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Abstract 

The use of Iteratively Reweighted Least Squares (IRLS)
for detecting design points where structural optimizations
give poor designs is demonstrated. Since most
optimization error is one sided with poor results
producing an overweight objective value, a
nonsymmetrical version of IRLS (NIRLS) that takes into
account the asymmetry in optimization errors is also
developed. Optimization studies with various sets of
convergence criteria on wing bending material weight of
a high speed civil transport are used to demonstrate these
techniques. First, inspection of poor designs by a
visualization technique that plots objective function and
constraint boundaries on planes including the suspected
points, indicated that poor results were due to incomplete
convergence of the optimization procedure rather than
due to local minima. Results obtained with several
hundred design points indicated that IRLS techniques can
find most of the points with large optimization errors, but
that NIRLS techniques are much more reliable in this
task. Finally, the paper shows that the choice of
convergence settings and parameters can have large
effects on optimization errors. In particular, tighter
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criteria for some parameters may actually increase
optimization error.

1. Introduction

Optimization procedures often produce poor results
due to algorithmic difficulties, software problems, or
local optima. When a single optimization is flawed, it
may be difficult to detect the problem, because the ill
conditioning responsible for the problem may make it
difficult to apply optimality criteria unambiguously.
However, in many applications a large number of
optimizations are performed for a range of problem
parameters. For example, our research group routinely
performs thousands of structural optimizations of wing
structures for the purpose of developing equations that
predict wing structural weight as a function of the
aerodynamic shape of the wing1. When such multiple
optimizations are available, statistical analysis can be
done to detect incorrect optimal results. For example,
Papila and Haftka2 used iteratively reweighted least
squares3, 4 (IRLS) to detect such points, called outliers.
They corrected the data by re-optimization from slightly
different starting points or by switching optimization
algorithms.

One important observation about the outlier points
(incorrect computed optima) is that they are consistently
heavier designs than the true optimal designs. That is, the
optimization error has positive bias. There are two
implications of this bias in the optimization error. First,
we expect that the incorrect optimal will be lowered by
correction efforts. Second, the symmetric weighting
function used in IRLS procedures can be improved by
taking into account the error bias. One objective of this
paper is to demonstrate this approach of using
nonsymmetrical weighting functions in an IRLS
procedure for detecting outliers. The procedure is
demonstrated on structural optimization of wing box
material for various aerodynamic configurations of a
high-speed civil transport.

Poor optimization results may be the result of local
optima or of premature convergence of the optimization
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procedure. We use visualization of the design space
along selected planes, as suggested by Knill et al.5, to tell
whether we have one case or the other.  In most cases we
have found that poor results are caused by premature
convergence due to the choice of the convergence criteria
in the optimization procedure. A second objective of this
paper is to demonstrate the usefulness of outlier detection
for discovering the poor choice of parameters, and for
estimating the magnitude of the resulting errors.

2. Iteratively Reweighted Least Squares

The standard least squares procedure for response
surface estimation6 is not robust with respect to bad data.
Robust regression methods have been developed which
give reasonable estimates even if the data is
contaminated with outliers (bad data). In addition, robust
regression7 can locate the outliers, allowing us to
examine the outliers and try to correct them whenever
possible.

To describe the robust regression method (known as
M-estimation) used here, we first consider the standard
linear regression model. With n data points and p
parameters in the regression model, the linear regression
model is

Xy += (1)

where X is a n�p Gram matrix of the shape functions
used in the model (typically monomials),  is a p-vector
of coefficients to be estimated and  is an n-vector of
random errors. For a robust estimate � we minimize a
measure of the residuals ri:
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Here, �is a function of the residual scaled by , a known
estimate of the standard deviation of ε. For example, in
the case of the familiar least squares method, (s) = s2/2.
A necessary condition for a minimum is
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If we define (s)= � (s)/ds, then a necessary condition
for a minimum becomes

0=ΨTX , (4)

where �= ( (r1) ,� (r2), ... ,� (rn))
T. Defining the weight

function w(s) = (s)/s, (4) becomes

0=W(r)rX T (5)

where W(r) = diag(w(r1), w(r2),... ,w(rn)). Note that for
ordinary least squares (s) = s and w(s) = 1.

For ordinary least squares, (5) is a linear equation
for the coefficient vector . However, in general (5) is a
system of nonlinear equations and iterative methods are
required. The most popular approach is iteratively
reweighted least squares (IRLS), which is attributed to
Beaton and Tukey3. Rewriting the necessary condition as
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the iterative formula can be written as

  
,

)()(
)1( y

y-X
WXX

y-X
WX

i
T

i
Ti

























=+

-1 (7)

or,

( ).)(
)()(

)()1( i
i

T
i

Tii y-X
y-X

WXX
y-X

WX 



























+=+

-1  (8)

Several possible weight functions were considered
here, summarized in Table 1 and Fig. 1. We preferred
Beaton and Tukey’s biweight function3 to Huber’s
minimax8 because it gives zero weight to the outliers and
thus the outliers are clearly detected. The two other
functions, NIRLS1 and NIRLS2, will be discussed later.
An estimate of σ was calculated as 1.5⋅median( yi-xiβ )
as recommended by Myers9. B is a tuning constant
depending on the characteristics of the noise distribution.
Myers9 suggested limiting the tuning constant to a range
of one to three. The shape of the weight functions in Fig.
1 clearly shows that they penalize outliers with zero or
low weight while giving a weight of one or near one, to
inliers. Equations (7) is a fixed point iteration and is not
guaranteed to converge to the global minimum of e( ).
Because the IRLS results depend on the initial guess for
, we need a good initial guess of the regressor

coefficients. With a nonredescending  function (Figure
2) like Huber’s minimax, Birch10 proved that (7) is
globally convergent to a unique solution, the global
minimum of e( ). Therefore, we adopted Huber’s
minimax function to get the initial estimates of the
regressor coefficients. Then the IRLS procedure using
the biweight function was computed using these initial
coefficients.

The usual IRLS procedure assumes no bias of the
residual sign. However, for wing structural weight
minimization, the residual ri = (y-� )i/  is mostly
positive for outliers because they are mostly caused by
optimization failure and are consequently heavier. In
order to account for the bias in the outliers, we modified
the shape of the weight function. We tried two
asymmetric weight functions, derived from Beaton and
Tukey’s biweight, and labeled them as NIRLS
(Nonsymmetrical IRLS) weight functions. For NIRLS1
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negative residuals have a weight of one, assuming the
points are good, while positive residuals are weighted by
the biweight function. However, because NIRLS1 does
not downweight large negative residuals, the estimated 
can be susceptible to outliers due to modeling error (true
function different from the assumed response surface
model). Therefore, we devised NIRLS2 as a compromise
between the biweight and NIRLS1 (Fig. 1). NIRLS2
downweights points with negative residual less than
IRLS, but it gives zero weight if the negative error is
greater than a given limit.

3. Description of the HSCT Design Problem

The problem studied in this paper is a 250
passenger HSCT design with a 5500 n.mi. range and
cruise speed of Mach 2.4. A general HSCT model1, 11, 12

developed by the Multidisciplinary Analysis and Design
(MAD) Center for Advanced Vehicles at Virginia Tech
includes 29 configuration design variables.  Of these, 26
describe the geometry, two the mission, and one the
thrust (Table 2). Following Balabanov et al.1, our
objective is to fit a response surface to optimal wing
bending material weight (Wb) from structural
optimization as a function of configuration design
variables. There are four load cases for the HSCT design
study that represent different points on the flight
envelope.

We applied the method to simplified versions of the
HSCT design problem with only five configuration
variables. Version A, Table 2 (a), selected five variables
defining the wing planform, including root chord croot, x-
coordinate of the leading edge break point LEbx, y-
coordinate of the leading edge break point LEby, x-
coordinate of the leading edge at the wing tip LEtx, and
wing semi span b/2. Version B, Table 2 (b), following
Knill et al.5 includes root chord croot, tip chord ctip,
inboard leading edge sweep angle ΛILE, thickness to
chord ratio for the airfoil t/c, and the fuel weight, Wfuel.
Figure 3 illustrates the design variables of the two HSCT
design problems. Other variables, such as fuselage,
vertical tail, mission, and thrust related parameters, are
kept unchanged at the baseline values for both versions.

In this study, a structural optimization procedure
based on finite element analysis using GENESIS13 was
applied. The finite element model, developed by
Balabanov1, uses 40 design variables, including 26
variables to control skin panel thickness, 12 variables to
control spar cap areas, and two for the rib cap areas. The
HSCT codes11, 12 calculate aerodynamic loads for each of
the four load cases, and a mesh generator by Balabanov1

calculates the FEM mesh and applied load at the
structural nodes, and creates the input for GENESIS. The
structural optimization is performed for each aircraft
configuration. The objective function is the total wing

structural weight and the wing bending material weight
Wb is calculated from the optimal structural design.

4. Test Problem Study of Optimization Failure:
Rosenbrock Function in Five Dimensions

Before addressing the HSCT problem, it is
worthwhile to illustrate our premise using a simple test
problem. It is not unusual that an optimization code fails
to find even a local optimum. This may happen due to ill
conditioning of the design space, and it is difficult for
users to detect the failure of the optimization procedure.
Here we will demonstrate the failure of some
optimization algorithms for a simple unconstrained
minimization problem, the generalized Rosenbrock
function14 in five dimensions:
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The unconstrained minimization problem has the
unique solution x* = (1, 1, 1, 1, 1) at which f* = 0. We
performed 500 runs from different initial points that were
randomly generated. For the purpose of this
demonstration we used DOT15, Matlab16, and a trust
region routine from the PORT17, 18 library with finite
difference gradients. The results are summarized in Table
3. Matlab failed to find the true optimum in seven out of
500 runs. DOT failed in 27 out of 500 runs, but that
number was reduced to 4 when the scaling of the design
variables was turned off. All failures occurred at
essentially the same point. The condition number of the
Hessian matrix at the point was about 2400. The trust
region algorithm19, implemented in PORT library,
known to have a more robust convergence criterion,
failed, 180 out of 500 cases, converging to various
points. This unexpected failure was traced to poor
estimation of gradients. Yet, when analytical gradients
were provided, the trust region algorithm had no failures.
In contrast, no noticeable improvements were achieved
by analytical gradients with DOT or Matlab. This
example shows that the performance of numerical
optimization depends on the algorithms adopted and
detailed options used.

5. Visualization to Check of the Soundness of an
Optimum

When the solution is not known as in practical
applications of nonlinear programming, we have to use
various aids to detect optimization failure. Here we
consider structural optimization results for the HSCT.
We generated 121 design points using an orthogonal
array20 experimental design in the five dimensional space
of the HSCT problem Version A. The 15th design point,
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denoted #15, identified as an outlier, was selected for
further study, since we could achieve a 26.6% of
reduction of Wb with four additional GENESIS runs
starting from different initial design points. We used a
design space visualization to determine the nature of the
optimization failure. We started by checking whether
there were better designs near #15 by analyzing100
design points with the 40 structural design variables
perturbed �1% randomly from their values at #15. Six of
the 100 points were feasible points better than #15.

In order to visualize the neighborhood of #15, two
better feasible points were selected, the 35th and 64th
perturbed points, denoted as #15P35 and #15P64. To
visualize the design space, a grid of points in a plane
passing through #15, #15P35, and #15P64, was analyzed.
Figure 4 shows contours of the objective function
increment, normalized to the value at #15, and the
constraint boundaries in the plane. The feasible points are
shown as empty circles and filled circles are infeasible
points on the grid. We observe that point A is the best
feasible point in the plane and there is no constraint
barrier between #15 and point A. This shows that #15
represents optimization failure, and illustrates the value
of this visualization technique.

6. Effects of Code Parameters on Optimization
Error

The optimization error depends on many
convergence parameters, called control parameters in
GENESIS. This section presents the results of a study
illustrating how the choice of control parameters affects
the results. The control parameters can be categorized
into move limit parameters, convergence criteria and
inner optimization control parameters (Table 4). There
are two loops in the GENESIS21 (Figure 5). The outer
loop performs detailed FEM analysis of the structure and
creates, in order to reduce the number of expensive FEM
analysis, approximations of the original structural
optimization problem. Move limits are imposed to
restrict the approximate optimization to the region where
the approximation is valid. The outer loop passes the
approximate optimization problem to the inner loop
where the actual optimization is carried out. The
approximation and optimization is continued until no
further change of design variables, called soft
convergence, or no further change of the objective
function, called hard convergence. Optimization
parameters affect the performance of optimization,
quality of the optimization results and the computational
cost.

Experimental design points on which response
surfaces are fit are generated to cover the design space.
Two different experimental designs were used for the
two five variable HSCT problems; for Version A, we
used 121 orthogonal array design points, and for Version

B, a mixed experimental design2 of 126 points that
included centered composite design and orthogonal array
design was used. GENESIS structural optimizations
using different sets of parameters were performed for
each set. Table 4 lists the description of parameters and
the actual values used in this study. Case 1 uses the
default parameters provided by GENESIS. Case 2 is the
same as Case 1 except that the parameter ITRMOP was
increased from 2 to 5. ITRMOP controls the convergence
of the inner optimization. For the approximate
optimization to converge, the inner loop convergence
criterion on the objective function change must be
satisfied for ITRMOP consecutive times. After extensive
experimentation with the optimization parameters and
help from the developers of GENESIS, we found that
this parameter was the most important for improving the
accuracy of the optimization for our problem.

Case 3 employs tighter move limits and
convergence criteria than Case 1. It reflects our first
attempt to improve the optimization results. Case 4 is the
same as Case 3 except that ITRMOP is 5. Case 7
employs moderately tight parameters, which was
frequently adopted in our HSCT design problem. Case 8
is the same as Case 7 except that ITRMOP is 5. Case 5
will be discussed later. Parameters from Case 1 to Case 5
were tested on Version A, and Case 1, Case 2, Case 7,
and Case 8 were tested on Version B of the HSCT design
problem. The values of the control parameters for each
case are given in Table 4. Table 5 shows the mean
improvements of Wb with respect to the default
parameters of Case 1, when using parameters from Case
2 to Case 5. It is seen that tightening the convergence
criteria for ITRMOP=2 (Case 3) actually had a
detrimental effect. The effect of ITRMOP=5 in Case 2,
was an improvement of about 692.5 lbs., which is about
1.5% of the average of Wb.

The numerical noise due to errors in the structural
optimization can be visualized by plotting the optimum
Wb along a straight line connecting two points in the
HSCT design space. If we denote the two end points as x0

and x1, Figure 6 (a) is a design line plot of Wb at x = (1-
)x0 +� �1 in the HSCT design space of Version A. The

biased noise in Case 3 is serious while Case 1 has a
reasonable level of noise. Case 4 results are almost
identical to Case 2. Figure 6 (b), a design line plot for
Version B, shows similar effects of optimization
parameters; moderately tight parameters in Case 7 had
detrimental effects compared to the default parameters,
but the increased ITRMOP removed most of the noise in
the data. In both versions of the problem, we see clearly
that poor optima produce heavier results.

Table 5 also provides the computational cost
associated with the various options. It is seen that the
cost associated with ITRMOP=5 is substantial, ranging
from a 59% increase for Case 2 to 148% for Case 4. This
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may explain why ITRMOP=2 is the default value in
GENESIS.

In addition, we tested another optimization setup,
Case 5 in Table 4. The intention of introducing Case 5
was to find which categories of parameters caused the
very bad performance in Case 3. Only convergence
criteria are tightened in Case 5, while keeping the move
limits at the default values. We can see in Table 5 that
Case 5 achieved 0.5% improvement compared to Case 1.
Case 3 that has tightened move limits compared to Case
5, resulted in worse Wb results. Therefore, we can
conclude that the tight move limits caused the poor
optimization with Case 3. Tightening the move limits
without increasing ITRMOP, increased the chance of
premature convergence.

7. Detection and Correction of Poor Optimization
by IRLS and NIRLS

The IRLS procedure to identify poor optimizations
was applied to the lower fidelity optimization data, Case
1 and Case 3 in the Version A and Case 1 and Case 7 in
the Version B of the HSCT problem. A full quadratic
model was used and the IRLS/NIRLS outlier detection
was tried using the SAS statistical software22. Two
different values of B, 1.9 and 1.0, were used to check the
effects of the tuning constant, which acts like a threshold
for outlier detection (Table 1). A smaller B leads to a
more aggressive outlier search. The allowable region
around the response surface for good points becomes
narrower, and more points will be declared outliers. From
the results of the previous section, we have multiple Wb

data from different optimization settings. For Version A,
we estimated true Wb on the 121 experimental design
points by taking the best of four Wb’s from Case 1 to
Case 4. Similarly, for the Version B, we estimate the true
Wb as the minimum of Case 1, Case 2, Case 7, and Case
8. We tried to correct the detected outliers by the
estimated true values. Full quadratic response surfaces
were fit to the data before and after correction to measure
the noise level remaining in the data. We also expect to
improve the prediction accuracy of response surfaces by
outlier correction.

Results for Version A

Table 6 presents a summary of the outlier detection
and correction results for the wing bending material
weight data for Case 1, Wb1 with IRLS and NIRLS.
Outliers detected were repaired by repeating the
optimization with ITRMOP=5. In order to assess the
success in detection, all 121 points were also repaired,
and the results are shown in the last row in Table 6.

With a tuning constant B=1.9, IRLS identified 14
data points as outliers while 19 and 18 data points were
found by NIRLS1 and NIRL2, respectively. The actual

magnitude of error of the outliers can be calculated by
comparing Wb1 to the repaired value. Thirteen out of the
14 outliers by IRLS had nonzero improvements. The
average correction of outliers was 2940 lbs. compared to
414 lbs for inliers. However, the very large outliers are of
particular concern. We defined large outliers as those
showing 10% or greater relative error. Two out of 121
points satisfy this criterion. These were detected by all
options except for IRLS with B=1.0.

 Figure 7 shows the actual error (i.e., Wb correction)
distribution of both of the detected outliers and inliers
versus w, the weight in IRLS. Figure 7 (a) shows that
IRLS left many moderate outliers undetected. By more
aggressive detection with B=1.0, IRLS declared 45 points
as outliers and Figure 7 (b) shows that more of the
moderate outliers were newly found by decreasing B.
However, only one of the two big outliers was detected
by IRLS despite of the reduced tuning constant.

Quadratic response surfaces were fit to the original
and repaired Case 1 data. Before repair, the root mean
square error (RMSE) was 6.5% of the mean Wb. and this
was reduced only slightly to 6.2% by repair. This small
gain indicates that most of the RMSE is due to modeling
error, reflecting the inadequacy of quadratic polynomial.

Table 7 and Fig. 8 show results for Case 3, which
contains 33 big outliers. The advantage of NIRLS over
IRLS is clearly demonstrated by comparing the results
when B=1.0. NIRLS successfully detected almost all big
and many moderate outliers, while IRLS missed almost
half of the big outliers. With a larger amount of noise, the
RMSE of the quadratic response surface on Wb3 was
reduced from 9.5% to 6.2% by NIRLS repair with B=1.9.
There was little further improvement of RMSE with
B=1.0, although more outliers are repaired. This implies
that outliers with large errors have dominant effects on
the predictive accuracy of response surfaces.

Figure 9 compares the response surfaces before and
after repair on the design line of Fig. 6. The response
surfaces based on the uncorrected Wb3 over-predicted the
response in the right half of the plot. For B=1.9, as shown
in Figure 9 (a), the response surface based on repair by
IRLS was improved. Note that the response surface from
NIRLS1 repair lies on top of that of IRLS. However,
Figure 9 (b) indicates that NIRLS1 repair was better than
IRLS with B=1.0 as expected from the results of Table 7.

Results for Version B

Table 8 shows results for Case 1. The number of
big outliers for this case, 12, is much larger than for
Version A, indicating a much higher level of noise. This
may reflect the use of vertex points, at the far reaches of
the design domain, where unusual configurations are
more prone to optimization difficulties. Table 8 indicates
that the NIRLS procedures were again more successful
than IRLS in identifying the big outliers. Also the ratio of
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correction weight for outliers and inliers is much better
for the NIRLS procedures, indicating that they are more
successful in homing in on points with large errors. This
time, with more noise, all procedures produced
substantial reduction in RMSE. The IRLS procedure did
slightly better than the NIRLS, something for which we
do not have an explanation.

Table 9 shows results for Case 7, which like Case 3
has substantially more noise than Case 1. The number of
big outliers is 34, and again, the NIRLS procedures are
much more successful than the IRLS procedure in
finding most of these outliers, especially with the
aggressive search corresponding to B=1. As in Table 8,
the IRLS procedure does slightly better in terms of
RMSE reduction.

Taken together, the results for both versions
indicate that IRLS procedures are useful for detecting
points with large optimization errors, and that the NIRLS
procedures are substantially more reliable in this task,
especially under conditions of aggressive search. While
RMSE errors are not influenced much by the choice
between IRLS and NIRLS, Fig. 9 indicates that
prediction errors may improve with the NIRLS
procedure.

8. Concluding Remarks

Response surface techniques provide statistical
tools to identify outliers in the data that do not fit the
underlying model. We have demonstrated the use of one
of these tools, Iteratively Reweighted Least Squares
(IRLS) for detecting design points where structural
optimization gave poor designs. Since optimization error
is one sided, we have also proposed a nonsymmetrical
version of IRLS (NIRLS) that takes into account the
asymmetry in optimization errors.

Optimization studies with various sets of
convergence criteria on wing bending material weight of
a high speed civil transport (HSCT) were used to
demonstrate the usefulness of the techniques. First, some
of the points detected by IRLS and NIRLS were
inspected by a design space visualization technique that
plots objective function and constraint boundaries on
planes including the suspect design points. The
visualization indicated that poor results were due to
incomplete convergence of the optimization procedure
rather than due to local minima.

Next, all the points used for the construction of the
response surface were repaired by re-optimizing them
with the best set of convergence criteria at our disposal.
This allowed us to check how successful the IRLS and
NIRLS procedures were in detecting outliers. We
focused mostly on big outliers, where the error in optimal
weight was more than 10%. We found that the NIRLS
procedures were much more reliable in detecting these
big outliers. While there was not much difference

between the different procedures in terms of reducing
rms error in the response surface, there was some
indication that the response surfaces based on NIRLS
repair may have smaller prediction errors.

Finally, the study revealed that convergence setting
can have large effects on optimization errors. In
particular, we found that tighter criteria for some
parameters may actually increase optimization error.
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Table 1: Weight functions.
Name W(r) Range Tuning Constant

Huber’s minimax 1
H r -1

r ≤ H
r > H

H=1.0

Beaton and Tukey’s biweight (1-(r/B)2)2

0
r ≤ B
r > B

B=1.0 ~ 1.9

NIRLS1 1
(1-(r/B)2)2

0

r ≤ 0
0 < r ≤ B

r > B

B=1.0 ~ 1.9

NIRLS2 0
(1-(r/(2B))2)2

(1-(r/B)2)2

0

r ≤  -2B
-2B < r ≤ 0
0 < r ≤ B

r > B

B=1.0 ~ 1.9

Table 2 (a): Configuration design variables for HSCT with corresponding values and ranges
(5 variable Version A).

Name of design variables Value of design variable

Planform Variables
Wing root chord, croot 156 - 211 ft

LE break point, x,  LEbx 99.3 – 134.4 ft
LE break point, y,  LEby 35.3 – 47.8 ft
TE break point, x,  TEbx (= LEbx+0.25 croot)
TE break point, y,  TEby (= LEby)

LE wing tip, x, Letx 120.6 – 163.2 ft
Wing tip chord, ctip 10.2 ft

Wing semi span, b/2 61.4 – 83.1 ft
Airfoil Variables

Location of max. thickness, (x/c)max-t 0.49
LE radius, RLE 2.94

Thickness to chord ratio at root, (t/c)root 2.32 %
Thickness to chord ratio LE break, (t/c)break 1.73 %

Thickness to chord ratio at tip, (t/c)tip 1.50 %
Fuselage Variables

Fuselage restraint 1 location, xfus1 2.75 ft
Fuselage restraint 1 radius, rfus1 0.628 ft

Fuselage restraint 2 location, xfus2 14.4 ft
Fuselage restraint 2 radius, rfus2 2.48 ft

Fuselage restraint 3 location, xfus3 114 ft
Fuselage restraint 3 radius, rfus3 5.60 ft

Fuselage restraint 4 location, xfus4 178 ft
Fuselage restraint 4 radius, rfus4 5.53 ft

Nacelle, Mission, and Empennage Variables
Inboard nacelle location, ynacelle 7.05 ft

Distance between nacelles, ∆ynacelle 14.4 ft
Fuel weight, Wfuel 386666 lb

Starting cruise altitude 58948 ft
Cruise climb rate 37.4 ft/min
Vertical tail area 443.8 ft2

Horizontal tail area 729.9 ft2

Engine thrust 48657 lb.
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Table 2 (b): Configuration design variables for HSCT with corresponding values and ranges
(5 variable Version B).

Design Variable Value of design variable

Planform Variables
Root chord, croot 150 – 190 ft
Tip chord, ctip 7 – 13 ft

Wing semi-span, b/2 74 ft
Length of inboard LE, sILE 132 ft

Inboard LE sweep, ΛILE 67° – 76°
Outboard LE sweep, ΛOLE 25°
Length of inboard TE, sITE Straight TE

Inboard TE sweep, ΛITE Straight TE
Airfoil Variables

Location of max. thickness, (x/c)max-t 40%
LE radius, RLE 2.5

Thickness to chord ratio at root, (t/c)root 1.5 – 2.7%
Thickness to chord ratio LE break, (t/c)break (t/c)break=(t/c)root

Thickness to chord ratio at tip, (t/c)tip (t/c)tip=(t/c)root

Fuselage Variables
Fuselage restraint 1 location, xfus1 50 ft
Fuselage restraint 1 radius, rfus1 5.2 ft

Fuselage restraint 2 location, xfus2 100 ft
Fuselage restraint 2 radius, rfus2 5.7 ft

Fuselage restraint 3 location, xfus3 200 ft
Fuselage restraint 3 radius, rfus3 5.9 ft

Fuselage restraint 4 location, xfus4 250 ft
Fuselage restraint 4 radius, rfus4 5.5 ft

Nacelle, Mission, and Empennage Variables
Inboard nacelle location, ynacelle 20 ft

Distance between nacelles, ∆ynacelle 6 ft
Fuel weight, Wfuel 280000 – 350000 lb.

Starting cruise altitude 65000 ft
Cruise climb rate 100 ft/min
Vertical tail area 548 ft2

Horizontal tail area No horizontal tail
Engine thrust 39000 lb.

Table 3: Failure of optimizer in 5 dimensional Rosenbrock function.
Matlab DOT PORT

Algorithm BFGS BFGS BFGS
(DV scaling off)

Trust region
(Finite

difference
gradient)

Trust region
(Analytic
gradient)

Number of failure
out of 500 runs

7 27 4 180 0
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Table 4: Optimization control parameters used in GENESIS.
Category Name of

Parameter
Description Case 1 Case 2 Case 3 Case 4 Case 5 Case 7 Case 8

DELP Fractional change allowed for
properties

0.5 0.02 0.5 0.5

DPMIN Minimum move limit for
properties

0.1 0.1E-4 0.1 0.1E-4

DELX Fractional change allowed for
design variables

0.5 0.05 0.5 0.5

DXMIN Minimum move limit for design
variables

0.1 0.1E-4 0.1 0.1E-4

REDUC1 To multiply all the move limits by
this number if internal
approximate problem is NOT
doing well

0.5 0.9 0.5 0.5

Move Limits

REDUC2 To divide all the move limits by
this number if internal
approximate problem is doing
well

0.75 0.9 0.75 0.75

CONV1 Relative convergence criteria on
objective function

0.1E-2 0.1E-9 0.1E-9 0.1E-3

CONV2 Absolute convergence criteria on
objective function

0.1E-2 0.1E-9 0.1E-9 0.1E-3

Hard
Convergence

GMAX Maximum constraint violation
allowed at optimum

0.1E-3 0.1E-3 0.1E-3 0.1E-3

CONVCN Relative criteria for change in
design variables

0.1E-2 0.1E-9 0.1E-9 0.1E-4

CONVDV Relative criteria for change in
properties

0.1E-2 0.1E-9 0.1E-9 0.1E-4

Soft
Convergence

CONVPR Allowable change in the
maximum constraint

0.1E-2 0.1E-9 0.1E-9 0.1E-4

Inner
Optimization

ITRMOP Number of consecutive iterations
that must satisfy the relative or
absolute convergence criteria
before optimization is terminated
in the approximate optimization
problem

2 5 2 5 2 2 5

Table 5: Structural optimization performance according to GENESIS parameter settings
(5 variables Version A).

Case 1
GENESIS
Default,

ITRMOP=2

Case 2
GENESIS

default,
ITRMOP=5

Case 3
Current
setting,

ITRMOP=2

Case 4
Current
setting,

ITRMOP=5

Case 5
Tight convergence
parameters, Default

move limits,
ITRMOP=2

Cycles/run 7.4 11.8
(1.59×Case 1)

21.8
(2.95×Case 1)

43.3
(5.85×Case 1)

9.6
(1.30×Case 1)

CPU/run
(sec)

74.4 118.2
(1.59×Case 1)

110.9
(1.49×Case 1)

275.0
(3.70×Case 1)

103.2
(1.39×Case 1)

Mean of  Wb

improvements w.r.t
Case 1

NA 1.5% -6.4% 1.4% 0.5%
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Table 6: Results of outlier correction of Case 1
(5 variables Version A).

B Number of
outliers
a/b/c/d*

Mean of
correction on
outliers(lb)†   

Mean of
correction on
inliers(lb)‡

Ratio of
mean
correction on
OL to IL

% of
correction to
full
correction§

RMSE in lbs
(% to the
mean Wb )

mean Wb R2

Before
repair

NA NA NA NA NA NA 3075.2
(6.5%)

47349 0.9788

IRLS
repair

1.9 13/14/2/2 2940.4 486.3 6.05 44.1 2758.4
(5.9%)

47009 0.9823

NIRLS1
repair

1.9 18/19/2/2 2683.4 413.9 6.48 54.7 2741.8
(5.8%)

46927 0.9824

NIRLS2
repair

1.9 17/18/2/2 2668.2 438.6 6.08 51.5 2740.6
(5.8%)

46952 0.9825

IRLS
repair

1.0 39/45/1/2 1244.6 489.4 2.54 60.1 2808.2
(6.0%)

46886 0.9817

NIRLS1
repair

1.0 36/42/2/2 1580.8 339.3 4.66 71.2 2785.5
(6.0%)

46800 0.9818

NIRLS2
repair

1.0 29/33/2/2 1723.7 412.7 4.18 61.0 2691.4
(5.7%)

46879 0.9831

Full
repair¶

NA NA NA NA NA 100.0 2868.2
(6.2%)

46579 0.9808

*:  a: Number of outliers successfully repaired (relative improvement is greater than 0)
     b: Number of detected outliers
     c: Number of big outliers detected (relative improvement is greater than 10%)
     d: Total number of big outliers out of the 121 data points (relative improvement is greater than 10%)
†: (Sum of Wb correction on outliers)/b
‡: (Sum of Wb correction on data points other than outliers)/(Total number of points - b)
§: (Sum of Wb correction on outliers) / (Sum of Wb correction on all 121 points)
¶: All 121 points corrected

Table 7: Results of outlier correction of Case 3
(5 variables Version A).

B Number of
outliers
a/b/c/d*

Mean of
correction on
outliers(lb)†

Mean of
correction
on
inliers(lb)‡

Ratio of
mean
correction on
OL to IL

% of
correction to
full
correction§

RMSE in lbs
(% to the
mean Wb)

Mean Wb

(lbs)
R2

Before
repair

NA NA NA NA NA NA     4782.0
    (9.5%)

    50365 0.9497

IRLS
repair

1.9 17/19/14/33 10512 2533.3 4.15 43.6 3044.5
(6.2%)

48714 0.9795

NIRLS1
repair

1.9 15/17/13/33 11242 2567.4 4.38 41.7 3011.2
(6.2%)

48785 0.9798

NIRLS2
repair

1.9 15/17/13/33 11242 2567.4 4.38 41.7 3011.2
(6.2%)

48785 0.9798

IRLS
repair

1.0 35/40/18/33 6488.6 2451.6 2.65 56.7 3520.6
(7.3%)

48220 0.9724

NIRLS1
repair

1.0 46/50/31/33 7355.3 1272.7 5.78 80.3 2912.7
(6.2%)

47325 0.9797

NIRLS2
repair

1.0 46/51/30/33 7108.3 1365.8 5.20 79.1 2817.1
(5.9%)

47369 0.9814

Full
repair¶

NA NA NA NA NA 100. 2868.2
(6.2%)

46579 0.9808

*:  a: Number of outliers successfully repaired (relative improvement is greater than 0)
     b: Number of detected outliers
     c: Number of big outliers detected (relative improvement is greater than 10%)
     d: Total number of big outliers out of the 121 data points (relative improvement is greater than 10%)
†: (Sum of Wb correction on outliers)/b
‡: (Sum of Wb correction on data points other than outliers)/(Total number of points - b)
§: (Sum of Wb correction on outliers) / (Sum of Wb correction on all 121 points)
¶: All 121 points corrected
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Table 8: Results of outlier correction of Case 1
(5 variables Version B).

B Number of
outliers
a/b/c/d

*

Mean of
correction on
outliers(lb)

†

Mean of
correction on
inliers(lb)

‡

Ratio of
mean
correction on
OL to IL

% of
correction to
full
correction§

RMSE in lbs
(% to the
mean Wb)

mean Wb R2

Before
repair

NA NA NA NA NA NA 4874.6
(9.5%)

51104 0.9681

IRLS
repair

1.9 16/21/9/12 8235.3 1200.0 6.86 57.9 3260.0
(6.6%)

49731 0.9839

NIRLS1
repair

1.9 19/24/12/12 8484.7 934.4 9.08 68.1 3475.7
(7.0%)

49488 0.9809

NIRLS2
repair

1.9 19/24/12/12 8484.7 934.4 9.08 68.1 3475.7
(7.0%)

49488 0.9809

IRLS
repair

1.0 33/43/10/12 4712.3 1160.4 4.06 67.8 3260.9
(6.6%)

49496 0.9839

NIRLS1
repair

1.0 35/45/11/12 4868.2 986.1 4.94 73.3 3022.5
(6.1%)

49365 0.9862

NIRLS2
repair

1.0 36/45/12/12 5304.7 743.6 7.13 79.9 3471.8
(7.1%)

49209 0.9810

Full
repair¶

NA NA NA NA NA 100.0 3485.1
(7.2%)

48731 0.9811

*:  a: Number of outliers successfully repaired (relative improvement is greater than 0)
     b: Number of detected outliers
     c: Number of big outliers detected (relative improvement is greater than 10%)
     d: Total number of big outliers out of the 126 data points (relative improvement is greater than 10%)
†: (Sum of Wb correction on outliers)/b
‡: (Sum of Wb correction on data points other than outliers)/(Total number of points - b)
§: (Sum of Wb correction on outliers) / (Sum of Wb correction on all 126 points)
¶: All 126 points corrected

Table 9: Results of outlier correction of Case 7
(5 variables Version B).

B Number of
outliers
a/b/c/d*

Mean of
correction on
outliers(lb)

†

Mean of
correction
on
inliers(lb)

‡

Ratio of
mean
correction on
OL to IL

% of
correction to
full
correction§

RMSE in lbs
(% to the
mean Wb)

Mean Wb

(lbs)
R2

Before
repair

NA NA NA NA NA NA     4594.8
    (8.7%)

    53069 0.9701

IRLS
repair

1.9 23/23/17/34 9020.3 3292.2 2.74 38.0 2873.1
(5.6%)

51423 0.9877

NIRLS1
repair

1.9 25/25/18/34 9658.7 3020.7 3.20 44.2 3747.3
(7.3%)

51153 0.9774

NIRLS2
repair

1.9 25/25/18/34 9658.7 3020.7 3.20 44.2 3747.3
(7.3%)

51153 0.9774

IRLS
repair

1.0 46/49/21/34 5609.4 3528.6 1.59 50.3 3034.0
(6.0%)

50888 0.9865

NIRLS1
repair

1.0 43/45/28/34 7728.5 2454.1 3.15 63.6 3574.0
(7.1%)

50309 0.9796

NIRLS2
repair

1.0 43/44/29/34 8009.7 2367.5 3.38 64.5 3530.9
(7.0%)

50272 0.9801

Full
repair¶

NA NA NA NA NA 100. 3485.1
(7.2%)

48731 0.9811

*:  a: Number of outliers successfully repaired (relative improvement is greater than 0)
     b: Number of detected outliers
     c: Number of big outliers detected (relative improvement is greater than 10%)
     d: Total number of big outliers out of the 126 data points (relative improvement is greater than 10%)
†: (Sum of Wb correction on outliers)/b
‡: (Sum of Wb correction on data points other than outliers)/(Total number of points - b)
§: (Sum of Wb correction on outliers) / (Sum of Wb correction on all 126 points)
¶: All 126 points corrected



American Institute of Aeronautics and Astronautics
13

r

W
ei

gh
t,

w
(r

)

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
IRLS(Huber)
IRLS(Beaton)
NIRLS1
NIRLS2

Figure 1: Various weight functions.
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(a) 5 variable Version A.

+
x

z Leading edge radius (fixed)

Outboard LE sweep (fixed)

x

y

v1

v3

Location of maximum
thickness (fixed)

v2

v4

Wing semi span (fixed)

v5: Fuel Weight

(b) 5 variable Version B.

Figure 3: Design variables in the simplified HSCT design problems.
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Figure 5: Structure of GENESIS structural optimization.



American Institute of Aeronautics and Astronautics
15

α

W
b(

lb
s)

0.00 0.25 0.50 0.75 1.00
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Wb: Case1
Wb: Case2
Wb: Case3
Wb: Case4

(a) 5 variable Version A.
α

W
b(

lb
s)

0.00 0.25 0.50 0.75 1.00
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Wb: Case1
Wb: Case2
Wb: Case7
Wb: Case8

(b) 5 variable Version B.

Figure 6: Design line plots of Wb estimation according to the parameter setups.
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Figure 7: Actual correction for the detected outliers and inliers for Case 1.
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Figure 8: Actual correction for the detected outliers and inliers for Case3.
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Figure 9: Effects of outlier correction on the Wb response surfaces.


