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Abstract  
 

Characteristics of the convergence error in a HSCT 
structural optimization were investigated. A probabilistic 
model is used to model the errors in optimal objective 
function values of poorly converged runs and the Weibull 
distribution was identified as a reasonable error model. 
Once the probabilistic error model is identified, we 
demonstrate that it can be used to estimate average errors 
from a set of pairs of runs. In particular, by performing 
pairs of optimization runs from two starting points, we 
can obtain accurate estimates of the mean and standard 
deviation of the convergence errors. Positive correlations 
were identified between the magnitude of the differences 
of paired optimization runs and the average errors. The 
results show that finding the error distribution model is a 
key to estimating the convergence error of optimization 
runs. 
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1. Introduction 
 

Optimization is an iterative procedure, which is 
subject to convergence errors. It is often hard to find the 
proper convergence criteria setting in practical 
engineering applications. Furthermore the high 
computational cost of using tight convergence criteria 
often prevents us from finding an optimum to high 
precision. Numerical optimization errors are 
deterministic in that computer simulation gives the same 
output for the same input for repeated runs. However, an 
optimization procedure can be very sensitive to small 
changes of input parameters. For example, either the 
convergence criteria or the starting point can affect 
optimization results. Therefore, a probabilistic model is 
useful in characterizing the error in computed optima.  

In design optimization of a complex system, 
sub-optimization problems are often solved within the 
system level optimization. When a single optimization is 
flawed, it may be difficult to tell. However, when many 
optimization results are available, we demonstrated that 
statistical methods can be used to identify cases with 
very large errors1 and estimate the average error of the 
multiple optimization runs2. 

A structural optimization procedure adopted to 
obtain the wing structural weight (Ws) of a high-speed 
civil transport (HSCT) suffered from convergence error, 
and resulted in noisy Ws in terms of the aircraft 
configuration variables1. The structural optimization was 
performed a priori on a carefully selected set of HSCT 
configurations to build a response surface model (cf. Ref. 
3) of Ws. In a previous work2, the authors applied 
probabilistic models to the optimization errors and found 
that the Weibull distribution describes the error 
characteristics well. The structural optimization had 
substantial errors because it was difficult to find a proper 
set of convergence criteria. The objective of the present 
paper is to demonstrate that statististics of convergence 
errors can be estimated by performing the optimization 
runs in pairs. 
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The present work investigates the effects of 
change of computer platform and initial design point on 
the optimization error. The structural optimization results 
can be substantially different depending on the computer 
platform, although the errors are highly correlated 
between computer platforms. The effect of the initial 
design point is of particular interest because one can 
easily change the initial design point and repeat the 
optimization to improve a possibly erroneous run due to 
convergence difficulties or local optima. The authors2 
successfully estimated average errors by using two sets 
of optimization runs with different convergence criteria. 
Here we show that optimization results of two different 
sets of initial design points can also serve to estimate the 
average optimization errors. It is reasonable to assume 
that the uncertainty in the optimization procedure is 
related to differences in the results due to change of 
optimization parameters. A positive correlation between 
differences of paired optimization runs and the average 
error is identified and the possibility of using the 
correlation in estimation of average optimization error is 
investigated. 

 
 

2. Error in Structural Optimization Results 
 
The application problem in this paper is a HSCT 

design model developed by the Multidisciplinary 
Analysis and Design (MAD) Center for Advanced 
Vehicles at Virginia Tech. A simplified version of the 
problem is used following Knill et al.,4 with five 
configuration design variables including wing root chord, 
wing tip chord, inboard leading edge sweep angle, airfoil 
thickness ratio, and fuel weight. Takeoff gross weight is 
minimized at the system level as a function of the five 
configuration variables. To improve wing weight 
equations based on historical data, the GENESIS5 
structural optimization software based on finite element 
models is used. The finite element model has 1127 
elements at 226 nodes with a total number of 1242 
degrees of freedom. The structural optimization is a sub-
optimization within the system level configuration 
optimization, and the wing structural weight (Ws) is 
minimized in terms of 40 structural design variables, 
including 26 to control skin panel thickness, 12 to control 
spar cap areas, and two for the rib cap areas6. The 
structural optimization is performed a priori for many 
aircraft configurations and a response surface model of 
Ws is constructed for use in the HSCT configuration 
design optimization. For the response surface 
construction, the five design variables are coded so that 
each ranges between –1 and +1.  

The structural optimization resulted in a noisy 
Ws response in terms of the HSCT configuration 
variables1, 2. Figure 1 shows the Ws response for 21 
HSCT configurations generated by a linear interpolation 

between two extreme designs. Design 1 corresponds to (-
1, -1, -1, -1, -1) (all configuration variables at their lower 
bounds) and Design 21 corresponds to (1, 1, 1, 1, 1) (all 
configuration variables at their upper bounds) in a coded 
form of the HSCT configuration variables. The original 
GENESIS runs with the default convergence criteria 
were poorly converged and Ws contained artificial noise 
errors. Design 6 and Design 15 are seen to have 
particularly large errors.  

Efforts have been made to reduce the error of 
the HSCT structural optimization. Papila and Haftka7 
repaired erroneous optimizations by changing 
optimization algorithms or trying different initial designs. 
After extensive experiments with convergence criteria, it 
was found that the most effective way to improve the 
optimization was to tighten one of the convergence 
criteria1. Ws repaired by repeated high-fidelity runs show 
much smoother response in Figure 1. One important 
observation is that the noise error tends to be one-sided 
(greater Ws than the true). That is because the noise error 
comes from incomplete minimization due to convergence 
difficulties. However, it was not trivial to choose the 
right convergence tolerances, and the tightened 
convergence tolerances more than doubled the cost of the 
optimization. 

To characterize the error we observe in Figure 
1, we define optimization error as  
 

e = Ws - Ws
t,         (1) 

 
where Ws is the calculated optimum and Ws

t is the true 
optimum, which is unknown for many practical 
engineering optimization problems. Note that we are 
mainly interested in the convergence error and Ws

t 
represents the true optimum of the computer model of the 
optimization problem. Another source of error can be 
inaccurate computational simulation models, which we 
do not consider here.  

To estimate Ws
t, we need to perform fully 

converged optimization runs with properly tightened 
convergence criteria, which can be expensive. In 
practice, we estimated Ws

t by taking the best of repeated 
GENESIS runs: two runs with different initial designs 
and six runs with different sets of convergence criteria2. 
To study the error in Ws from the structural optimization, 
we used a mixed experimental design of 126 HSCT 
configurations, intended to permit fitting a quadratic or 
cubic polynomial of the five-variable HSCT design 
problem to create a Ws response surface approximation8. 
The optimization error, e, was calculated for each of the 
126 HSCT configurations. When the optimization error, 
e, is calculated for each of the runs, the mean and 
standard deviation of e can be estimated by 
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where n is the sample size. 
 
 
3. Effects of Computer Platform and Initial Design on 
the Error 
 
 As expected from the noise in the low-fidelity 
results, the optimization procedure produced 
substantially different Ws values for essentially the same 
HSCT configurations. Although numerical optimization 
procedures are deterministic in that the output is the same 
for the same input, ill-conditioning may cause 
unpredictable behavior of the results. Previous results2 
showed that a change of the convergence criteria had a 
large effect on the optimization results. This section 
shows two additional examples of such behavior of the 
optimization error. 
 
Change of Computer Platform 
 

It turned out that the HSCT structural 
optimization could produce substantially different results 
depending on computer platforms used9. We compare the 
poorly converged structural optimization runs between a 
DEC Alpha workstation and a Pentium PC for each of 43 
HSCT configurations from a face centered central 
composite (FCCC) design of the five HSCT 
configuration design variables. In addition, highly 
converged runs with the tightened convergence criteria 
were performed to estimate errors of the poorly 
converged runs. The average error in Ws using Eq. 2 was 
2870 lb. (3.69% of the average of true Ws) on the DEC 
computer whereas the average error was 3603 lb. (4.63% 
of the average of true Ws) on the PC (Table 1). Figure 2 
shows that the DEC and PC gave different Ws for the 
majority of the 43 runs, and the differences are noisy. 
The maximum difference was 18264 lb., which is 23.5% 
of the average of true Ws. However, the estimated errors 
had a strong positive correlation between the DEC and 
PC as shown in Figure 3. The correlation coefficient was 
as high as 0.90. That means that if a run on the DEC has 
a large error, the corresponding run on the PC also tends 
to have a large error, and vice versa. As a result, the 
average of magnitude of difference in Ws was only 
1.25%. 

 
Change of Initial Design Point 

 
When one suspects convergence problems or 

local optima in optimization results, one is likely to 
change the initial design point and repeat the 

optimization run. We performed optimization runs with 
default convergence criteria with two different initial 
design points for each of the 126 HSCT configurations 
from a mixture of FCCC and orthogonal array design, 
originally intended for a quadratic or cubic response 
surface model. Again, highly converged runs with 
tightened convergence criteria were performed to 
estimate errors of each of the poorly converged runs. 
Table 2 compares the two cases with different initial 
design points. Case 1 corresponds to poorly converged 
runs using the default convergence criteria, where a 
conservative structural design from a previous study is 
used as a common initial design point for all runs. For 
Case 2, an initial design point perturbed from that of 
Case 1 was obtained by multiplying each of the 40 
structural design variables by uniform random factors 
between 0.1 – 1.9.  

The average errors were not very different 
between Case 1 and Case 2, 5.51% and 5.34% (Table 2), 
respectively, which is understandable since the only 
difference between the two cases was the initial design 
point. The differences in Ws between Cases 1 and 2 are 
plotted in Figure 4, and the largest magnitude of the 
difference is 58715 lb., 72.1% of the average of true Ws. 
The average magnitude of the difference was 7.3% of the 
average Ws., much greater than 1.25%, obtained with 
different computer platforms. The correlation of error 
was low between Cases 1 and 2 as shown in Figure 5 
(correlation coefficient of 0.057).  
 
 
4. Applying MLE to Establish Probabilistic Model of 
Optimization Error 
 

The unpredictable error in the HSCT structural 
optimization led us to use a probabilistic model for the 
error. With multiple optimization runs available, we can 
obtain a data driven model of the error by fitting a 
probability distribution to the actual error obtained from 
Eq. 1. The approach is denoted as error fit. This 
approach requires fully converged high-fidelity 
optimization runs to calculate error data, which are not 
always available. However, once the probabilistic 
distribution of the error is known, as we discuss later in 
the next sections, the model can be used to estimate the 
average errors even when fully converged results are not 
available. We use the maximum likelihood estimation 
(MLE) method for the distribution fit10. In MLE, we find 
a vector of distribution parameters, β, to maximize the 
likelihood function, l(β), which is a product of the 
probability density function, f, over the sample data xi (i 
= 1, …, n), 
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The quality of fit is checked via the χ2 goodness-of-fit 
test10, which is essentially a comparison of histograms 
between the data and the fit. The test results will be given 
in terms of the p-value. A p-value near one implies a 
good fit and a small chance that the data is inconsistent 
with the distribution. Conversely, a small p-value implies 
a poor fit and a high chance that the data is inconsistent 
with the distribution. 
 Considering the one-sidedness of the 
optimization error, we selected the Weibull distribution10, 

11, which is defined by a shape parameter, α, and a scale 
parameter β. The probability density function (PDF) of 
the Weibull distribution is 
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Once we obtain the parameters, α and β, estimates of 
mean and standard deviation of e can be calculated from 
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where Γ is the gamma function. 

The Weibull model was fitted to Case 1 and 
Case 2, the poorly converged runs of two different initial 
design points, and the results are summarized in Table 3. 
p-values of the χ2 test indicated a poor fit for Case 1, 
while the fit was acceptable for Case 2 with a 5% 
confidence level. Figure 6 compares histograms of the 
optimization error, e, with the predicted frequencies from 
the fitted Weibull models. It is seen that the error 
distribution has a mode near zero and decreases rapidly 
for large error. The Weibull model of the error fit gives 
reasonable descriptions of the error distribution for both 
Case 1 and Case 2, although the χ2 test implied an 
unsatisfactory fit for Case 1. The dash-dot lines denoted 
difference fit will be discussed in the next section.  

The average errors estimated from the error fit, 

fitµ̂ , were in reasonable agreements with 
dataµ̂ : -5.63% 

and –8.54% discrepancies for Case 1 and Case 2, 
respectively. The estimates of standard deviation from 
the fits, 

fitσ̂ , were less accurate particularly for Case 2, 

with a discrepancy of –14.6% and –23.4%, for Case 1 
and Case 2, respectively. Figure 6, comparing histograms 
of e between the error data (bars) and the error fit (solid 
line), indicates that the Weibull model is suited for the 
optimization errors for both Case 1 and Case 2. 

 
 

5. Difference Fit of the Weibull Model 
 

When fully converged results are available, 
estimating errors in the poorly converged results is of use 
in that it can provide information for the more common 
case where converged results are not available. In 
particular, the probabilistic model identified from the 
error fit using fully converged data can be used to 
estimate error statistics for poorly converged 
optimization runs. Indeed, using the knowledge that the 
errors can be fit well by a Weibull distribution, we 
estimated the distribution parameters from the 
differences of optimal values from two different 
convergence settings2. Here, we propose to use different 
initial points (e.g., Cases 1 and 2 of the HSCT structural 
optimization) instead of convergence criteria. Changing 
convergence settings may require expert level knowledge 
depending on the optimization software, whereas it is 
much simpler to change initial designs to generate other 
sets of optimization results.  
 For two optimization results, Ws

1 with 
optimization parameter setting #1 and Ws

2 with 
optimization parameters setting #2, model the 
optimization errors as random variables s and t,  
 

  s = Ws
1 – Ws

t              (6) 
  t = Ws

2 – Ws
t.     

 
Note that the true optimum, Ws

t, is not random although 
it may be unknown for many practical engineering 
optimization problems. Random properties of the errors 
are due to noisy Ws

1 and Ws
2. Since we want to avoid the 

expensive calculation of Ws
t, the difference of s and t is 

defined as the optimization difference x, 
 
    x = s – t = (Ws

1 – Ws
t) – (Ws

2 – Ws
t) = Ws

1 – Ws
2.       (7) 

 
If s and t are independent, the probability density 
function (PDF) of x can be obtained by a combined 
integration of the PDF functions g(s; β1) and h(t; β2), 
 

.);();(),;( ∫
∞

∞−

−= dsxshsgxf 2121 ββββ   (8) 

 
Note that the optimization difference x is easily 
calculated from Ws

1 and Ws
2 that are readily available. 

Then, we can fit Eq. 8 to the optimization differences via 
MLE. This difference fit does not require estimation of 
the true optimum, and the error distributions of the two 
cases involved are obtained simultaneously. 
 The difference fit would not be applicable to the 
runs with different computer platforms in our case 
because the structural optimization errors are highly 
correlated between DEC and PC. Therefore, the 
difference fit was performed for the pair of Cases 1 and 2 
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using the Weibull distribution. Recall that a relatively 
large perturbation (multiplication factors between 0.1 – 
1.9) of the initial design point was used to get Case 2 
from Case 1 to reduce the possible correlation of Ws 
errors between Case 1 and Case 2.  

The results of the poorly converged data fit 
using the Weibull model are shown in Table 4. Note that 
the distribution parameters α and β of Case 1 and Case 2 
are simultaneously estimated. Because there is no closed 
form of the probability density function of the difference 
for the Weibull model, Eq. 8 was numerically integrated 
using Gaussian quadrature. The χ2 test on the 
optimization difference indicated a reasonable fit with a 
p-value of 0.5494. From the difference fit, we estimate 
the mean and standard deviation of the optimization error 
of each of the two cases involved. Table 4 shows that the 
estimates of mean error by the difference fit, 

fitµ̂ , have 

reasonable agreements with 
dataµ̂ : -14.7% and –19.4% 

discrepancies for Case 1 and Case 2, respectively. The 
estimates of standard deviation, 

fitσ̂ , are also in a 

reasonable match with 
dataσ̂ : 12.0% and 0.704% 

discrepancies for Case 1 and Case 2, respectively. Figure 
6 compares the histogram predicted by the difference fit 
with the data and we observe that the difference fit is 
comparable to the error fit.  

In summary, the Weibull model was useful for 
estimating average convergence errors causing noisy 
optimization results. This information about the error 
distribution family helped us to use the difference fit 
effectively to estimate errors of poorly converged 
optimizations. In practice, preliminary information about 
the error distribution family may be sufficient for the 
difference fit, because we can use statistical test and 
graphical examination of the difference fit to identify a 
good distribution model. 
 
 
6. Relation of Average Difference of Optimization 
Runs to Average Error 
 

The difference fit uses a MLE fit to the 
difference data to estimate the statistics of the 
optimization errors. For example, the difference data of 
Cases 1 and 2 is shown in Figure 4 and a reasonable 
assumption would be that the magnitude of the 
differences is somehow related to the error level. If we 
can find a functional relationship, we may estimate the 
error statistics without the MLE fit.  

The expected value of the magnitude of 
differences of two random variables s and t is  

 

( ) ,),;()( ∫
∞

∞−

==− dxxfxxEtsE 21 ββ  (9) 

 
where f is the PDF of the magnitude of the difference, 
|x|= |s – t|. Often we can assume that s and t, errors of the 
two sets of optimizations, can be described by the same 
probabilistic model, because the errors are from the same 
source and of the same magnitude such as when we have 
pairs of poorly converged optimization runs with 
different initial design points. Then the expected value of 
the difference can be calculated as 
 

( ) ,),;(2
0
∫
∞

=− dxxxftsE 11 ββ   (10) 

 
where f is the PDF of x. 

To show the relationship between the mean and 
the mean difference, we calculated the expected values of 
the difference for 25 variants of the Weibull distribution 
from a combination of the shape parameter α in {0.4, 0.6, 
0.8, 1.0, 1.2} and the scale parameter β in {1000, 2000, 
3000, 4000, 5000}. Note that we want to relate the 
average difference to the average error, which can be 
calculated from Eq. 5. Figure 7 shows the relationship 
between the average absolute difference and the average 
error for the 25 variants of the Weibull distribution. We 
can see a strong positive correlation and a linear 
relationship appears to be reasonable for a given shape 
parameter α. However, the slope of the linear 
relationship changes along with α. The overall behavior 
of the relationship was approximated by a least squares 
fit to the 25 data points assuming a linear model, 

 
E(s) = 1134 + 0.5653 E(|s – t |).        (11) 

  
In this case the average error is approximately half of the 
average difference. The R2 value of the least squares fit 
was 0.976. The high R2 indicates that Eq. 11 is useful for 
estimating the magnitude of the error for a wide range of 
parameters of the distribution. 

To see how the relationship depends on the 
distribution model, the same calculation was performed 
assuming that the errors follow the gamma distribution. 
The PDF of the gamma distribution defined by a shape 
parameter α and a scale parameter β is 
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Again, we used 25 variants of the gamma distribution 
from a combination of α in {0.4, 0.6, 0.8, 1.0, 1.2} and β 
in {1000, 2000, 3000, 4000, 5000}. Figure 8 shows the 
relationship between the average absolute difference and 
the average error for the 25 variants of the gamma 
distribution. Again we observe a strong positive 
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correlation and the slope of the linear relationship 
appears to change slightly along α. Note that the overall 
slope of the linear relationship is steeper than that of the 
Weibull.  

An overall relationship approximated via least 
squares fit to the 25 data points is  
 

E(s) = -277.8 + 1.066 E(|s – t|).  (13) 
 
The R2 value of the least squares fit was 0.967 and the 
average error is approximately equal to the average 
difference in this case. Note that this slope is almost 
doubled that of the Weibull results. The results 
demonstrate that the relationship between average 
difference and average of random variables depends on 
the distribution family. Therefore, it is important to know 
the error distribution to estimate the average error from 
differences of optimization data. This result illustrates the 
value of using the probabilistic modeling of error via the 
distribution fit. Since we know that the convergence 
optimization error is well modeled via the Weibull, we 
applied Eq. 11 to the HSCT structural optimization data. 
Table 5 shows that the average of differences between 
Cases 1 and 2 is 5942 lb., and the corresponding estimate 
of the average error is 4493 lb. This is in good 
agreements with the average errors of Case 1 and Case 2, 
4458 lb. and 4321 lb., respectively.  
   
 
7. Concluding Remarks 
 

Characteristics of convergence error in a HSCT 
structural optimization were investigated. The structural 
optimization procedure was very sensitive to changes of 
convergence criteria and initial design point, and it could 
produce substantially different results on different 
computer platforms. We showed that a probabilistic 
model can be used to obtain error statistics of two sets of 
optimization runs with different initial design points. 
Both the previous results and results presented in this 
paper indicated that the Weibull distribution is a 
reasonable model for the convergence error. 

The approach of fitting the differences of pairs 
of poorly converged optimization runs could estimate the 
averages and standard deviations of the errors. We 
showed that the Weibull model allowed us to estimate 
the error statistics in poorly converged optimization runs 
without requiring any fully converged optimization runs. 
The difference fit can be applied by changing the 
convergence criteria or by changing the initial design 
points. Since initial design points are simple and 
straightforward to change, one may easily apply the 
difference fit to estimate errors of various optimization 
runs.  

Strong positive correlations were identified 
between the average difference of random variables and 

their average. It was possible to apply an approximate 
linear relationship to estimate average optimization error. 
Although this approach does not require fitting the 
distribution model, it is important to know that the error 
distribution is Weibull, because the relationship depends 
on distribution models. The results show that finding the 
error distribution model is a key to estimating errors of 
optimization runs. 
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Table 1: Effect of computer platforms on the errors of the structural optimization (based on 43 HSCT configurations). 

Set of optimization runs Case DEC Case PC 
Description DEC Alpha workstation  Pentium PC 
Average Ws  80643 lb. 81376 lb. 

Average error  
(% compared to the average of true Ws) 

2870 lb. 
(3.69%) 

3603 lb. 
(4.63%) 

Correlation coefficient of errors between 
DEC and PC 

0.90 

Average of absolute differences of Ws 
between DEC and PC 

(% compared to the average of true Ws) 

974 lb. 
(1.25%) 

Maximum of absolute differences of Ws 
between DEC and PC 

(% compared to the average of true Ws) 

18264 lb. 
(23.5%) 

 
 

Table 2: Effect of initial design point on the errors of the structural optimization (based on 126 HSCT configurations 
using a SGI Origin workstation). 

Set of optimization runs Case 1 Case 2 
Description Using the original 

initial point  
Using a perturbed initial 
point from the original 

Average Ws  85340 lb. 85202 lb. 
Average error  

(% compared to the average of true Ws) 
4458 lb. 
(5.51%) 

4321 lb. 
(5.34%) 

Correlation coefficient of errors between 
Cases 1 and 2 

0.057 

Average of absolute differences of Ws between 
Cases 1 and 2 

(% compared to the average of true Ws) 

5942 lb. 
(7.3%) 

Maximum of absolute differences of Ws 
between Cases 1 and 2 

(% compared to the average of true Ws) 

58715.3lb. 
(72.1%) 
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Table 3: Check of the Weibull model to the errors of the HSCT structural optimization. 

Set of optimization runs Case 1 Case 2 

dataµ̂  4458 lb. (5.51%)* 4321 lb. (5.34%) 

fitµ̂  4207 lb. (5.20%) 3952 lb. (4.88%) 

( fitµ̂ - dataµ̂ )/ dataµ̂  -5.63% -8.54% 

dataσ̂  8383 lb. (10.4%) 9799 lb. (12.1%) 

fitσ̂  7157 lb. (8.85%) 7505 lb. (9.28%) 

( fitσ̂ - dataσ̂ )/ dataσ̂  -14.6% -23.4% 

α 0.6161 0.5646 
β 2891 2415 

p-value of χ2 test 0.0005 0.0925 
     * Percentage with respect to the average of true Ws 

 
 

Table 4: Difference fit to the errors of the HSCT structural optimization. 
Set of optimization runs Case 1 Case 2 

dataµ̂  4458 lb. (5.51%)* 4321 lb. (5.34%) 

fitµ̂  3804 lb. (4.70%)  3481 lb. (4.30%)  

( fitµ̂ - dataµ̂ )/ dataµ̂  -14.7% -19.4% 

dataσ̂  8383 lb. (10.4%) 9799 lb. (12.1%) 

fitσ̂  9393 lb. (11.6%) 9868 lb. (12.2%) 

( fitσ̂ - dataσ̂ )/ dataσ̂  12.0% 0.704% 

α 0.4666 0.4262 
β 1659 1236 

p-value of χ2 test 0.5494 
     * Percentage with respect to the average of true Ws 

 
 

Table 5: Estimate of average error of the structural optimization of HSCT using the relationship (Eq. 11) between 
average difference and average error for the Weibull distribution. 

 Case 1 Case 2 

dataµ̂  4458 lb. 
(5.51%)* 

4321 lb. 
(5.34%) 

Average of absolute differences of Ws between 
Cases 1 and 2 

5942 lb. 
(7.34%) 

Estimate of average error from Eq. 11 4493 lb. 
(5.55%) 

                   * Percentage with respect to the average of true Ws 
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Figure 1: Noisy Ws response from the HSCT structural optimization. Poor results could be repaired by tightening 

convergence criteria. 
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Figure 2: Differences of Ws between a PC and a DEC Alpha workstation. 
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Figure 3: Scatter plot of errors in Ws between a PC and a DEC Alpha workstation. 
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Figure 4: Differences of Ws between two cases of different initial design point. 
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Figure 5: Scatter plot of errors in Ws between two cases of different initial design point. 
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(a) For Case 1 
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(b) For Case 2 

 
Figure 6: Comparison of histograms between the optimization error data and the Weibull fits for the HSCT structural 

optimization problem. 
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Figure 7: Correlation between mean of random variables and mean of absolute values of differences of the random 

variables for the Weibull distribution. 
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Figure 8: Correlation between mean of random variables and mean of absolute values of differences of the random 

variables for the gamma distribution. 


