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 A functional unsteady aerodynamic model with state equation representation is 
proposed and investigated with the purpose of evaluating it as computationally affordable 
model to be used in conjunction with the equations of motion to simulate wing rock. This 
state space formulation has three internal state variables that represent parameters related 
to the physics of the flow. Each airplane lifting surface that the airplane is split into is 
associated with a set of three state space equations which represents its dynamics, and with 
one observer equation which outputs its lifting force coefficient. The airplane lifting force 
coefficient is the summation of the coefficients of each lifting surface panel. The products of 
the panel force coefficients and their moment arms with reference to the longitudinal axis 
are summed up to find the global airplane rolling moment coefficient. The proposed airplane 
state space representation is identified against a combination of experimental aerodynamic 
data available in the open literature for slender delta wings. The identifications for the 
proposed formulation are found to match the experimental data well. The simulations in 
pure roll oscillations revealed that even though it was identified against simulated data based 
on scarce published experimental results, the model presents the expected qualitative 
behavior and that the concept is proved to be useful to simulate wing rock. 

Nomenclature 
b = wing span 
cr = wing root chord 
Cl = roll moment coefficient 
f, g = generic functions 
Ixx = moment of inertia with respect to the longitudinal axis 
L = roll moment 
p = roll rate 
q  = dynamic pressure 
S = wing planform area 
φ  = roll angle 

( )•,1τ  = transient time constant 

( )•,2τ  = time-delay constant 

I. Introduction 
his paper presents a research that is further described in [1]. Its objective is to propose and to investigate an 
unsteady aerodynamic model with state equation representation and valid up to the high angle of attack regime 

with the purpose of evaluating it as computationally affordable model to be used in conjunction with the equations 
T 
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of motion to simulate wing rock. The aerodynamic forces can be fully described only by the Navier-Stokes 
equations. At the present time computational methodology and computer power are still not quite adequate to 
provide time accurate solutions to the Navier-Stokes equations in the Flight Dynamics simulation environment. For 
this reason, more practical and simpler methods for the determination of the aerodynamic forces that could be used 
in conjunction with the equations of motion have been searched. These methods can be divided into physical and 
functional modeling methods. Physical modeling methods for the aerodynamic forces are those directly derived 
from the very first physical principles through the simplifications of the Navier-Stokes equations. The multi-axis 
model2 chosen in this report to represent the unsteady aerodynamics of the whole airplane assumes the 
decomposition of the airplane into lifting surfaces or panels that have their particular aerodynamic force coefficients 
modeled as basic unsteady aerodynamic state-space models3. These coefficients are summed up to find the total 
aircraft force coefficients. The products of the panel force coefficients and their moment arms with reference to a 
given axis are summed up to find the global aircraft moment coefficients. The state equations formulation proposed 
here to represent the basic unsteady aerodynamic model of each single lifting surface are functional approaches to 
modeling aerodynamic phenomena, not directly derived from the physical principles of the problem. It is thought to 
have advantages with respect to the physical modeling methods mainly because of its lower computational cost 
involved in the calculations while still keeping some ability to represent the dynamic behavior. It has advantages 
over the previous functional, state space formulations because of its three internal state variables that allow a better 
consistency with the physics of the flow.  

II. Proposed Unsteady Aerodynamic Formulation 
For the wing rock limit-cycle oscillations to happen, the rolling moment coefficient must laterally destabilize 

the wing at small roll angles and stabilize it at their bigger values4. The fluid mechanisms that do it and sustain the 
limit-cycle oscillations involve time lag in vortex core position and strength5. In the present model, we propose to 
match these effects with a basic unsteady aerodynamic model that represents the variation of the panel normal lifting 
forces with the strength and vertical position of the vortex core vertical position in function of the panel roll angle. 
Therefore, in this formulation, the panel normal lifting forces are modeled to be functions of both the angle of attack 
and the roll angle. Since the wing rock oscillations of this type of configuration are strongly related to the movement 
of the leading edge vortices, we conceive these functions by assuming that the spanwise positions of the points of 
application of the panel normal lifting forces coincide with the vortex core positions. Therefore, the spanwise non-
dimensional body-axes coordinates ( ) ( ) btyty ii /=  are also taken as internal flow state variables, in addition to 

the chordwise coordinates ( ) ( ) rii ctxtx /= , which are associated to the region of the vortex breakdown ahead of 

the panel leading edge, as it is shown in Figure 1. A third type ( )tvi  of state variable, associated to the effects of 

both the vortex strength and the vortex core vertical position ( )tzi , is still added to the system. Therefore, the basic 
unsteady aerodynamic model proposed here is, in its most general form, composed by the state equations of the 
above mentioned state variables and the observer equations that outputs the values of the airplane rolling moment 
and normal force coefficients. The airplane force coefficients are the summation of the coefficients of each lifting 
surface panel that the airplane is split into. The state equations are the first-order differential equations (1) to (3), 
whose above mentioned dependent variables ( )txi , ( )tyi , and ( )tvi  represent the system dynamics. Equations (4) 
and (5) are the output equations. The input variables are the kinematic motion parameters, also called motion 
variables: the panel local angle of attack ( )tiα , the airplane roll angle ( )tφ , and their respective time derivatives 

( )tiα& , . For each fixed value of the wing pitch angle ( )tφ& 0θ , the local sideslip angle time history ( )tiβ  is 

promptly determined through ( )tφ  time-history by using Eq. (8). 
In this postulated model, the equations used to represent the unsteady aerodynamics for general flight conditions 

in each panel of the airplane are: 

( ) ( )iii
i f

dt
txd

αα &,,1=  
(1) 
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( ) ( )φφ &,,2 i
i f

dt
=

tyd
 (2) 

( ) ( )φφ &,,3 i
i f

dt
tvd
=  (3)

( )φφαα && ,,,,,, iiiiiN yxgC =  (4) 

where the subscript i stands for the considered lifting panel, i.e., i = l (left) , r (right). 
The value of the normal force coefficient for the whole slender delta wing is found through Eq. (5). 

(5) 
rNlNN CCC ,, +=  

The rolling moment coefficient is determined through Eq. (6),  

(6) ( ) ( )φφ rrNllNl yCyCC −=  

where ( )•y  are the non-dimensional arms of the normal force coefficient with respect to the longitudinal body axis, 
whose dynamic behavior is given by Eq. (10). 
Aerodynamic angles at each wing panel are determined by the equations 
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φθβ sinsinsin 0
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 (8) 

being  the distance to the rotation axis where the local aerodynamic angle must be determined, and i = l, r. il
With the help of the formulation described in Ref. [6], the system composed by the Eqs. (1) to (4) is unfolded to 
Eqs. (9) to (12):  

( ) ( )ieffDieffUi
i

x xDxUx
dt
xd

,,0,,01 αατ αα +=+  (9)

( ) ( )effDieffUii
i

y yDyUy
dt
yd

φφτ φφ ,,0,,01 +=+  (10)

( ) ( )effDieffUii
i

v vDvUv
dt
vd

φφτ φφ ,,0,,01 +=+  (11) 

( ) ( )φα ,, ,,, iiNiiiNiN vCxCC Δ+=  (12) 

On the right hand side of the above equations are the functions that represent the static dependencies. They are 
written this way because we want this model capable of representing also static hysteresis, whenever it occurs. In 
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Eq. (9), we have that x,1τ  is the transient-time-constant associated with the displacement of the vortex breakdown 
chordwise position, and: 

( )
2

1 isignU α
α

Δ+
=
Δ

 
(13) 

( )
2

iD 1 sign α
α =

Δ−Δ

 (14)

with jijii ,1, ααα −=Δ +  for the given sequence of the static angles of attack ji ,α , i = l,r; j = 1,2,…,l, or 

( ) ( )jijii tt ααα −=Δ +1  for the given time histories of angles of attack ( ){ }njji ttt ≤≤0,α  in the considered 

panel. The static dependence between the internal state variable ix  and the angle of attack are determined for the up 
(U) and down (D) direction by 

( )[ ]∗−−+
=

UieffUx
Ux

αασ ,,
0 exp1

1
 (15) 

( )[ ]∗−−+
=

DieffDx
Dx

αασ ,,
0 exp1

1
 (16) 

Since all the effects due to the sideslip or to the roll angle are included in term ( )φiNC ,Δ  of Eq. (12), the 

parameters  and ∗
•)(α )(, •xσ  related to the localization and shape of the sigmoids given by Eqs. (15) and (16) are not 

let free to vary with the roll angle. The values of effα  are determined through the equation 

iiieff αταα α &,2, −=  (17) 

with ατ ,2  being a time-delay-constant related to vortex burst location. Equation (10) is similar in structure to (9), 
and its nomenclature is given as follows,  

y1τ  = the transient-time-constant related to the vortices core spanwise displacement. 

b
y

y i
i =  = non-dimensional distance between the panel normal lifting force point of application and the 

longitudinal axis. 

(18) ( )
2

1 φ
φ

Δ+
=
Δ signU

 

( ) (19) 
2

1 φ
φ =D Δ−Δ sign

 

with jj φφφ −=Δ +1  or ( ) ( )jj tt φφφ −=Δ +1  respectively in the quasi-static and in the dynamic cases, where, in 

the quasi-static case, the given sequence of the static roll angles is jφ , j = 1,2,…,l, and where ( ) ( )ii tt φφφ −=Δ +1  
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for the given time histories of roll angles ( ){ nii ttt }≤≤0,φ . The time-delay effects on the vortex movements due 
to the roll angle are taken into account through 

(20) φτφφ φ
&

,2−=eff  

where φτ ,2  is a time-delay constant related to the vortex core position, to be identified against wind tunnel data. 
Since vortex strength and vertical core position effects are considered to be lumped into Eq. (11), we want the state 
variables iy  behaving qualitatively like in the wind tunnel tests results shown on Ref. [5], what means that iy  must 
get smaller for the panel that is going down. Because of that, the logistic functions that compose the right-hand-side 
of Eq. (10) are built as follows, 

( ) ( )[ ]∗−+
=

UiyUiyi
Uiy

,,,,
,,0 exp1

1
φφσξ

φ  
(21) 

( ) ( )[ ]∗−+
=

DiyDiyi
Diy

,,,,
,,0 exp1 φφσξ
φ 1

 (22)

where 1−=lξ  and 1=rξ  respectively for left (i = l) and right (i = r) panels. Symbols ( )•,,iyσ  and  stand 
respectively for the slope and roll angle location of the logistic functions that represent the static variation of the 
vortex core spanwise position with the roll angle. 

( )
∗

•,,iyφ

The state variable v  is conceived to represent the increase in panel lift due to both the increase in vortex strength 
and the approximation of the vortex core to the panel upper surface, as the wing rolls. Because of that, the forcing 
terms of on the right-hand side of Eq. (11) are modeled to be  

( ) ( )[ ]∗−−+
=

UivUivi
Uiv

,,,,
,,0 exp1

1
φφσξ

φ  (23)

( ) ( )[ ]∗−−+
=

DivDivi
Div

,,,,
,,0 exp1 φφσξ
φ 1

 (24) 

In these last equations, symbols ( )•,,ivσ  and  stand respectively for the slope and roll angle location of the 
logistic functions that represent the static variation of the effects of vortex vertical position and strength with the roll 
angle. 

( )
∗

•,,ivφ

In Eq. (12), the first parcel ( iiN xC )α,,  is taken as it was developed in Ref. [7], that is, as an expansion in terms of 

the angle of attack α  and its non-dimensional time-derivative , for the roll angle equal zero: α̂&

( ) ( ) ( ) ( ) iiiNiNiiNiiNiiNNiN xCCxCxCxCCC αααααα
αααααα

ˆˆˆ
ˆ

2
ˆˆ

2
0, 22 &&&

&&&
+++++=  (25) 

where  

2)( ijijjiN xcxbaxC ++=χ  (26)
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with , and , respectively. Parameters  are constants to be 
identified. 

ααααααχ ˆ,ˆ,ˆ,, 22 &&&= 5,4,3,2,1=j jjj cba ,,

The motion variable  is the non-dimensional angle of attack rate and t  is the characteristic time of the flow 
defined as: 

αα && t̂ˆ = ˆ

V
ct

2
ˆ =  (27)

In Eq. (12), ( )φiNC ,Δ  is the parcel that accounts for the effects of the roll angle at a fixed pitch angle value 0θ . It 
is this normal force term that accounts for the effects due to both vortex vertical position and strength. The normal 
lifting force in a panel gets bigger as the roll angle changes in a way that makes the panel to go down. Also, limit-
cycle oscillations are sustained by a time lag in vortex core position and strength. In order to make this model 
capable of handling these variations in a nonlinear way, the panel normal force parcel ( )φiNC ,Δ  is built according 

to the following dependence of the roll angle φ  and of the non-dimensional roll rate : φ̂&

( ) ( ) ( ) ( ) 53
, 53, φφφφ φφφ iNiNiNiiN vCvCvCvC ++=Δ ( ) ( ) 3ˆˆ

3 φφ φφ
&&

&& iNiN vCvC ++

( ) ( ) 22
22 φφφφ φφφφ

&&
&& iNiN vCvC ++

(28) ˆˆ  

 
where 

V
b

2
ˆ φφ && =  (29)

(30) 2)( ijijjiN vcvbavC ++=χ  

with 
22353 ,,,,,, φφφφφφφφφχ &&&&= , and =j 6,7,8,9,10,11,12. 

V = free stream airspeed. 
The coefficients  here are functions of the pitch angle jjj cba ,, 0θ , and are determined by a least-squares fit with 
the experimental data. The expansion terms in Eq. (28) were picked in order to match the expansion developed by 
Konstadinopoulos, Mook, and Nayfeh8 for ( )φlC . 
The 62 grand-total of parameters to be identified against wind tunnel data for this postulated model are dependent on 
the pitch angle 0θ  at which the identification is done. They are: 

- the polynomial coefficients CN0, aj, bj, cj, 5,4,3,2,1=j  of Eqs. (25) and (26); 
- the polynomial coefficients aj, bj, cj , =j 6,7,8,9,10,11,12 of Eqs. (28) and (30); 

- transient-time constants x1τ , y1τ , v1τ  appearing respectively in Eqs. (9), (10), and (11);  

- time-delay constants ατ ,2 , φτ ,2  from Eqs. (17) and (20);  

- parameters , , and ( )
∗
•α ( )

∗
•φ ( )•σ  of logistic equations (15), (16), (21), (22), (23), and (24). 
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III. Parameter Identification Method 
The identification method used here is the minimum mean-square error approach. The models are identified 

against experimental data in three phases and the squared error is minimized through the multi-objective 
optimization process. In the two first phases, the parameter identification is done against static experimental data. 
First, we identify the parameters involved with the determination of the static terms of the normal lifting forces 
( ). These parameters are those related to the quadratic polynomials that determine the stability derivatives with 

respect to the motion variables ( ), and those that are used to determine the static values of the internal 

state variables 

CNxr

jjj cba ,,

ix , namely ,∗
•)(α )(•σ . Next, we identify only the parameters associated to the arms of the rolling 

moment coefficients ( ) against the experimental static values of the rolling moment coefficient. In those two 
first phases of the parameter identification, the parameters related to the dynamic behavior of the model are kept 
fixed. These dynamic parameters are the coefficients of the quadratic polynomials that represent the stability 
derivatives with respect to the time-rate of the motion variables, and the time-constant and time-delay parameters, 
all of them stored in vector 

Clxr

dynxr . The dynamic phase of the identification is done against the experimental values of 
the rolling moment time history.  
When the quasi-static sequences of experimental data are considered, the error cost-functions to be minimized are as 
follows, 

( ) ( )[ ]2
1 1

00 ,,ˆ1
∑∑
= =

−
+

=
N

j

M

i
jiNjiNCN CC

JI
φθφθε  (31)

( ) ([ ]∑∑
= =

−
+

=
j i

jiljilCl CC
NM 1 1

00 ,,ˆ1 φθφθε )N M 2

 (32) 

where each value of the roll angle in the sequence jφ , j = 1,2, ... , N has a correspondent sequence of values for the 

wind tunnel sting pitch angle i0θ , i = 1,2, ... , M. At these points, the wind tunnel measurements are 

( ) ( ){ }NjMiCC jiljiN ,...,2,1;,...,2,1;,ˆ,,ˆ
00 ==φθφθ , while the model responses determined at the same 

points for a given set of model parameters are ( ) ( ){ }NjMiCC jiljiN ,...,2,1;,...,2,1;,,, 00 ==φθφθ . 
When the published values of wind tunnel dynamic measurements at unsteady flow conditions are used to identify 
the remaining parameters, one roll angle time history ( ){ }Fii Ttt ≤≤0,φ , such that 

, is taken for each fixed value of the sting pitch angle FLii Tttttt =<<<<<<= + ......0 121 0θ  in the 

sequence k0θ , k = 1, 2, ... , K . If the corresponding dynamic wind tunnel measurements of the rolling moment 

coefficient can be represented by ( )( ){ }KkLitC kil ,...,2,1;,...,2,1;,ˆ
0 ==θφ  and the values of the model 

responses calculated at the same points are ( )( ){ }KkLitC kil ,...,2,1;,...,2,1;, 0 ==θφ , the error cost-function 
for the dynamic phase of the identification is 

( )( ) (( )[ ]∑∑
= =

−
+

=
K

k

L

i
kilkildyn tCtC

KL 1

2

1
00 ,,ˆ1 θφθφε )  (33) 

For known sequences of experimental data, the design variables in the cost-functions (31) to (33) are the model 
parameters stored in , , and CNxr Clxr dynxr . Representing the cost-functions in terms of these model parameters, we 

have , , and ( )CNCN xf r ( ClCl xf r ) ( )dyndyn xf r
. In this particular case, these individual cost-functions are controlled 
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by different sets of variables, that is, ∗
CNxr , ∗

Clxr , ∗
dynxr  are the solutions to individual objectives, and 

∗
CNxr ≠ ∗

Clxr ≠ ∗
dynxr . Then, the optimum of  

( ) =xF r ( ) ( ) ( )dyndynClClCNCN xfxfxf rrr
++  (34) 

can be obtained by optimizing the individual ’s, that is, ( )•f

( ) ( )xffx CNCNCN
rr  min, =∗∗

 

( ) ( )xffx ClClCl
r  min, r

=∗∗

 (35) 

( ) ( )xffx dyndyndyn
r  min, =

r∗∗

&

 

where  [ ]TdynClCN xxxx rrrr
=

 

IV. Numerical Simulations in Roll 
In this Section, the single degree of freedom numerical simulation in roll of a slender delta wing with aspect 

ratio equal 0.71 taken from Ref. [9] is carried out by using the unsteady aerodynamic model described above and 
identified against simulated experimental data composed by a combination of experimental data extracted from 
references [3], [4], and [9]. 

For the single degree of freedom in roll, the rigid body 6 DOF system of equations is simplified to  

LpI xx =&  

(36) 
φ=p  

In order to describe the complete dynamic system, the rigid body system of equations must be integrated to 
the unsteady aerodynamic model equations. The aerodynamic model comes to the rigid body equations (36) through 
the rolling moment coefficient, that is: 

l
xx

C
I
Sbqp == φ&&&  (37)

 As it can be seen in Eq. (6), for the proposed aircraft unsteady aerodynamic model the moment coefficients are 
obtained by multiplying left and right wing force coefficients by their arms along the corresponding body axis. In 
order to determine the delta wing motion history, Eqs. (36) are coupled to Eqs. (9), (10), and (11). The dynamic 
system built this way therefore is composed by the following eight first-order differential equations: 

p=φ&  

(38) 
l

xx

C
I

p =&
Sbq
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( ) ( )leffDleffUl
l

x xDxUx
dt ,,0,,01 αατ αα +=+
xd

 

( ) ( )reffDreffUr
r

x xDxUx
dt ,,0,,01 αατ αα +=+
xd

 

( ) ( )effDleffUll
l

y yDyUy
dt

φφτ φφ ,,0,,01 +=+
yd

 (39) 

( ) ( )effDreffUrr
r

y yDyUy
dt

φφτ φφ ,,0,,01 +=+
yd

 

( ) ( )effDleffUll
l

v vDvUv
dt

φφτ φφ ,,0,,01 +=+
vd

 

( ) ( )effDreffUrr
r

v vDvUv
dt

φφτ φφ ,,0,,01 +=+
vd

 

 All the dynamic equations (38) and (39) must be integrated simultaneously in order to simulate the slender 
delta wing pure roll motion. The internal state variables ix , iy , iv  are coupled to the two first equations of motion 
through the roll moment coefficient Cl, which is determined by Eq. (6). In that equation, the left and right panel 
normal force coefficients are multiplied by their respective arms iy . The normal force coefficients are calculated 
from the remaining internal state variables through Eqs. (12), (25), (26), (28), and (30).  

 

V. Results 

A. Identifications Results 
Previously published experimental data are combined and used to identify the parameters of the investigated 

models. The static data used for the parameter identification are those obtained by Levin and Katz9 for their slender 
delta wing model of aspect ratio equal 0.71. Here, we take that wing and assume that it undergoes wing rock for 
pitch angles in between 22 and 45 degree. It is also admitted to have dynamic behavior during steady state limit 
cycles similar to experimental data obtained by Nguyen, Yip, and Chambers4 for 0θ  = 27 and 32 deg. The roll 

moment coefficient experimental histogram for 0θ  = 27 deg is also used to identify the model parameters for 0θ  = 
38 deg. For the wing pitch angles at which the oscillations in roll damp out, the experimental data used to identify 
the parameters are assumed to have the same qualitative behavior exhibited on Figures 2 and 5. Figures 3 and 4 
illustrate situations in which the wing undergoes limit-cycles oscillations. According to the Energy Exchange 
Concept4, the limit-cycles oscillations exist because in each cycle dissipated energy equals energy received from the 
fluid.  

 

B. Simulations Results 
The mixed characteristics of the wing used in the simulations are span =b  0.150 m, root chord  0.4285 m, 

sweep angle at the leading edge 80 degree, and rolling moment of inertia  = 9.18  kg m

=rc

xxI 210−× 2. The air density 
value adopted for the simulations is =ρ 1.2 kg/m3, and the airspeed is V = 9.27 m/s. The first simulation is done for 

the wing starting from rest at =0φ 5 deg, =0θ 30 deg. At these conditions, the wing is expected to exhibit wing 
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rock, what effectively happens, as Figures 5 and 6 show. The roll attractor is not located at null roll angle, as it was 
expected from wind tunnel tests like the one whose results are shown on [4]. Also, the amplitude is smaller in the 
present simulations. We attribute this and other differences between these simulations and the classical wing rock 
behavior to the scarcity of the published experimental data so far used to identify the parameters. Figures 7 and 8 
show the results of the simulation starting at =0θ 30 deg, =0φ -5 deg, and 0 deg/s, where we can see that the 

roll attractor at 

=0φ&

=φ  -12 deg is confirmed. To compare better our results to those shown on [4], we simulate the 
wing rock with the wing departing from the roll attractor position. The results can be seen on Figures 9 and 10. They 
show that the build up time is much shorter in the present case. 

 

VI. Concluding Remarks 
By following the guidance of physical properties of the flow observed in previous works, it is proposed a state-

space system capable of simulating the wing rock dynamics. In the presented case, a delta wing configuration is split 
in two panels, and the simulation is carried out for just one degree of freedom. The resulting dynamic system 
contains two equations of motion plus six internal state equations for the unsteady aerodynamic model, making a 
grand total of eight first-order differential equations to be simultaneously integrated, which is easier to do than to use 
a physical method. The simulations in pure roll oscillations revealed that even though it was identified against 
simulated data based on scarce published experimental results, the model presents the expected qualitative behavior 
and that the concept is proved as useful to simulate wing rock. 
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Figure 1. Sketch of asymmetric vortex position system. 

 

 
Figure 2. Rolling moment coefficient vs. roll angle loops at θ0 = 20 deg. 
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  Figure 3. Rolling moment coefficient vs. roll angle loops at θ0 = 27 deg.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 Figure 4. Rolling moment coefficient vs. roll angle loops at θ0 = 38 deg.  
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Figure 5. Rolling moment coefficient vs. roll angle loops at θ 0 = 45 deg  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 6. Free to roll simulations at wing pitch angle equal 30 deg, starting at 
roll angle equal 5 degree.   
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Figure 7. Phase-plane of the simulation response at pitch angle equal 30 deg, 
initial roll angle of 5 degree.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 8. Free to roll simulations at wing pitch angle equal 30 deg, starting at 

roll angle equal -5 degree.   
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Figure 9. Phase-plane of the simulation response at pitch angle equal 30 deg, 
initial roll angle of -5 degree.  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 10. Free to roll simulations at wing pitch angle equal 30 deg, starting 

at roll angle equal -12 degree.   
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Figure 10. Phase-plane of the simulation response at pitch angle equal 30 deg, 
initial roll angle of -12 degree.  
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