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Abstract 

The statistical distribution of errors due to incomplete
convergence of optimization procedure was studied. The
optimum wing structural weights of a high speed civil
transport (HSCT) calculated by GENESIS structural
optimization program contained substantial error. It was
possible to reduce the error by tightening the
convergence criteria to achieve high fidelity
optimization. To estimate the overall uncertainly level of
the low fidelity optimization, the optimization error was
estimated at data points constituting an experimental
design in the HSCT design space. Since the error from
incomplete optimization is one-sided, the Weibull model
distribution was fitted to the estimated error and achieved
a good fit for low and mid fidelity data. Fitting the
difference of two optimizations with different
convergence criteria achieved a good fit for the low
fidelity error more efficiently than a direct fit on the
estimated error. The fitted error distributions may
provide a guide for selection of convergence criteria, and
will be useful in specifying distributions of uncertainty
variables in robust optimization.
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1. Introduction

Response surface techniques were originally
developed for fitting experimental data. They assume that
the measurements they fit contain noise that is normally
distributed and has zero mean. In the past decade,
response surface techniques have gained popularity for
fitting the results of computer simulations. These contain
numerical noise due to discretization errors and due to
iterative processes that are not fully converged.1 It is well
known that the characteristics of numerical noise are
different from those of experimental noise. For example,
repeated numerical simulations for the same data
normally give the same results, while repeated physical
experiments do not. This has forced some minor changes
in response surface procedures. In particular, in the
choice of points used for the fitting, known as design of
experiments, the use of duplicate points is common when
physical experiments are done, and this is avoided with
numerical experiments.

Optimization is typically an iterative process, and is
rarely allowed to converge to high precision due to
computational cost considerations. Consequently,
optimization results are usually a noisy function of the
parameters of the problem. The errors due to incomplete
convergence are normally one sided, because the solution
is not as good as the true optimum. For example, in a
minimization problem, the error may be expected to be
positive. This implies that the mean of the error cannot
be zero.

In multidisciplinary optimization (MDO),
subsystems may be optimized, and the results of the
optimization are fitted by a response surface as a function
of the system design variables. For example, we have
followed this procedure in configuration optimization of
a high speed civil transport (HSCT), where we did
structural optimizations to get optimum wing structural
weight (Ws) and created response surfaces of optimum
wing bending material weight (Wb) as a function of the
configuration variables.2 We found that the error in the
optimum structural weight depends on the convergence
parameters in the optimization procedure.
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In previous work3, we identified points with large
optimization error by a standard robust statistics
procedure and repaired them to improve the accuracy of
the response surfaces. We next modified the
identification procedure to take advantage of the one-
sidedness of optimization errors.4 In this framework, the
statistical properties of the optimum may be useful for
guiding the process of response surface fitting. In
addition, such statistical properties can be of use when
the overall uncertainty in the design process needs to be
studied. The objective of this work is to collect
information about uncertainty in the optimization process
and to study its statistical properties.

2. Fit of Statistical Distribution of Optimization Error

Choice of Statistical Distribution for Optimization Error

Our goal is to model the error incurred by
convergence problems in the optimization procedures by
using statistical distribution functions. We start by
selecting candidate model functions to fit the
distribution.5, 6  These functions usually have a few
parameters that define the distribution. For example, the
normal distribution has a mean and a standard deviation
as the parameters. Table 1 describes the three
distributions we have considered: normal, exponential,
and Weibull distributions. Due to the bias in the error
incurred by incomplete convergence of optimization, the
exponential or Weibull models are expected to be better
than the normal distribution. The exponential distribution
has only one free parameter �. The Weibull distribution
has two parameters, the shape parameter �, and the scale
parameter �. Note that the Weibull distribution reduces to
the exponential distribution when �=1. One common
application of the exponential and Weibull models is for
modeling of time to failure. So, the optimization error
may be interpreted as analogous to time to failure. The
Weibull model can be used to fit data for either
increasing or decreasing failure rate depending on the
shape parameter (See Appendix A).

Fit of the Distribution of Optimization Error to the Model
Functions

We use maximum likelihood estimation (MLE) to
fit the distribution to optimization error data.5 Let x be a
random variable whose probability density function
(PDF) f(x; �) is characterized by a single parameter �.
Assuming that the sampled data xi (i=1,…, n) are
independently and identically distributed, the probability
that the sample of size n consists of values in the small
intervals, xi �x� xi+∆x, is given by the product.
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The xi ’s are fixed at the sample values, and l(�) is called
the likelihood function.
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MLE seeks the parameter  that maximizes the likelihood
function, or equivalently its logarithm. For the
exponential distribution
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From ( )( ) ( ) 0/log =∂∂ βl , the MLE solution can be shown

to be the mean of the data. However, for more general
distributions MLE may require the solution of a system
of nonlinear equations.

Applying MLE to Optimization Errors

When we need to fit optimization errors with a
statistical distribution, we usually do not know the exact
error because we do not have the true optimum. Instead,
we normally have one set of results obtained with
relatively lax convergence criteria and one set of results
obtained with relatively tight convergence criteria. We
refer to these as the low fidelity and high fidelity data.
We denote the low fidelity optimum by Wl, the high
fidelity optimum by Wh, and the true optimum by Wt.
Then the optimization errors for the low and high fidelity
data can be represented as random variables, s and t
respectively.
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For example, if our data follows the exponential
distribution, s and t have the following probability
distribution functions
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The difference between the pair of Wl and Wh is equal to
the difference between the errors, because the true
optimum Wt is the same. That is,
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x = s - t = (Wl - Wt) - (Wh- Wt)  = Wl - Wh.  (7)

The probability density of the differences of optimum (in
short, optimization differences) can be obtained as a
convolution of the joint distribution7 of g(s) and h(t),
provided that s and t are independent each other.
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This is a continuous distribution of optimization
difference in x � (-�, �). Now we can fit the
optimization difference, x, to the model function (8) via
maximum likelihood estimation. In the maximum
likelihood approach we find parameters β1 and β2 which
maximize the likelihood function l(β1, β2).
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where f is defined in Equation (8). This is an
unconstrained optimization problem in two variables.
Equivalently we can maximize the log likelihood.

Once we get the MLE estimates of the parameters,
we have to check whether the data justifies our
assumption on the distribution. The chi-square (χ2)
goodness of fit5 is a formal test of hypothesis to check if
a sample data follows a certain distribution. To compute
the χ2 test statistic, we need to subdivide the entire range
of the fitted distribution into k adjacent intervals. When
the sample size is n, the test statistic is calculated as
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Nj is the observed frequency in the jth interval. pj is the
expected probability of the jth interval from the fitted
distribution and then npj is the expected frequency in the
jth interval. If the fit is good, (Nj - npj) will be small, and
the test statistic χ2 will also be small. Therefore we reject
the null hypothesis that the data follows the fitted
distribution if the test statistic χ2 is large. The χ2 test is a
one-sided test and we used a 5% as the significance level.
The p-value of the χ2 test is defined as the probability
that test statistic is greater than the calculated value when
the fitted distribution is true. A p-value near 1 implies a
good fit whereas a p-value near zero indicates a poor fit.

3. HSCT Design Optimization

Description of the HSCT Design Problem

The problem studied in this paper is a 250-
passenger HSCT design with a 5500 n.mi. range and
cruise Mach speed of 2.4. A general HSCT model8

developed by the Multidisciplinary Analysis and Design
(MAD) Center for Advanced Vehicles at Virginia Tech
includes 29 configuration design variables. Of these, 26
describe the geometry, two the mission, and one the
thrust (Table 2). The objective was to fit a response
surface to the optimal wing bending material weight Wb

from structural optimization as a function of
aerodynamic design variables.9 There are four load cases
for the HSCT design study that represent different points
on the flight envelope.

We studied a simplified version of the problem
with five variables.10 The five design variable case
includes fuel weight, Wfuel and four wing shape
parameters: root chord, croot, tip chord, ctip, inboard
leading edge sweep angle, ΛILE, and the thickness to
chord ratio for the airfoil, t/c. In this five variable case,
fuselage, vertical tail, mission and thrust related
parameters are kept unchanged at the baseline values. A
design box is the range of design variables over which
response surfaces are constructed. Table 2 shows the
values and ranges of the design variables.

Structural Optimization

In this study, a structural optimization procedure
based on finite element analysis using the GENESIS11

program was applied. A finite element model developed
by Balabanov9 was used. The finite element model uses
40 design variables, including 26 variables to control
skin panel thickness, 12 variables to control spar cap
areas, and two for the rib cap areas. The HSCT codes
calculate aerodynamic loads for each of four load cases,
and a mesh generator by Balabanov calculates the FEM
mesh and the applied load at the structural nodes, and
creates the input for GENESIS. The structural
optimization is performed for each aircraft configuration.
The objective function is the total wing structural weight
(Ws) and Wb is assumed to be 70% of the Ws. In previous
papers, we calculated Wb by considering the skin
elements that are not at minimum gauge. However, this
procedure caused additional noise error besides the error
due to incomplete optimization, which is our main
concern in the paper. So in this work we used the
objective function itself, Ws instead of Wb.
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4. Results

Effects of Convergence Control Parameters on the
Optimization Error

The optimization error depends on the convergence
criteria, which are called control parameters in
GENESIS. Control parameters in GENESIS can be
categorized into move limit parameters, convergence
criteria, and inner optimization control parameters. There
are two loops in GENESIS. In the outer loop, an
approximation for the optimization problem is generated
and this approximate problem is passed to the inner loop
of a gradient based optimization. After convergence of
the approximate problem, a new approximation is
constructed at the optimum of the approximate problem.
The approximation and optimization is continued until no
further change of design variables, called soft
convergence, or no further change of the objective
function, called hard convergence, occurs. The
optimization parameters affect the performance of
optimization, uncertainty in the optimization results, and
the computational cost.

For the Wb response surface, we used a mixed
experimental design3 that included face centered central
composite design and an orthogonal array designed to
permit fitting quadratic and cubic polynomials.
GENESIS structural optimizations using six different
sets of parameters were performed on each of the 126
points. Table 3 lists the description of the parameters and
the actual values used in this study. Case A2 employs the
default parameters provided by GENESIS. Case A3 and
Case A5 are the same as Case A2 except that the
parameter ITRMOP was increased to 3 and 5,
respectively. ITRMOP controls the convergence of the
inner optimization. For the approximate optimization to
converge, the inner loop convergence criterion for the
objective function change must be satisfied ITRMOP
consecutive times. The default value of ITRMOP is 2,
and by increasing it, the inner iteration is forced to iterate
further. In turn, this may force the outer loop to continue,
because the so called soft convergence criteria �the
change of design variables� are not met, which may have
been satisfied if ITRMOP had been 2. This may result in
significant improvement in the final optimum design.
After extensive experimentation with the optimization
parameters and help from the developers of GENESIS,
we found that this parameter was the most important for
improving the accuracy of the optimization for our
problem. Case B2 employs tighter move limits and
convergence criteria than Case A2. It reflects our first
attempt to improve the optimization results. Case B3 and
Case B5 are the same as Case B2 except that ITRMOP is
3 and 5, respectively. The value of all the control
parameters for the six cases are given in Table 3.

In order to visualize the behavior of the errors,
Figures 1 (a) and (b) show the Ws response for 21 HSCT
designs along a line connecting two designs in the HSCT
design space. It is clear from the figures that Case A2 and
Case B2 have substantial errors. By increasing ITRMOP,
the noise in Ws was substantially reduced and the gain
with ITRMOP=5 over ITRMOP=3 was small. To
calculate the error for each case, we need to know the
true Ws, which, strictly speaking, cannot be known due to
the iterative procedure inherent in the optimization. Here
we estimate the true Ws by taking the best of the six
GENESIS runs we already did using different
parameters. Table 4 shows the performance of each set of
GENESIS parameters for all 126 design points. The
optimization error was calculated by comparing Ws to the
best of the six Ws’s available. Table 4 shows how many
times each case produced the lowest, the best among the
six Ws’s for 126 points. Case A2 and Case B2 never
found the best results. But with ITRMOP=5, Case A5
and Case B5 achieved the best Ws 58 and 52 times
respectively, almost half of the data each, and together
nearly 90 % of the data. Sometimes Case A3 and Case
B3 came up with the best results, for 12 and 4 points,
respectively.

For the default GENESIS parameter (Case A2), the
mean error was 4.86 %. It is seen that tightening the
convergence criteria for ITRMOP=2 (Case B2) actually
had detrimental effect since the mean error increased to
5.63 %. By using ITRMOP=3 (Case A3 and Case B3),
the mean errors were reduced to 0.546 % and 0.762 %
respectively, about a tenth of the levels of the low fidelity
errors. With Case A5 and Case B5, the mean error was
very small, less than 0.2 % but this may be an
underestimate because we did not perform even higher
fidelity optimization. In terms of computational cost, the
high fidelity optimization using ITRMOP=5 required
more than twice the CPU time of the low fidelity
optimization, ITRMOP=2.

In fact, the estimate of the true optimum by taking
the best of six runs turned out to be very accurate, mostly
thanks to the high fidelity of Case A5 and Case B5. This
was tested by doing nine additional GENESIS runs on 30
randomly selected HSCT designs using Case B5 from
different initial design variables. For these 30
configurations an average of 0.011% improvement was
obtained. Therefore, we will denote the best of six Ws’s
as ‘the estimate of true Ws’, and accordingly the error of
Ws with respect to this value will be denoted as
‘estimated error’, et, of optimization. Our concern about
uncertainly will be mainly lying on the low (ITRMOP=2)
and mid fidelity (ITRMOP=3) cases. For the high fidelity
cases (ITRMOP=5), the error appears to be negligible.
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Estimation of Statistical Distribution

Correlation between Ws and Error

Our approach is to determine the characteristics of
optimization error for various optimization convergence
setups through fitting a model function to the error data.
The parameters of the model function are found by the
maximum likelihood estimate (MLE). A basic
assumption behind the MLE is that the data is
independently and identically distributed. For the
optimization data at hand, dependence of data may not be
a problem, since the sampling was done by an
experimental design without replicates. To check
whether the error distribution is identical at different
points, the estimated errors, et, were plotted against the
estimated true Ws in Fig. 2.1 for the absolute error (lb.)
and in Fig. 2.2 for the relative error (%). For example,
with the absolute error of Case A2 in Fig. 2.1(a), the
mean and variance of error appears to increase as Ws

increases. A relatively high correlation coefficient of
0.5685 indicates the trend. Scaling the error by Ws may
help to stabilize the increasing mean and variance along
Ws. For the relative error of Case A2 in Fig. 2.2(a), the
distribution became more even, and the correlation
coefficient was reduced to 0.3210. One may observe
similar effects of relative error over absolute error for
other cases. The figures lead us to expect that if the
structural optimization process ends with premature
convergence, the absolute error would tend to be larger
for heavy designs.

However, considering that highly influential points,
such as the two outliers seen in Fig. 2.1 (b), tend to
exaggerate the correlation coefficients, the assumption of
homogeneous distribution may not be a bad assumption
even for the absolute error. If the variation of distribution
is important, the change of distribution may be modeled
by the generalized linear model12 (GLM). In GLM the
mean of distribution is related to the regressor variables
via linear model, while the fit in our approach assumes
the mean of distribution is the same for different data
points, which is a special case of GLM. Nonetheless,
with the four distributions in Fig. 2.1, the fit of a
distribution should provide useful information about the
overall behavior of the error. So we fitted model
distributions to both absolute and relative errors.

Direct Fit on Estimated Error

A Weibull model was fit to distribution of
estimated error et, and the results are summarized in
Table 5.1 for absolute error, and in Table 5.2 for relative
error. The Weibull model has two parameters, a shape
parameter, α, and a scale parameter β. According to the
χ2 test for the absolute error, the fit was good for Cases

A2, B2, and B3. For Case A3, the fit was marginally
rejected. For Case A5 and Case B5, the high fidelity
cases with ITRMOP=5, the fits were not good at all. In
fact, for those high fidelity errors, almost half of the data
were zero. However, the magnitudes of the error are so
small for the two high fidelity cases that the uncertainty
may be negligible. The Weibull fit of the relative error
was not as good as the fit for the absolute error. For
instance, the p-value of the fit to the relative error of
Case B2 was only 0.0327 compared to 0.8327 for the fit
to the absolute error. This is unexpected since we
observed that the distribution appears to be more
homogeneous with relative error than with absolute error.

Recalling that the standard deviation is the same as
the mean for the exponential distribution (when α = 1 in
Weibull), 

fitσ̂  greater than 
fitµ̂  in Table 5.1 indicates that

the errors from the structural optimization have greater
scatter than the exponential model. From the fits, overall
characteristics of the error can be estimated in terms of
the mean (

fitµ̂ ), and standard deviation (
fitσ̂ ) of the

distribution. On the other hand, the mean and standard
deviation can be estimated from et without fit by
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In Table 5.1, 
fitµ̂  and 

fitσ̂  were compared with 
dataµ̂  and

dataσ̂ , and the agreement is good for low fidelity errors

and is reasonable for the mid fidelity errors except for

fitσ̂  of Case B3.

Tables 5.1 and 5.2 are obtained from 126 data. We
expect that fewer points are required for a good fit. To
find how many points are required, we calculated 

fitµ̂
and 

fitσ̂  for 50 samples generated from a Weibull

distribution with α = 0.7682 and β = 3915, which is the
fitted value for et of Case B2. The mean (µ) and standard
deviation (σ) of the distribution are 4572 lbs. and 6023
lbs., respectively. The mean of 

fitµ̂  and 95 % confidence

bounds of 
fitµ̂  are drawn in Fig. 3 (a) as dash-dot lines.

Similarly the mean of 
fitσ̂  and 95 % confidence bounds

of 
fitσ̂  are shown in Fig. 3 (b). It appears that we need

about 50 points to get a good fit with reasonable
confidence bounds. Also, Fig. 3 (a) shows that 

dataµ̂  is

very close to 
fitµ̂ , but Fig. 3 (b) shows that 

fitσ̂ has a

narrower confidence interval than 
dataσ̂ .

Once we obtained a good fit, detailed information
of the error distribution could be utilized. For example,
we can calculate the probability that the error would
exceed a certain level. In optimization for reliability, we
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can use the fitted distribution in reliability calculations.
For our data, it is not surprising that Weibull model fits
errors from optimization failure well, since the Weibull
distribution has its root in failure rate concepts.

The probability plot is a graphical tool to show the
goodness of fit of distribution. We used the quantile-
quantile plots5, or so-called Q-Q plot. In the Q-Q plot,
the percentiles of the data are plotted against the
expected percentiles from the fit. If the fit is good, the
scatter plot should appear as a straight line passing the
origin with unit slope. Figure 4 shows the Q-Q plots for
the Weibull fit for et of the low and mid fidelity
optimizations. They show that the MLE resulted in a
good fit for the majority of data, while more or less
ignoring big error data. Figure 4 (c) indicates a
particularly good fit, which is in agreement with the
results of the χ2 test. The histograms in Fig. 5 compare
the shape of the error distribution to the Weibull fit. The
optimization error is by definition non-negative and the
probability for large error decreases rapidly to zero. One
can see that the fits match well with the data for the low
fidelity errors, Case A2 and Case B2, and the fits are
reasonable for the mid-fidelity error cases, even for Case
A3, although the fit was rejected by χ2 test. This fact
implies that the Weibull fit may be useful for Case A3 as
well if we are mainly interested in the behavior of large
error.

Indirect Approach Using Optimization
Differences

In the previous section it was possible to estimate
the low fidelity error accurately because high fidelity
optimizations were available, such as Case A5 and Case
B5. However, in many situations the high fidelity method
may be computationally too expensive. In these
situations, we may be able to fit the differences of Ws

between two results from different sets of convergence
parameters, to get the error distributions simultaneously.
In our data, Case A3 and Case B2 represent our efforts to
reduce the error in Case A2 by tightening the inner loop
convergence criterion or outer loop criteria. If either
optimization results by Case A3 or Case B2 are available
along with Case A2, we can estimate the error
distributions from the differences (See Eqs. 8 and 9). In
the MLE procedure, the probability density of the
difference, f(x) in (8), was numerically integrated using
Gaussian quadrature since there is no closed form
solution for the Weibull model. Table 6 contains the
correlation of et between the low and mid fidelity
optimizations, Cases A2, A3, B2, and B3. The
correlation coefficient between Cases A2 and A3 (=
0.2004), and Cases A2 and B2 (=0.1983), indicate that it
may be reasonable to treat them as independent.

The difference fit was performed on the pair (A2,
A3), and then on the pair of (A2, B2). The first pair

consists of a low fidelity and a mid fidelity optimization
while the second one engages two low fidelity results.
The results of the difference fit using the Weibull model
are summarized in Table 7.1. According to the χ2 test,
the fit was rejected for the pair of (A2, B3), but was good
for the pair of (A2, B2). In Table 7.2, the results from the
difference fit were compared to et data. As results of
difference fit using the Weibull model, we found the
distribution parameters, α and β, for both cases in a pair
simultaneously. The resultant fits can be compared to the
et data for each case and the χ2 tests indicated that the fit
was good only for Case B2.

For the first pair, bad fits may have been expected
because the fit on the difference itself was poor.
However, in terms of mean and standard deviation, the
prediction by indirect fit for Case A2 was in a reasonable
range, -9.7% and -2.1% of discrepancies for 

fitµ̂  and

fitσ̂ with respect to the 
dataµ̂  and 

dataσ̂  based on et.

Figures 6.1 compare the direct and difference fits for the
first pair in terms of cumulative frequencies. The
difference fit for Case A2 is close to that of the direct fit
as seen in Fig. 6.1 (a), although for Case A3 the
difference fit does not match well the direct fit. Also, it
would be meaningful to compare 

fitµ̂  and 
fitσ̂  from the

difference fit with the estimates using the data used in the
fit. For example, for the pair of Cases A2 and A3, we can
calculate an approximate true Ws as the best of Ws(A2)
and Ws(A3). Accordingly the approximate true error (ea)
can be calculated with respect to the approximate true
Ws, and then 

dataµ̂  and 
dataσ̂  are calculated by applying

Eq. (10) to ea. It turned out, as noted from Table 7.2, that

fitµ̂  and 
fitσ̂ are better than 

dataµ̂  and 
dataσ̂  based on ea for

both Case A2 and Case A3. However, the estimates for
Case A3 have big discrepancies with respect to 

dataµ̂  and

dataσ̂  based on et.

For the second pair, Cases A2 and B2, the indirect
fit gives much better estimates of mean and standard
deviation than 

dataµ̂  and 
dataσ̂  based on ea, because ea is

far from true error because it is based entirely on the low
fidelity data of Cases A2 and B2. For example, the 

dataµ̂
based on ea has a –44.1% discrepancy compared to –13.7
% of 

fitµ̂ for Case A2. Figures 6.2 show the prediction by

indirect fit is in reasonable match with the direct fits for
the second pair. If we compare the indirect fit for Case
A2 between the first and the second pair, the first pair
gives a little bit better fit than the second pair as seen in
Fig. 6.1(a) and Fig. 6.2(a). However, it should be pointed
out that the pair of (A2, B2) is computationally cheaper
than the pair of (A2, A3), because it involves another low
fidelity optimization, Case B2, instead of the mid fidelity
optimization of Case A3. Overall we find that performing
two sets of low fidelity optimizations allows us to
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estimate well the mean and standard deviation of the
error.

5. Concluding Remarks

We found that the error in the GENESIS structural
optimization is greatly affected by the convergence
parameters used in the optimization process. The most
influential convergence criterion affecting the error of
structural optimization was identified. As this criterion
was tightened, the uncertainty was reduced and the
originally low fidelity optimization procedure was
improved to yield mid or high fidelity optimization. To
find the statistical properties of optimizations of various
fidelity, we ran structural optimizations with different
convergence parameters on a set of experimental design
points, originally devised for response surfaces of
optimum wing structural weight of the high speed civil
transport (HSCT).

Model statistical distributions were fitted to the
optimization error via the maximum likelihood estimate.
Because the error comes from failure of the minimization
problem, the error was non-negative and one-sided. This
fact led us to try the Weibull distribution. With several
optimization results, including the high fidelity runs,
available for each HSCT configuration design, it was
possible to estimate the true optimum wing structural
weight (Ws) by taking the best of them. Consequently,
optimization errors were accurately estimated comparing
Ws to the estimated true optimum.

Graphical tools and correlation tests were used to
check the possibility of nonhomogeneous error
distribution, and there was no strong variation of the
distribution to doubt the usefulness of the fit. The
Weibull model gave satisfactory results for the low and
mid fidelity errors according to the χ2 test. Q-Q plots and
histograms were also utilized to check the goodness of
fit. The error distribution has a sharp peak near the origin
and rapidly decreased as the error increased. From the
mathematical background behind the Weibull
distribution, it was conjectured that the optimization
errors have decreasing failure rate.

Also, an indirect approach of finding the error
distributions was demonstrated. Instead of trying to find
the true optimum via high fidelity optimization, the
differences between two optima from different
convergence criteria are fitted to the joint distribution of
errors. A low fidelity error was fitted along with mid
fidelity or another low fidelity optimization result. The
difference fit approach showed good fits for low fidelity
error. Also, this approach was more efficient for
estimating the statistical properties because it requires
only two different fidelity optimizations, without
requiring estimates of true optima.
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Table 2: Configuration design variables for HSCT with corresponding configuration variable ranges of the
simplified five variable problem

Design Variable Values and Ranges

Planform Variables
Root chord, croot 150-190 ft
Tip chord, ctip 7-13 ft

Wing semi span, b/2 74 ft
Length of inboard LE, sILE 132 ft

Inboard LE sweep, ΛILE 67o– 76o

Outboard le sweep, ΛOLE 25o

Length of inboard TE, sITE Straight TE
Inboard TE sweep, ΛITE Straight TE

Airfoil Variables
Location of max. thickness, (x/c)max-t 40 %

LE radius, RLE 2.5

Thickness to chord ratio at root, (t/c)root 1.5-2.7 %

Thickness to chord ratio LE break, (t/c)break (t/c)break=(t/c)root

Thickness to chord ratio at tip, (t/c)tip (t/c)tip=(t/c)root

Fuselage Variables
Fuselage restraint 1 location, xfus1 50 ft
Fuselage restraint 1 radius, rfus1 5.2 ft

Fuselage restraint 2 location, xfus2 100 ft
Fuselage restraint 2 radius, rfus2 5.7 ft

Fuselage restraint 3 location, xfus3 200 ft
Fuselage restraint 3 radius, rfus3 5.9 ft

Fuselage restraint 4 location, xfus4 250 ft
Fuselage restraint 4 radius, rfus4 5.5 ft

Nacelle, Mission, and Empennage Variables
Inboard nacelle location, ynacelle 20 ft

Distance between nacelles, ∆ynacelle 6 ft
Fuel weight, Wfuel 350000-450000 lb

Starting cruise altitude 65000 ft
Cruise climb rate 100 ft/min
Vertical tail area 548 ft2

Horizontal tail area 800 ft2

Engine thrust 39000 lb.



American Institute of Aeronautics and Astronautics
10

Table 3: Optimization control parameters in GENESIS for six cases

Category Name of

Parameter

Description Case

A2

Case

A3

Case

A5

Case

B2

Case

B3

Case

B5

DELP Fractional change allowed for properties 0.5 0.5

DPMIN Minimum move limit for properties 0.1 0.1E-4

DELX Fractional change allowed for design

variables

0.5 0.5

DXMIN Minimum move limit for design variables 0.1 0.1E-4

REDUC1 To multiply all the move limits by this

number if internal approximate problem is

NOT doing well

0.5 0.5

Move Limits

REDUC2 To divide all the move limits by this

number if internal approximate problem is

doing well

0.75 0.75

CONV1 Relative convergence criteria on objective

function

0.1E-2 0.1E-3

CONV2 Absolute convergence criteria on objective

function

0.1E-2 0.1E-3

Outer loop

convergence on

objective

function

(Hard

convergence)

GMAX Maximum constraint violation allowed at

optimum

0.1E-3 0.1E-3

CONVCN Relative criteria for change in design

variables

0.1E-2 0.1E-4

CONVDV Relative criteria for change in properties 0.1E-2 0.1E-4

Outer loop

convergence on

design variables

(Soft

convergence)

CONVPR Allowable change in the maximum

constraint

0.1E-2 0.1E-4

Inner loop

convergence

ITRMOP Number of consecutive iterations that must

satisfy the relative or absolute convergence

criteria before optimization is terminated in

the approximate optimization problem

2 3 5 2 3 5

Table 4: Performance of structural optimization for various GENESIS parameter settings

Case A2 Case A3 Case A5 Case B2 Case B3 Case B5

Number of points for which

the best Ws was achieved

0 12 58 0 4 52

Mean of accurate true error

(percentage to the mean Ws)

3931.0 lb.

(4.860%)

441.4 lb.

(0.546%)

161.8 lb.

(0.200%)

4552.8 lb.

(5.629%)

616.2 lb.

(0.762%)

32.7 lb.

(0.040%)

CPU time per GENESIS run

(seconds)

78.1 117.6 156.7 61.4 109.0 143.3
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Table 5.1: Results of direct fit of the Weibull model to et, absolute error

Error A2 Error A3 Error A5 Error B2 Error B3 Error B5

dataµ̂  for et, lb. 3931 441.4 161.8 4553 616.2 32.7

fitµ̂ , lb.

(discrepancy w.r.t 
dataµ̂ for et)

3850

(-2.1 %)

462.3

(4.7 %)

147.2

(-9.0 %)

4572

(0.4 %)

689.2

(11.8 %)

146.3

(347.4 %)

 
dataσ̂  for et, lb. 7071 1408 966.6 5991 1086 73.8

fitσ̂ , lb.

(discrepancy w.r.t 
dataσ̂  for et )

6894

(-2.5%)

1270

(-9.8 %)

1674

(73.2 %)

6023

(0.5 %)

1682

(54.9 %)

1695

(2197 %)

α (shape parameter) 0.5912 0.4348 0.2228 0.7682 0.4703 0.2214

β (scale parameter) 2510 172.2 2.870 3915 305.8 2.724

χ2 statistic 12.25 14.79 224.3 3.524 9.397 190.0

p-value 0.0925 0.0387 0.0000 0.8327 0.2254 0.0000

Table 5.2: Results of direct fit of the Weibull model to et, relative error

Error A2 Error A3 Error A5 Error B2 Error B3 Error B5

dataµ̂  for et, % 3.99 0.394 0.098 6.08 0.733 0.046

fitµ̂ , %

(discrepancy w.r.t 
dataµ̂  for et)

3.96

(-0.8 %)

0.468

( 18.8 %)

0.173

( 76.5 %)

6.10

(0.3 %)

0.768

(4.8%)

0.222

(382.6 %)

dataσ̂  for et, % 6.21 0.805 0.505 7.84 1.61 0.092

fitσ̂ , %

(discrepancy w.r.t 
dataσ̂  for et)

6.07

(-2.3 %)

1.13

(40.4%)

2.11

(317.8 %)

8.09

(3.2 %)

1.74

(8.1 %)

2.60

(2726 %)

α (shape parameter) 0.6726 0.4730 0.2175 0.7636 0.4949 0.2209

β (scale parameter) 3.007 0.2102 0.0028 5.1977 0.3767 0.0041

χ2 statistic 16.06 24.63 228.6 15.27 9.2381 200.5

p-value 0.0245 0.0009 0.0000 0.0327 0.2360 0.0000

Table 6: Correlation coefficients between et, absolute error

Case A2 Case A3 Case B2 Case B3

Case A2 1 0.2004 0.1983 0.1559

Case A3 1 0.0361 0.3967

Case B2 1 0.1811

Case B3 1
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Table 7.1: Difference fit between the default (Case A2) and the cases with tightened convergence criteria

Tightening inner loop

convergence criterion

Tightening outer loop

convergence criteria

Pair of Ws Ws(A2)-Ws(A3) Ws(A2)-Ws(B2)

Parameters of distribution of optimization error

for default convergence criteria

α

β

0.553

2105

0.509

1756

Parameters of distribution of optimization error

for tightened convergence criteria

α

β

0.389

34.3

0.710

3187

χ2 statistic 25.1 7.33

p-value 0.0001 0.1970

Table 7.2: Comparison of estimates of mean and standard deviation between indirect fit and estimation from data

Tightening inner loop

convergence criterion

Tightening outer loop

convergence criteria

Cases Error A2 Error A3 Error A2 Error B2

dataµ̂  for et, lb. 3931 441.4 3931 4553

fitµ̂  from difference fit, lb.

( discrepancy w.r.t 
dataµ̂ for et)

3550

(-9.7%)

123.3

(-72.1%)

3394

(-13.7%)

3981

(-12.6%)

dataµ̂  for ea, best of two, lb.

( discrepancy w.r.t 
dataµ̂ for et)

3535

(-10.1%)

46.1

(-89.6%)

2199

(-44.1%)

2821

(-38.0%)

dataσ̂  for et, lb. 7071.3 1407.8 7071.3 5991.0

fitσ̂  from difference fit, lb.

( discrepancy w.r.t 
dataσ̂  for et)

6922

(-2.1%)

406.2

(-71.1 %)

7393

(4.5%)

5729

(-4.4%)

dataσ̂  for ea, best of two, lb.

( discrepancy w.r.t 
dataσ̂  for et)

6895

(-2.5%)

349.6

(-75.2%)

5545

(-21.6%)

5082.9

(-15.2%)

χ2 statistic* 26.4 89.9 17.8 7.65

p-value 0.0004 0.0000 0.0129 0.3644

* Based on values of et
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Figure 1: Optimum structural weight response along a design line for different GENESIS parameters,
(a) Case A2, A3, and A5, (b) Case B2, B3, B5

Figure 2.1: Plots of estimated error versus estimated true Ws  (absolute error)



American Institute of Aeronautics and Astronautics
14

+

+

++

+

+
+

+

+
+

++
+

+

+
+

+

+

++

+

+
+

+++++
+

+++
+

+
+
+

+
+

+
+ +++

+
+

+
+ +

+
+

+
+

++

+

+
+

+ +++++
+ +

+

+

++

++

+ +++

+

++
+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

++ +
+++

+

+ ++

+

++ +
+ +

+

+

+

++

+ ++

+

+

++

+

Ws, true (lb)

E
rr

or
A

2
(%

)

0 100000 200000 300000
0

5

10

15

20

25

30

35

40

45

50

(a) Case A2 (correlation = 0.3210)

+ +
++

+

+

+
++ +++

+

+

+ +

+

+++ +
+

++
+
+++ + +++ +

+

+++

+

+
+

+++

+

+

+
+

+ +
+ +
+

+++

+ +

+ +++
++ + +++++++

+
+

+
+ ++

+

+

+

+
+

++
+
+

++ +

+

+++
+
+

+ +
+

+ +

+

++ ++ +

+
+

+
+ ++

+

+

++

+

+

+ +
+

+
+

+

++

Ws, true (lb)

E
rr

or
A

3
(%

)

0 100000 200000 300000
0

1

2

3

4

5

6

7

8

(b) Case A3 (correlation = 0.4326)
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Figure 2.2: Plots of estimated error versus estimated true Ws (relative error)

Figure 3: Comparison of µ̂  and σ̂ of the Weibull distribution (α = 0.7682, β  = 3915) between direct

estimates from data and Weibull fit for various sizes of sample data



American Institute of Aeronautics and Astronautics
15

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++

++++++++++++++
+++
++++
++++++

++
+
+++

+++++

+ +

+ +
+

+

+

Error A2 (Fit)

E
rr

o
r

A
2

(D
at

a)

0 10000 20000 30000 40000 50000
0

10000

20000

30000

40000

50000

(a) Case A2

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++

+++++++
+++++++

+ +
+

+

+

Error A3 (Fit)
E

rr
o

r
A

3
(D

at
a)

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

(b) Case A3

+++++++++++++++++++++++++++++++++++
++++++++++++++++++++

++++++++++++++++
+++++++++++

++++++
++++++++

+++++
+++++

+++
++
+++

++++++ +
+

+

+

+
+

Error B2 (Fit)

E
rr

o
r

B
2

(D
at

a)

0 10000 20000 30000 40000
0

10000

20000

30000

40000

(c) Case B2

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++

++++++
+++++++

++++++
+++

+++
+++ + +

+

+

+

+

Error B3 (Fit)

E
rr

o
r

B
3

(D
at

a)

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

(d) Case B3

Figure 4: Q-Q plots of Weibull fit for distribution of the estimated error: points above the line
indicate that the data is a distribution of a heavier tail than the fit. For example, the point
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Figure 5: Comparison of histograms of et and direct fits of Weibull model
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Figure 6.2: Comparison of cumulative frequencies between direct fit and indirect fit of Weibull model (Pair of
Cases A2 and B2)

Figure 6.1: Comparison of cumulative frequencies between direct fit and indirect fit of Weibull model (Pair of
Cases A2 and A3)
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Appendix A. Failure rate of the Weibull distribution13

In the context of failure test problems such as
measuring lifetime of light bulbs, it is useful to consider
a function that gives the probability of failure during a
very small time increment, assuming that no failure
occurred before the time. This function known as the
failure rate, or conditional failure function, is

)(1

)(
)(

tF

tf
t

−
=φ

where f(t) and F(t) are the probability density and
distribution functions for the time to failure.
Consequently, φ(t)dt can be interpreted as the conditional
probability that failure will occur during the period
between t and (t+dt), on condition that there was no
failure until time t.

For the Weibull distribution, the failure rate
becomes

1)( −−= αααβφ tt .

Figure A.1 shows the Weibull density functions with β
=1 and various values of α. And the corresponding
failure rates are shown in Fig. A.2. Note that when α = 1,
failure rate is constant, and the Weibull model is reduced
to the exponential distribution. For α <1, the failure rate
decreases asymptotically to zero along t, but with α >1,
the failure rate increases to infinity from zero. For
example, a manufacturer of light bulbs may want to
know the expected lifetime of their products by
measuring the time to failure. Increasing failure rate
implies that old light bulbs have greater chance of failure
than newer ones, whereas decreasing failure rate
indicates that old light bulbs are more unlikely to fail
maybe because most of the problems occur at the
beginning of the lifetime of light bulbs. Constant failure
rate indicates that the probability of failure does not
depend on how long the light bulbs have been in use.
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Figure A.1: Probability density functions for Weibull
with α = 1 and various β
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Figure A.2: Failure rate for Weibull distribution
with α = 1 and various β


