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The classic minimum induced drag spanload is not necessarily the best choice for an
aircraft. Here, a discrete vortex method which finds the minimum induced drag in the
Trefftz plane has been used to calculate optimum spanloads for non-coplanar multi-
surface configurations. The method includes constraints for lift coefficient, pitching
moment coefficient and wing root bending moment. The wing root bending moment
constraint has been introduced so that by holding wing geometry fixed, changes in wing
weight can be related to variations in spanload distributions. Changes in wing induced
drag and weight were converted to aircraft total gross weight and fuel weight benefits,
so that the spanloads that give maximum take-off gross weight reduction can be found.
Results show that a reduction in root bending moment from a lift distribution that gives
minimum induced drag leads to more triangular spanloads, where the loads are shifted
towards the root, reducing wing weight and increasing induced drag. A slight reduction
in root bending moment is always beneficial, since the initial increase in induced drag is
very small compared to the decrease in wing weight. Total weight benefits were studied
for a B-777 type configuration, obtaining take-off gross weight improvements of about
1% for maximum range missions. When performing reduced-range missions, im-
provements can almost double. A long range, more aerodynamically driven aircraft like
the B-777 will experience lower benefits as a result of increasing drag. Short to medium
range aircraft will profit the most from more triangular lift distributions.

I. Introduction*†

The problem of finding the optimum lift dis-
tribution for a specific wing and aircraft configu-
ration is difficult. Optimum spanloads that will
give minimum induced drag for a given plan-
form have been obtained since lifting line theory
was developed by Prandtl. Planar wings were the
main objective of this early work, although more
advanced configurations (i.e. wing with win-
glets) were also treated. Recently, more ad-
vanced methods were developed that could deal
with non-planar wings and multiple lifting sur-
face configurations (i.e. a Vortex Lattice
Method). These methods can find the lift distri-
bution that gives minimum induced drag, gener-
ally performing the calculations in the Trefftz
plane. However, the problem is more involved
than this, since minimum drag will not be the
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only requirement for finding an optimum lift
distribution. Indeed, the spanload also affects the
wing structural weight. A general method for
finding the optimum spanload should include
both aerodynamics and structures together. It is
then a multidisciplinary problem, and it is the
coupling between disciplines that makes the
problem more difficult.

A number of studies have been made treating
both aerodynamics and structures in the problem.
Prandtl1 was the first one to note that the span-
load for minimum induced drag was not the “op-
timum” spanload, and he calculated analytically
the lift distribution giving minimum induced
drag with a constraint in integrated bending mo-
ment§ for planar wings. R.T. Jones2 also per-
formed analytical calculations for planar wings,
using a root bending moment constraint. Later,
Jones3 studied minimum induced drag for wings
with winglets using the same integrated bending

                                                
§ The classical structural models used as constraints for
spanload calculations are a root bending moment constraint
(the area under the load curve) and an integrated bending
constraint (the area under the bending moment curve).
Prandtl used this last constraint in his work.
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moment constraint that Prandtl used for his
analysis. Klein and Viswanathan,4,5 combined
both constraints of integrated and root bending
moment and solved analytically for the optimum
spanload for a given lift. More recently, numeri-
cal approaches have also been developed, such
as those of Kroo6, McGeer 7, and Craig and Ma-
cLean8. Kroo developed a computer program to
optimize spanloads for arbitrary multiple lifting
surface configurations. His program optimized
induced drag for a given total lift, wing weight
and trim. McGeer used an iterative scheme to
find the optimum spanload for minimum drag
with a fixed wing weight and parasite drag, in-
cluding aeroelastic effects. Craig and McLean
further introduced aeroelastic effects and fuse-
lage interactions using the theory developed by
Gray and Schenk9, and studied wing weight and
total drag (including profile drag) trade-offs.
Kroo, and Craig and McLean employed more
advanced structural models than a bending mo-
ment constraint. All the authors mentioned above
let the span vary while maintaining a fixed wing
weight, regardless of the structural model they
used. Numerous other MDO methods have
studied the combined aero-structures problem,
although not addressing the spanload choice ex-
plicitly, e. g., Wakayama and Kroo.10

The past studies have established a few key
results. For example, for a cantilever wing,
keeping the wing weight fixed and increasing the
span will produce a shift from the elliptical
loading towards a more triangular one that, while
maintaining the total lift constant, will reduce
induced drag due to the increased span. How-
ever, a general conclusion about which spanloads
are optimum has not yet been established. In
particular, our interest is in the lift distribution
for a fixed planform. This is the problem that
would be incorporated explicitly in an MDO
process for a complete aircraft.

The difficulty in finding optimum spanloads
comes from the analysis carried out by the
authors above. First of all, varying the span
while keeping the wing weight fixed is not help-
ful when trying to compare lift distributions for a
given planform, since comparisons will then be
made for essentially different wings. A new ap-
proach is needed, in which the spanload is varied
but the wing planform is not, so that the wing
weight varies with the spanload. Secondly, the
analysis must consider the entire configuration.
The multidisciplinary nature of the problem
should not be reduced to wing structures and
wing drag, since the optimum spanload will
bring the maximum benefit to the entire system,

not just to the wing. When the lift distribution is
varied, it is not only necessary to know how it
will affect induced drag and wing weight, but
how it will change the fuel and gross weights.
Taking gross weight as the key measure of ef-
fectiveness (certainly better than either wing
weight or induced drag) will help to find the op-
timum lift distribution that produces the maxi-
mum weight reductions.

In this paper the problem is treated through a
perspective that will allow the designer to differ-
entiate between spanloads that will be beneficial
to the complete aircraft configuration and those
that will not produce an improvement.

II. General Approach.

The lift distributions are obtained using a
computer program (a general description of this
program is given below) which optimizes the
spanload of multiple lifting surface configura-
tions with a constraint in wing root bending mo-
ment. This is the simplest structural constraint
that can be imposed on the problem. It may ap-
pear that the approaches of Kroo6 and Craig and
McLean8 are better, since they used more ad-
vanced structural models. This would be true if
the wing weight were assumed to be a simple
function of root bending moment. Instead, a gen-
eral functional relationship is assumed of the
form:

   Wwing = f (root _ bending _ moment,...)     (1)

The root bending moment is used only as a
constraint for generating spanloads. It is not
really the structural model used for the wing
weight computation. Another important consid-
eration comes from the fact that the interest is
centered in changing wing weight while keeping
the planform shape a constant. This is achieved
through a special implementation of the root
bending moment constraint in the aerodynamics
code (see section III).

The structural model will be described in sec-
tion IV. For now it is sufficient to say that given
the load distribution (calculated using the wing
root bending moment constraint) and the plan-
form characteristics of the configuration, the
model calculates the wing weight. Note that the
aircraft gross weight is needed for this calcula-
tion.

Finally, once a new spanload is found, corre-
sponding to a new induced drag coefficient and
wing weight, it is necessary to study their effects
on fuel and total gross weights. The Breguet
range equation is used to find this effect. The
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description of how the Breguet equation is im-
plemented in the program is given below.

 If fuel weight and gross weight variations can
be obtained for different lift distributions, the
task of finding the optimum spanload will then
be a matter of choosing which one is the best
measure of effectiveness for a specific optimiza-
tion problem. Choices include wing weight, fuel
weight, gross weight, or a prescribed combina-
tion of each.

III. Description of the aerodynamics code.

The method used for calculating the lift dis-
tributions is a discrete vortex method with a
Trefftz plane analysis. It was developed based on
previous work by Blackwell11, Lamar12,
Kuhlman13 and Kroo.6. It determines the lift dis-
tribution corresponding to the minimum induced
drag of the configuration. The implementation by
Grasmeyer14 in a FORTRAN code (idrag version
1.1) was used. The code also includes an op-
tional trim constraint, in which the pitching mo-
ment coefficient can be fixed if several surfaces
are analyzed. Given the geometry for a number
of surfaces, the program finds the spanload that
has the minimum induced drag for a specific
value of lift coefficient and pitching moment
coefficient using the method of Lagrange multi-
pliers14.

The code was modified to implement an extra
constraint: a root bending moment constraint.
Then, a new strategy was implemented in the
code to obtain lift distributions with this con-
straint. First, the spanload for minimum induced
drag is found without taking into consideration
any bending moment constraints (i.e. for a planar
wing, this will give an elliptic lift distribution).
Once this spanload is obtained, the root bending
moment it produces is calculated. This spanload
and wing root bending moment will correspond
to one unique value of wing weight. Next, the
root bending moment is reduced by an arbitrary
amount, say for example 10%, and a new opti-
mum spanload is calculated with the same lift
and the reduced wing root bending moment con-
straint. In that way, for a given planform, and
knowing the relationship between weight and
root bending moment¶, the reduction in weight
can be compared to the increase in induced drag.

                                                
¶ The spanload generated with the root bending moment
constraint is used to calculate wing bending material weight
using a beam theory analysis.15 Weight equations from
FLOPS16 are used for the other weight components. A de-
tailed description of this weight calculation is given in sec-
tion IV.

The bending moment constraint has been im-
plemented in the idrag code using the method of
Lagrange multipliers, and this constraint can also
be turned on or off in combination with the trim
constraint. Several configurations have been
studied with this method. One of them is shown
in Figure 1, a typical transport aircraft planform.

Figure 1. Typical transport aircraft planform.

Figure 2 shows two minimum induced drag
spanloads for this planform at the cruise condi-
tion. One has no bending moment constraint,
while the other is for an arbitrary wing root
bending moment reduction (11%). Trimmed
flight has been assumed, so that both bending
moment and trim constraints are active.

Figure 2. Span load distribution for minimum
induced drag and with an arbitrary root
bending moment reduction for a B-777 type
configuration.

In Figure 2 a reduction in wing root bending
moment shifts the load curve towards a more
triangularly loaded wing with the same lift. Since
the load is shifted inwards, wing weight should
be reduced with this new loading, and induced
drag will necessarily be increased since the
spanload deviates from the minimum induced
drag distribution. In this case the drag increase
from the minimum drag value is about 8%. One
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other consideration is that as the load curve be-
comes more triangular, the lift coefficient at the
wing root also becomes larger for the same total
wing lift coefficient. For a very high load near
the wing root, stall at this location will necessar-
ily occur at a lower wing lift coefficient value
compared to that for a more elliptically loaded
wing. Then, although it will be shown that shift-
ing the lift distribution towards a more triangu-
larly loaded wing will in most cases reduce the
gross weight, there will be a limit on “how trian-
gular“ the spanload really can become based on
stall considerations. In this study no limits based
on stall are imposed on the optimization, and this
will be valid as long as the spanload does not
become “too triangular”, with a high load value
at the wing root. Recall that here the planform
shape is constant. In a more general optimization
problem the chord distribution would be opti-
mized to account for stall behavior.10

IV. Structural Model

The structural model used for the key wing
weight calculations was developed by Naghshi-
neh-Pour15 at Virginia Tech. Both cantilever and
strut-braced wings can be handled with this
model. The model was implemented in a com-
puter code and has been validated as a realistic
structural model for preliminary design. Taxi
bump load analysis can be performed in the
code, but is not used in this study. A maximum
load factor condition will be the analysis condi-
tion used for wing weight calculations. The code
requires the wing planform shape, together with
wing thickness distributions and the spanload
distribution for the maximum load factor as in-
puts. It gives the wing bending material weight
as one output. The spanload for maximum load
factor was obtained with the aerodynamic code.
A value of 2.5 with a safety margin of 1.5 was
the load factor used, since this is typical for
transport aircraft. The required bending material
weight along a variable box beam is calculated
by integrating over the area under the bending
moment curve. Engine inertia relief factors are
also included.

The spanload corresponding to the maximum
positive load is assumed to have the same shape
as the load distribution for cruise. Thus a rigid
wing is used in this paper and no aeroelastic ef-
fects are accounted for. In real life, the aeroelas-
tic effects will cause a change in the load distri-
bution from normal cruise conditions to the
worst-case load conditions.

The bending material weight is then used to
calculate the total wing weight together with

equations taken from the general optimization
code FLOPS16 (Flight Optimization System),
developed by NASA.

The wing weight calculations involve factors
for wing sweep, wing area, flap area, aeroelastic
tailoring factors and another factor accounting
for the amount of composite materials used in
the wing. The final weight equation used in the
FLOPS subroutine is given here because it will
become important when the Breguet range equa-
tion is introduced:

 Wwing =
TOGW ⋅ w1 + w2 + w3

1+ w1
             (2)

In this equation: GW is the aircraft gross
weight, w1 is a factor that accounts for bending
material weight, planform shape, ultimate load
factor, engine inertia relief and aeroelastic and
composite factors. It is the value supplied by the
Naghshineh-Pour code. w2 is an extra correction
due to flap area, and w3 further corrects wing
weight for the amount of composites used.

Equation (2) was introduced here to show that
the wing weight calculation requires the aircraft
total gross weight. The purpose of this study is to
change the lift distribution and observe how in-
duced drag and wing weight change. This in turn
will affect total fuel and gross weights. However,
if the wing weight is dependent on aircraft gross
weight, something must be done to close the
loop. The use of the Breguet equation will not
only serve as a method for calculating fuel and
gross weights from a knowledge of induced drag
and wing weight, but closes the loop connecting
gross weight and wing weight.

V. Implementation of the Breguet equation.

The Breguet range equation is used as a
means of relating wing weight and induced drag
for a certain aircraft configuration to fuel and
gross weights. Given the gross weight of a trans-
port aircraft for a specified mission and the fuel
weight and range for that same mission, the lift
coefficient, drag coefficient and specific fuel
consumption at the mission altitude and velocity
can be calculated. The induced drag and lift dis-
tribution for minimum drag can also be obtained
together with the corresponding wing weight.
Once these calculations are performed, the fol-
lowing assumptions are made: the weight of the
aircraft that does not include wing and fuel
weight will remain constant, and the drag of the
aircraft that does not include induced drag will
also remain fixed. The validity of the results ob-
tained in this study will depend on the validity of
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these assumptions. As for the first one, the
structural weight of the whole aircraft will de-
pend on wing weight and fuel weight, so that if
these weights change, the structural weight
should also change. However, for small varia-
tions in wing and fuel weight, that is, small
changes in aircraft gross weight, it is not a bad
assumption to presume that the rest of the struc-
tural weight (and of course, the payload weight)
remains constant. In any event, if gross weight is
reduced the structural weight should decrease.
Hence, the gross weight reductions obtained here
will be the minimum expected reductions. In the
second assumption, it is presumed that changing
the twist or camber distribution of the wing (re-
call that the planform remains the same) does not
change profile or pressure drag. It seems clear
that drag will change, but as long as the aircraft
is still at the same speed, altitude, and lift coeffi-
cient conditions, the effects of the changing pro-
file and pressure drag on the wing will be minor.

Once we assume that the only weight changes
are wing and fuel weights, and that the only drag
change is induced drag, the spanload can be
modified to see the variation it produces on air-
craft weights. The wing root bending moment is
then decreased from the initial minimum drag
configuration, producing a more triangularly
loaded lift distribution with an increased value of
induced drag. The new loads are then used in the
structural model to calculate the wing weight. It
was noted earlier that gross weight is needed to
calculate wing weight from the FLOPS weight
equation (2). Assuming that the mission range is
constant (that is, the aircraft still has to meet the
same mission requirements), all that is needed to
calculate take-off weight from the Breguet range
equation is the wing weight. Solving for the
take-off weight from the Breguet equation gives:

TOW = (Wwing + Wrest ) ⋅e

R ⋅ sfc ⋅CD
V ⋅C L  (3)

In this equation, restW  is the weight that is as-
sumed to remain constant, that is, the weight not
covered by fuel or wing weight. For the maxi-
mum range configuration, where the aircraft has
a full fuel load, it will be assumed that take-off
weight equals aircraft gross weight. Combining
equation (2) to calculate wing weight with equa-
tion (3) to calculate gross weight, it is clear that
an iteration will yield simultaneously both the
aircraft gross weight and wing weight. This is
the approach we used. Now, a change in wing lift
distribution towards a more triangular curve can

be related to changes in wing weight, fuel weight
and gross weight, so that an optimum lift distri-
bution can be found.

When new gross weights are calculated corre-
sponding to new lift distributions, the lift coeffi-
cient will change if the aircraft still flies at the
same altitude, so that the loads used do not actu-
ally reflect in the calculated gross weights.
Cruise altitude is then changed with gross weight
variation to keep the cruise lift coefficient con-
stant. In that way, the load distributions will cor-
respond to weight variations. The actual altitude
change needed to keep the lift coefficient con-
stant is in fact small (less than 500 ft. for a Boe-
ing B-777 class test case)

This is not the only approach that could have
been used. Instead of varying gross weight and
keeping mission range constant, the opposite
could have been done. That is, the gross weight
could be held constant, so that any wing weight
reduction would be compensated by a fuel
weight increase in the same amount, and the dif-
ferent ranges that different spanloads would pro-
duce could be compared. In the approach used
here, fuel weight is calculated so that the re-
quired range is just met, and different gross
weights are compared for the same mission. This
approach corresponds to standard aircraft design
practice.

VI. Results.

As an example of the method, a study has
been performed for a Boeing B-777 type aircraft.
The basic data used for the study is given in Ta-
ble 1. Note that the configuration under study is
a maximum take-off weight, maximum range,
maximum fuel arrangement. Other missions for
the same aircraft will generate different results.
These other missions will be treated later. In our
first example we concentrate on the maximum
range configuration. As wing the root bending
moment is decreased and new spanloads are cal-
culated, the induced drag increases and the wing
weight decreases. To compare induced drag co-
efficient increase to wing weight reduction as the
root bending moment decreases, nondimensional
parameters for both variables are defined as:

drag_ increase = 100 ×
C Dind − CDind0

CDind0

     (4)

Wwing _ reduction = 100×
Wwing0 −Wwing

Wwing0

  (5)

Here, the subscript “0” refers to the baseline con-
figuration, “ind” refers to induced drag, and the
subscript “wing” refers to the wing weight.
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Table 1. B-777-type data used in the study.

WING GEOMETRY
Location of Wing Chord Break Point 0.37
Wing Half Span (ft) 109.21
Inboard Wing Sweep (deg) 28.29
Outboard Wing Sweep (deg) 28.29
Wing Dihedral Angle (deg) 6
Wing Chord at Fuselage Center Line (ft) 52
Wing Chord at Break Point (ft) 25.83
Wing Chord at Wing Tip (ft) 7.35
Thickness to Chord at Fuselage Center Line (ft) 0.111
Thickness to Chord at Wing Break Point (ft) 0.1
Thickness to Chord at Wing Tip (ft) 0.08
HORIZONTAL TAIL GEOMETRY
Horizontal Distance from wing to tail leading
edges at center line

120

Vertical Distance from Wing to Tail Leading
Edges at Center Line

12

Tail Half-Span (ft) 36.913
Tail Sweep Angle (deg) 37
Tail Dihedral Angle (deg) 0
Tail Root Chord (ft) 22.618
Tail Tip Chord (ft) 7.35
PERFORMANCE SPECIFICATIONS
Maximum Gross-Weight (lbs) 588893
Fuel Weight (lbs) 215000
Maximum Range (nm) 7600 +

500
reserve

Cruise Mach Number 0.85
Cruise Altitude (ft) 40000
Static Specific Fuel Consumption (lb/hr/lb) 0.29
ENGINE SPECIFICATIONS
Number of Engines on Wing 2
Engine Weight (lbs) 16278
Spanwise location of Engine on Wing 0.33
MISCELLANEOUS
Ultimate Factor 2.5
Ratio of Wing Area Covered by Flaps 0.333
Location of Aircraft Center of Gravity (ft) 35
Fuselage Diameter (ft) 20.33

The results obtained for the B-777 class air-
craft test case with the data given in Table 1 are
shown in Figure 3, in which induced drag in-
creases and wing weight reductions are shown as
a function of wing root bending moment reduc-
tion.

The induced drag curve shows that the drag
increase from the minimum induced drag point
(that is, zero root bending moment reduction) is
parabolic, with zero slope at the starting point.
This is expected, since it shows that the zero
wing root bending moment reduction point is in
fact the minimum for induced drag. The induced
drag increase curve turns out to be exactly para-
bolic for every aircraft and planform configura-
tion.

The wing weight reduction curve is much
more interesting. Note the nearly linear behavior
of this line. Even when a structural model was

used that calculates wing bending material
weight and takes into account such factors in the
wing weight calculations as engine inertia relief
or the use of composite materials, the variation
of wing weight with wing root bending moment
is almost linear.

Figure 3. Wing weight reduction and in-
duced drag increase versus root bending mo-
ment reduction. B-777 type aircraft, maxi-
mum range configuration.

We initially assumed that the wing root
bending moment constraint was a somewhat
crude approach. However, at least for this test
case, it turns out to be a quite good one, and no
further structural constraint may be needed.

It should be realized that the linearity of the
wing weight reduction curve is in fact dependent
on the test case, so that a different aircraft would
yield a different curve. A wide variety of air-
planes of different sizes, weights and mission
ranges should be tested to prove that the linearity
of the wing weight reduction versus root bending
moment curve is in fact general, and that a
straight line can be fit through this curve in all
cases with a low loss in accuracy. If this is true,
the entire spanload optimization only requires
the study of two values for the wing weight and
induced drag; one for minimum induced drag
(zero root bending moment reduction) and an-
other for an arbitrary root bending moment re-
duction. Curves would then be fit through these
two points and the optimization process highly
simplified, since it is no longer necessary to
make calculations covering a wide range of root
bending moment reductions.

Fuel weight variations versus root bending
moment reductions for the same test case are
shown in Figure 4. Fuel weight is actually de-
creased when the root bending moment reduction
is low (from zero to six percent), even when the
induced drag is increasing. This is due to the
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rapid decrease in wing weight compared to the
increase in induced drag for these low values of
root bending moment reduction, leading to a
lighter aircraft with the same drag characteristics,
so that less fuel is required to complete the mis-
sion. Nevertheless, when the root bending mo-
ment reduction becomes high, the fuel weight
increases sharply, and this will in fact limit the
value beyond which a more triangular spanload
is beneficial.

Figure 4. Fuel weight variation versus root
bending moment reduction. B-777 type air-
craft, maximum range configuration.

Figure 5 shows the variation of the sum of
wing and fuel weights, also showing the varia-
tion of gross weight. These two curves are es-
sentially the same plot, since the weight of the
aircraft not covered by the wing and fuel weights
was assumed to be constant. The minimum gross
weight for the test case is found for a root bend-
ing moment reduction of about 10%. The span-
load corresponding to this minimum gross
weight is given in Figure 6, together with the lift
distribution for minimum induced drag. Note
that the maximum gross weight reduction ob-
tained for this test case is close to 1%, or about
6,000 pounds. For a long range aircraft, like the
B-777, any increase in drag results in a large
increase in fuel weight, so that only a low wing
root bending moment reduction would be benefi-
cial. Thus, relatively small gross weight reduc-
tions are expected for this type of airplane. For
low range transport aircraft, where structures
become more important than aerodynamics, a
larger root bending moment reduction will be
optimum, and the total gross weight savings will
be larger.

So far, the method presented gives the opti-
mum spanload for a given aircraft. That is, the
spanload that will produce a maximum reduction
in gross weight. However, the test case studied

was that of a maximum take-off weight configu-
ration. Aircraft generally fly through shorter
distances than their design maximum range, of-
ten in economic missions. It is then important to
study how the spanloads generated by the root
bending moment reduction will affect fuel
weights and in turn take-off weights for these
different missions. A modified FORTRAN code
was then developed to carry out this study, the
description of which is next.

Figure 5. Wing plus fuel and gross weight
variations versus root bending moment reduc-
tions. B-777 type aircraft, maximum range
configuration.

Figure 6. Span load distribution for mini-
mum induced drag compared to optimum
load distribution.

VII. Weight variations for different
 mission ranges.

The method developed to study weight varia-
tions for different mission ranges includes only a
few modifications. Maximum take-off weight
(equal to aircraft gross weight), maximum fuel
weight and maximum range are still needed to-
gether with the new fuel weights for which
weight variations will be studied. We assume
that the initial take-off weight is reduced by the
same amount from the maximum take-off weight
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than the fuel weight is reduced from the maxi-
mum fuel weight, that is, all the missions will
have the same payload.

A new value of cruise lift coefficient for the
new weights is calculated. It is then assumed that
the drag coefficient not due to induced drag is
still constant, with the same value it had for the
maximum range configuration. Note that this
assumption is really more restrictive than the one
made before for the drag coefficient, since the
cruise lift coefficient now changes, and conse-
quently the angle of attack, which will change
the drag coefficient. However, the mission is still
performed at the same altitude and speed, and the
lift coefficient varies little from the initial maxi-
mum weight configuration, so that drag coeffi-
cient will remain almost unchanged by the new
conditions.

The range for the new fuel weight can be cal-
culated using the Breguet equation, and different
spanloads for different root bending moment
reductions can be generated. For a given root
bending moment reduction, the new induced
drag for the new lift distribution is calculated as
before, but the approach that was used to calcu-
late wing weight can no longer be applied.

Using an iteration between the Breguet equa-
tion solved for the take-off weight (eqn (3) ) and
the wing weight equation from FLOPS (eqn (2) )
will lead to inconsistent results. The take-off
weight calculated in this iteration will serve as
the gross weight used in the wing weight calcu-
lations, and for a reduced range mission take-off
weight and gross weight will be different. Since
for a specified wing root bending moment re-
duction the aircraft still has to meet the maxi-
mum range, the gross weights calculated for the
maximum range configuration at the specific
root bending moment reduction are used into the
wing weight equation so that the iteration is re-
moved and the calculated wing weights for dif-
ferent mission ranges are the same. The actual
take-off weight is then calculated once the wing
weight is known using equation (3), and fuel
weights are found in the same way they were
before.

 One final consideration must be pointed out:
take-off weight variations and fuel weight varia-
tions for different mission ranges will be non-
dimensionalized by maximum weights for con-
sistency. That is, the weight difference will al-
ways be divided by the fuel or take-off weight
corresponding to the maximum range configura-
tion. Otherwise, comparisons would be made for
variations that are non-dimensionalized by dif-

ferent weights. Results for the B-777-class air-
craft study case are given next.

VIII. Results for different mission ranges.

In this case the spanload is optimized for a
reduced range, while the aircraft still meets the
full, long range mission requirement as a con-
straint. In minimizing the take-off weight at a
shorter range, a penalty will be incurred for the
full range mission compared to the basic aero-
alone optimum weight. The relative magnitude
of the benefit for shorter range flight compared
to the penalty at the full mission range is found
as part of the results, and can be used in deter-
mining the best design target choice.

The study is performed reducing fuel weights
so that ranges vary from 4000 to 8000 nautical
miles, which are typical mission ranges for the
B-777. Wing weights for different root bending
moment reductions will have the same value as
those obtained for the maximum range configu-
ration, so that its variation will not be shown
here.

Figure 7 shows the fuel weight variation as a
function of wing root bending moment reduction
for different mission ranges. All the curves ap-
pear close to each other when the root bending
moment reduction is low, but for high values of
root bending moment reduction (more triangular
spanloads), the fuel weight needed to complete
the mission range increases much more sharply
for high mission ranges, and this is reflected in
aircraft take-off weight.

Figure 7. Fuel weight variation with root
bending moment reduction for different mis-
sion ranges. B-777 type aircraft.

Figure 8 represents the variation of the sum
of wing and fuel weights as a function of root
bending moment reduction. Figure 9 depicts
take-off weight variation. Again figures 8 and 9
are essentially the same graph, since wing and
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fuel weights are the only weights that change in
the model used. The general result is that a larger
take-off weight reduction can be achieved for
lower ranges, also corresponding to a higher root
bending moment reduction and a more triangular
lift distribution. This means that the take-off
weight savings due to reduced wing weights be-
come more important than the fuel weight in-
crements due to increased drag for lower mission
ranges, as expected.

Figure 8. Wing plus fuel weight variation with
root bending moment reduction for different
mission ranges. B-777 type aircraft.

Figure 9. Gross weight variation with root
bending moment reduction for different mis-
sion ranges. Boeing B-777 type aircraft.

It should also be realized that the optimum
load distributions for short range configurations
can result in weight penalties for the maximum
range mission. Figure 9 shows the maximum
take-off weight reduction for the 4025 nm. mis-
sion range case, corresponding to a 22% root
bending moment reduction. Weight savings
when performing this reduced mission range are
around 2%. However, for the same spanload, if
the maximum mission range is performed, a
take-off weight penalty of about 0.5% will be
experienced. It is then important to choose an

optimum spanload that represents a compromise
between weight savings for the different mission
ranges that the aircraft will perform.

IX. Conclusions.

A method for calculating lift distributions for
minimum induced drag with a wing root bending
moment constraint, and that relates the associ-
ated spanloads to changes in wing weight, fuel
weight and gross weight for transport aircraft
configurations has been developed. The method
can help determine which spanloads provide the
maximum benefit to a specific aircraft design, so
that an optimum lift distribution can be found.

The key insight is that the wing weight de-
creases nearly linearly with reduced wing root
bending moment, while the additional induced
drag arising from forcing the wing root bending
moment to be less than its minimum drag value
results in a parabolic increase in induced drag.
Therefore, the system minimum will always oc-
cur for a spanload with a lower wing root bend-
ing moment than the minimum based on aerody-
namics alone.

Even for the same airplane fuel weight, varia-
tions due to different lift distributions change
from mission to mission, depending on the
range, so that a wing spanload curve that will
produce large benefits when performing a low
range mission can result in a penalty when per-
forming its maximum range mission. It is then
necessary to study aircraft configurations
through the whole range of missions they cover
to find an optimum spanload that will represent a
compromise for the different missions.

A B-777 class aircraft has been studied with
this method. Results show that a reduction of 1%
in maximum take-off gross weight can be ob-
tained. When performing reduced range mis-
sions, an almost 2% savings in take-off weight
savings is achieved.

The method described here is applicable to
aircraft configurations with cantilever wings. It
needs to be extended to treat the case of strut-
braced wing concepts which have recently been
shown to be very promising17, 18.
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