

et al������ utilize a paneling scheme that is sensitive
to planform changes� Thus� slight modi
cations to
the leading and trailing�edge sweep angles along with
changes in the location where the Mach angle inter�
sected the leading�edge� produced discontinuous varia�
tions in the predicted drag� The variations are small
enough so that at all points the accuracy of the drag is
acceptable� However� the oscillatory behavior creates
di	culties for gradient based optimization techniques�

It is interesting to note that similar oscillatory be�

havior was encountered in a nozzle design problem�� in
which an Euler �ow solver was employed� Thus� such
oscillatory problems are not solely related to the use of
panel method �ow solvers�

�� RESPONSE SURFACE METHODS

Multipoint approximationmethods provide an alter�
native approach to the sequential approximation tech�
niques described above� The term multipoint refers
to the practice of concurrently analyzing many dif�
ferent HSCT con
gurations� a process which is inher�
ently amenable to parallel computing� The multipoint
analyses yield a database containing both the indepen�
dent design variables and objective function data� Re�
sponse surfaces are smooth functions which de
ne the
relationship between the independent and dependent
variables�	�

The goal of multipoint approximation is to model ei�
ther the objective function on the entire design space or
portions of it using smooth response surfaces� Since the
topography of a multidimensional objective function
generally is unknown and may have many local minima�
the smooth functions are selected so that the prominent
features of the objective function are retained� Thus� in
the optimization process� the region where the global
minimum exists may be readily found while spurious
local minima may be avoided�

This work focuses on the use of multipoint approx�
imations to 
t response surfaces to the noisy objec�
tive function of the example problem� Although the
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drag due to lift calculations are noisy �Fig� ��� the
variation in the drag is only ��� percent� Since the
range of variation is small� low order response surfaces
based on linear and quadratic functions can be used to
model the topography of the objective function� In the
present work response surface methodology has been
applied using surfaces produced by bilinear tensor prod�
ucts� quadratic polynomials� biquadratic tensor prod�
ucts� and rational functions�
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Figure �� Noisy drag due to lift objective
function data in the design space�

Because of the computational costs associated with
evaluating the large number of point designs required
for multipoint approximation� the present work focuses
on methods to determine the minimum number of cal�
culations required to construct various response sur�
faces� The simple models and the mathematical tech�
niques developed for this work with two design variables
will be extended later to design problems involving
many variables where computational costs are signif�
icant�
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Figure �� Drag due to lift vs� leading�edge
sweep angle� Trailing�edge sweep angle

approximately three degrees�

Response surface approximations to the surface in

Figure � were constructed using both polynomial func�

tions and rational functions� The bilinear tensor prod�

uct model has the form

f�x� y� �
�
a�x� a�

��
a�y � a�

�
� ���

Also employed were the quadratic polynomial

f�x� y� � a�x
� � a�xy � a�x� a�y

� � a�y � a	 ���

and the biquadratic tensor product

f�x� y� �
�
a�x

� � a�x� a�
��
a�y

� � a�y � a	
�
� ���

In addition to these models� the ����� rational function

f�x� y� �
a�x� a�y � a�
a�x� a�y � a	

���

was utilized�

The construction and evaluation of a response sur�

face requires several steps� In the 
rst step a number

of points were selected using one of the point selection

techniques discussed below� Supersonic drag due to

lift data were then calculated at each of the design

points and a response surface was 
t to the data� For

the bilinear tensor product� quadratic polynomial� and

biquadratic tensor product the response surfaces were

found by performing a linear least squares 
t to the

drag due to lift data� For the rational function ap�

proximation� a Levenberg�Marquardt nonlinear least

squares 
tting routine was used� For this problem�

the residual was de
ned as the di
erence between the

objective function values on the computed surface and

corresponding model values on the response surface�

From the residual data the average error� RMS error�

and maximum error of the residual were calculated to

evaluate the quality of the response surface 
ts�

	� POINT SELECTION TECHNIQUES

To construct a response surface for an objective func�

tion described by n independent variables� a large num�

ber of individual con
guration analyses were required�

To use computational resources wisely� the designer

must consider both the quantity and the distribution

of the design points in the n�dimensional design space�

In this regard� we have examined three design point se�

lection and distribution techniques� D�optimal� central

composite design� and random� The validity of these

depend on statistical assumptions about the nature of

the drag noise� It may be that other statistical estima�

tion procedures� such as robust M� or LMS�estimation�

are more appropriate for the drag noise�

�



	�� D�Optimal Criterion

One method for selecting points to be used in re�
sponse surface construction is to choose points in the
design space which satisfy the D�optimal criterion� A
discussion of this criterion is presented by Box and
Draper��� To explain the D�optimal criterion� or D�
optimality� we consider the linear system Y � Xc�
where Y is the m by � vector of objective function
values� c is the k by � vector of coe	cients to be esti�
mated� and X is an m by k matrix of constants having
rank k� The rows of matrix X are formed from the
response surface functions which relate the independent
variables to the evaluated objective function at each
design point� For example� in a two variable design
space for which there are m objective function values
and the response surface model is y � c�� c�x�� c�x��
the system has the form
�
BB�

y�x���� x����
y�x���� x����

���
y�x��m� x��m�

�
CCA �

�
BB�

� x��� x���
� x��� x���
���

���
���

� x��m x��m

�
CCA

�
�
c�
c�
c�

�
A � ���

From this system� the least squares estimate of c is
�c � �XTX���XTY� To satisfy D�optimality we 
nd
the m points from a set of l � m candidate points
existing in the design space that will yield the best

delity between the polynomial model and the actual
objective function� The D�optimality criterion states
that the m points to choose are those which maximize
the determinant jXTXj� Several properties of this cri�
terion are�
i� the set of points that maximizes jXTXj is also the
set of points that minimizes the maximum variance
of any predicted value of the objective function�

ii� the set of points that maximizes jXTXj is also the
set of points that minimizes the variance of the pa�
rameter estimates�

iii� the design obtained is invariant to changes in scale�

The problem of 
nding the m points that will give us
the most loyal approximation is the problem of 
nding
the m points that will maximize jXTXj� We create a
set of l � m points by forming a grid over the design
space� Points of intersecting grid lines become candi�
date points� Conceivably� one could consider each of

the
�
l
m

�
� l���m��l � m��� combinations of m points

from the set of l candidate points� evaluate jXTXj�
and identify the set with the largest determinant� A
small problem in two design variables may be to pick
twenty�
ve points from ��� possible points �discretizing
the design domain into ten sections in both directions
leads to an �� � �� mesh�� This leads to a total of
���� � ���� possible combinations� one or more of which
are D�optimal�

It is clear that a heuristic method must be applied
to estimate the optimum jXTXj� This nonconvex com�
binatorial optimization problem is di	cult because�
i� the discrete feasible set is huge� and
ii� jXTXj may have local maxima�

For lack of a better alternative we use a genetic algo�
rithm �GA� to maximize jXTXj�

����� Genetic Algorithm to �nd D�optimality

The GA employed here is roughly modeled after
the algorithm described in the paper by Furuya and
Haftka��� A general description of a GA follows� The
GA works with a population of b designs� each rep�
resenting a choice of m out of l possible points� The
population of designs goes though a selection process
for breeding� whereby designs with a higher merit func�
tion� jXTXj here� have a higher probability of being
selected for breeding� Breeding is performed in such
a manner that the child designs maintain some like�
ness to the parent designs� The next generation of
designs is comprised of b � � children created during
the breeding process plus the best parent design of the
parent generation� Thus� the population size remains
constant throughout the generations� This is known as
an �elitist� strategy� The process continues for many
generations� and terminates after a 
xed number of
generations� although there are many other reasonable
stopping criteria which may be applied� The design
with the best merit function in the end is used� The
speci
cs of the GA as applied to seeking D�optimality
are described in the following paragraphs�

The intent of the GA is to select the group of m
points that satisfy D�optimality for the purpose of con�
structing a least squares approximation to the objective
function� Any group of m distinct points among the l
points is called a candidate� To start the algorithm�
an initial population of b candidates is created� Each
candidate is formed by randomly selecting m distinct
points from the set of l points spanning the design
space� A genetic string� made from the coordinates
of the m points� is used to describe the candidate� For
example� in a three dimensional design space� if m � ��
the genetic string of a particular design would be

x��� x��� x��� x��� x��� x��� x��� x��� x��� x��� x��� x����

The lengthG of the genetic string �the number of genes�
is the dimension n of the design space multiplied by m
�G � �� in the above example��

The candidates are selected as parents for breeding
based on the 
tness jXTXj� Candidates with a higher

tness will be selected more often than candidates with
lower 
tness� The rank 
tness is de
ned as b � � � r�
where r is the rank of the candidate in the population
in terms of the value of jXTXj� The probability of se�
lection as a parent is proportional to the rank 
tness�
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so that the probability of the rth ranked design being
selected as a parent is

pr �
�b� �� r�

b�b� ����
� ���

The selection process for parenting is completed by
generating a uniformly distributed random number x
between zero and one� and selecting the rth ranked
design satisfying Pr � x � Pr
�� where

Pr �
r��X
i��

pi� ���

After two parents have been selected the breeding pro�
cess begins� A random integer j between one and G��
�the number of genes��� is generated� The child is
constructed from the 
rst j genes of the 
rst parent
and the G� j genes from the second parent� Note that
this makes sense only if the design space is a Cartesian
product� Otherwise� the new design may fall outside
the design space� In that case� a much more compli�
cated breeding scheme ��crossover� in GA parlance� or
some penalty method would be necessary� Once the
child is generated it goes through a mutation process�
Each gene has a chance of mutating� and a 
fteen per�
cent chance was used in the present work� If a gene is
selected for mutation� the gene is replaced with a gene
coming randomly from the set of allowable values for
that gene� Finally the child is checked for uniqueness
and duplicate points� If it is a duplicate or has duplicate
points� it is destroyed�

After b�� children are created� the parent generation
is replaced� retaining only the best parent for the next
generation� After the given number of generations have
been created� the candidate with the highest jXTXj
is used for forming the response surface� There is no
guarantee that the output of the genetic algorithm is
truly D�optimal� However� known D�optimal sets of
points for test cases have been recovered using the GA�

����� D�Optimal Points in the Example

Our example problem required the selection of m
D�optimal points from the set of ��� drag due to lift
data points which were used to construct Figure �� The
genetic algorithm described above was used to search
through a portion of the ������m����� � m��� possi�
ble point combinations to estimate a D�optimal set of
points� Once the best estimate of a set of D�optimal
points was obtained� the appropriate response surface
functions were 
t to the data� Note that the GA was
only used to choose the m point locations in the design
space� The GA was not used to 
nd the optimum
HSCT con
guration which minimized drag due to lift�

For the GA used in this problem� the population
size for each generation was 
xed at ten� The number
of generations varied from ���� to ����� depending on

the number of points� m� needed for constructing the
various response surfaces� The values for jXTXj were

monitored during the breeding process� When jXTXj
remained unchanged for approximately ���� genera�
tions� the breeding process was terminated� As stated
above� each gene had a 
fteen percent chance of mu�
tating during each generation�
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Figure �� Fifty D�optimal design points chosen
by GA for a quadratic response surface 
t�

Figure � shows an example set of 
fty points ob�
tained by the GA for a quadratic polynomial response
surface model� Note that the points lie predominately
lie along on the perimeter of the design space� For
a bilinear tensor product response surface model� all
points lie on the perimeter� This behavior is expected
since points near the perimeter of the design space have
the strongest in�uence on jXTXj�

	�� Central Composite Design Criteria

A second candidate point selection criterion is called
central composite design �CCD�� This criterion� which
is based on design of experiments theory��� permits the
evaluation of both the quadratic and linear terms in
equations ����� using a total of �n � �n � � points�
where n is the number of design variables� This is in
contrast to the �n points required for a full factorial
design� For n greater than two� the set of CCD points
is smaller than the set of �n points� Unfortunately� for
twenty�six design variables� even CCD requires an un�
acceptably large number of evaluations� However� the
CCD criterion provides a useful standard of comparison
to the other point selection techniques�

For the example problem where n � �� the CCD
method requires nine point analyses� which is the same
as that required for a �n full factorial design� However�
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the location of the CCD points in the design space is

di
erent than the location of the full factorial points

as shown in Figure �� where the parameter � � ��n����

determined the spacing for the CCD points� Supersonic

drag due to lift data were calculated for the CCD points

and the response surfaces were 
t to the objective func�

tion data�

Central Composite Design Points

(1,1)(−1,1)

(−1,−1) (1,−1)

Beta

Beta

Beta=(2 )n 1/4

(1,1)(−1,1)

(−1,−1) (1,−1)

Full Factorial Design Points

Figure �� CCD and full factorial design
point distributions for a two variable problem�

	�� Random Point Selection

In this point selection technique m unique points

were randomly chosen from the set of ��� drag due to

lift data points used to construct Figure �� For this

process a uniform random integer generator� with a

range from one to ���� was used� If duplicate points

were selected� the repeated points were replaced by new

randomly chosen points until all m points were unique�
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Figure �� Fifty randomly chosen design points
for a quadratic response surface 
t�

Figure � shows an example distribution of 
fty�

unique� randomly selected points� Note the di
erence

in the point distribution between the D�optimal set

of points� the CCD points� and the randomly selected

points�


� RESULTS

Example response surfaces generated using equa�

tions ����� are shown in Figures �a�b�c� respectively�

These 
gures were generated using ��� randomly se�

lected points in the design space� which was well above

the minimum number of points needed to construct a

response surface which adequately modeled the objec�

tive function� We discovered initially that the rational

function described by equation ��� produced response

surfaces similar to those of the bilinear tensor product�

Therefore� further analysis using the rational function

was not conducted�

Although the bilinear response surface provides a

reasonable prediction of the overall trend of the com�

puted noisy surface in Figure �� it is evident that the

quadratic and biquadratic response surfaces best cap�

ture the trends of the noisy surface� In particular�

the global minimum on the noisy surface occurs for a

leading�edge sweep angle of approximately ����� and

a trailing�edge sweep angle of approximately �������

which is roughly predicted in Figures �b�c�

�



75
76

77
78

79
80

-50

-25
0
25

50

0.55
0.56
0.57
0.58
0.59
0.6

75
76

77
78

79
80

-50

-25
0
25

50

0.
0
0
0
0
0

Leading−edge
Sweep Angle (deg.)

Trailing−edge
Sweep Angle (deg.)

CD(lift)/CL^2

Figure �a� Example bilinear tensor product
response surface 
t to the noisy objective

function data�

The average error� RMS error� and maximum error
of the residuals for each of the response surface func�
tions and point selection techniques are listed in Tables
���� For the randomly selected data the values shown
are averages for either three or 
ve trials as indicated
under each column� Data for the D�optimal and CCD
data are for single trials only� Note that the results for
m � �� �� and � points represent the minimumnumber
of points needed to construct the bilinear� quadratic�
and biquadratic response surfaces� respectively�

The errors associated with the bilinear tensor prod�
uct response surfaces are given in Table � and show
that the error for the D�optimal points decreased only
slightly as the number of points ranged from four to
twenty� This was to expected since the D�optimality
criteria speci
ed points on the perimeter of the design
space when bilinear response surface functions were
used to formX in equation ���� Thus� the points on the
perimeter were e
ective in capturing the overall trend
of the noisy surface� but adding additional points on the
perimeter did little to change the overall quality of the

t� In contrast to the D�optimal error� the error for the
randomly selected data points decreased considerably
as m increased� This trend also was expected since
response surfaces constructed using points mainly in
the interior of the design space were more likely to be
a
ected by the noise in the computed data� As the
number of randomly selected points increased� the ef�
fects of the noise were canceled out and the surface 
ts

improved� This explains why the error for the randomly
selected points was lower than the errors for the D�
optimal points when more than ten points were used
to construct the response surfaces� The error calcula�
tions for the nine CCD points were approximately the
same as those for the randomly selected points and are
somewhat better than for the D�optimal points� For
the relatively simple bilinear tensor product model� all
three point selection techniques provide point distri�
butions which result in su	ciently accurate response
surfaces comparable to that shown in Figure �a�
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Figure �b� Example quadratic polynomial
response surface 
t to the noisy objective

function data�

Similar trends for the D�optimal and random points
again occur in the error for the quadratic polynomial
response surface as m increased from six to 
fty points
�Table ��� However� the error achieved using ten D�
optimal points provided the same level of accuracy as
was attained using approximately twenty to thirty ran�
domly selected points� Further� all response surfaces
produced from the D�optimal points were similar to
the quadratic response surface shown in Figure �b� In
contrast� the response surfaces produced by the ran�
domly selected points were signi
cantly di
erent than
Figure �b until at least twenty randomly selected points
were used� The error from the response surface 
t
for the CCD points again was comparable to that of
the D�optimal and randomly selected points� For the
quadratic polynomial response surface the D�optimal
and CCD points required fewer points to accurately
model the noisy surface and therefore are superior to
the random selection of points�
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Figure �c� Example biquadratic tensor product
response surface 
t to the noisy objective

function data�

m Avg� Error RMS Error Max� Error

D�optimal Points
� ������� ������� �������
� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������

Random Points�

� ������� ������� �������
� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������

CCD Points
� ������� ������� �������

Table �� Calculated error for the bilinear tensor
product response surface 
t�

�Average of three trials for each value of m�

m Avg� Error RMS Error Max� Error

D�optimal Points
� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������

Random Points�

� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������

CCD Points
� ������� ������� �������

Table �� Calculated error for the quadratic
polynomial response surface 
t�

�Average of 
ve trials for each value of m�

The error for the biquadratic tensor product re�
sponse surfaces is shown in Table � for the three point
selection techniques� As demonstrated with the pre�
vious response surface functions� the error for the D�
optimal points varied little as m increased and the re�
sponse surfaces were qualitatively in good agreement
with Figure �c� Approximately 
fty randomly selected
points were required to provide the same quality of 
t
as did ten D�optimal points� This further demonstrates
that random point selection is not an e	cient point
selection method for response surface formation� The
CCD points provide a quality of 
t that is somewhat
less accurate than the D�optimal points� but the re�
sponse surface formed using the CCD points did not
qualitatively agree well with Figure �c� For the bi�
quadratic tensor product� the D�optimal points pro�
vided the most accurate 
t to the noisy surface� while
the CCD points provided an adequate 
t as well� The
random point selection technique clearly is least accept�
able due to the large number of points necessary to 
t
the noisy surface accurately�

��



m Avg� Error RMS Error Max� Error

D�optimal Points
� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
��� ������� ������� �������

Random Points�

� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
�� ������� ������� �������
��� ������� ������� �������

CCD Points
� ������� ������� �������

Table �� Calculated error for the biquadratic tensor
product response surface 
t�

�Average of 
ve trials for each value of m�

�� FUTURE RESEARCH DIRECTIONS

For future research� several other areas of interest
have been identi
ed which will work in conjunction
with the multipoint response surface methods we have
developed thus far� To combat the �curse of dimension�
ality� which greatly increases the number of required
point analyses as the dimension of the design space
becomes large� we propose several avenues of investiga�
tion� First� we will apply the 
fty�
ve constraints of our
HSCT design problem to reduce the design space from
an n�dimensional rectangle to a smaller n�dimensional
feasible region in which we will concentrate our anal�
ysis points� The domain of design variables will be
further reduced by only considering design variables
in a vicinity of those found on the basis of a sim�
ple model analysis and optimization� This variable�
complexity approach will play a large role in reducing
the computational cost of the HSCT design problem�
In addition� we plan to apply principal factor analysis

to identify which design variables have the most impact
on the overall HSCT design� Those variables having the
most e
ect will be modeled using higher order response
surface functions while those having less e
ect will be
modeled using lower order functions� Along with these
e
orts� we have started the process of converting the
HSCT analysis codes to run on a parallel computer�
Because the multipoint response surface methodology
requires numerous independent calculations� it o
ers an
excellent way to exploit coarse grained parallel compu�
tations and thereby reduce computational costs�

��� CONCLUDING REMARKS

In the optimization of the high speed civil transport
the computed objective function was found to be ex�
tremely noisy� with many local minima� This noise in�
hibited the use of traditional gradient based sequential
approximate optimization techniques because HSCT
designs became trapped in spurious noise�induced lo�
cal minima� A method of escaping these minima was
found by using large move limits for the 
rst few opti�
mization cycles and then decreasing the move limits to
reasonable sizes as the optimization progressed� This
technique enabled the optimizer to escape local minima
early in the optimization process and several improved
designs were identi
ed with this technique� However�
no single� optimal HSCT con
guration was achieved
with this method�

As demonstrated in the two variable example prob�
lem� the use of response surface methodology pro�
vides a technique for calculating smooth approxima�
tions to noisy objective function data� The comparison
between the three point selection techniques demon�
strated that an ordered point selection technique� such
as D�optimality or central composite design� provides
a more accurate and e	cient method of modeling the
objective function than does random point selection�
For the example problem where only two design vari�
ables were utilized� there was little di
erence between
the D�optimal and CCD selection methods� However�
for design problems involving more than two design
variables� the number of analyses required for the CCD
method quickly becomes infeasible� The D�optimal
point selection technique provides a �exible approach
for choosing analysis points within an n�dimensional
design space and can be tailored to provide an optimum
arrangement of any number of analysis points which the
designer can computationally a
ord� Further� the use
of a genetic algorithm has been shown to be a practical
means of estimating a D�optimal set of analysis points�
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